Distribution Theory and Fourier Analysis: An Introduction MT18

Problem Sheet 3

Problem 1. Let

$$
p(D) = \sum_{|\alpha| \le k} c_{\alpha} D^{\alpha}
$$

be a partial differential operator on \mathbb{R}^n in the usual multi-index notation. For an open subset Ω of \mathbb{R}^n and $u \in \mathcal{D}'(\Omega)$ show that the supports always obey the rule:

$$
\mathrm{supp}(p(D)u) \subseteq \mathrm{supp}(u).
$$

Give an example of a distribution $v \in \mathcal{D}'(\mathbb{R})$ such that the distributional derivative $v' \neq 0$ has compact support, but v itself hasn't.

Problem 2. Let $f \in L^1(\mathbb{R}^n)$ and denote by $(e_j)_{j=1}^n$ the standard basis for \mathbb{R}^n . For $\xi \in \mathbb{R}^n$ we write $\xi = \xi_1 e_1 + \cdots + \xi_n e_n$. Show that if $\xi_i \neq 0$, then

$$
\hat{f}(\xi) = -\int_{\mathbb{R}^n} f\left(x + \frac{\pi}{\xi_j} e_j\right) e^{-ix\cdot\xi} dx,
$$

and conclude that

$$
\left|\widehat{f}(\xi)\right| \leq \frac{1}{2} \int_{\mathbb{R}^n} \left|f(x) - f\left(x + \frac{\pi}{\xi_j} e_j\right)\right| \mathrm{d} x.
$$

Using that $\mathcal{D}(\mathbb{R}^n)$ is dense in $L^1(\mathbb{R}^n)$ deduce the *Riemann-Lebesgue Lemma*:

$$
\hat{f}(\xi) \to 0
$$
 as $|\xi| \to \infty$.

Problem 3. Let $t > 0$ and put $G_t(x) = e^{-t|x|^2}$ for $x \in \mathbb{R}^n$. Use the Fourier transform to find a formula for the convolution $G_s * G_t$ for all $s, t > 0$.

Problem 4. Let $a > 0$ and $b, c \in \mathbb{R}$. Put $g(x) = e^{-ax^2 + bx + c}$, $x \in \mathbb{R}$. Calculate \hat{g} .

Problem 5.

(a) State the Fourier Inversion Formula for the Schwartz class $\mathcal{S}(\mathbb{R}^n)$. Define the Fourier transform \hat{u} for a tempered distribution u on \mathbb{R}^n and deduce the Fourier Inversion Formula for $\mathcal{S}'(\mathbb{R}^n)$ from the one on the Schwartz class.

(b) Derive the *Fourier-Gel'fand formula* for the Dirac delta-function at x on \mathbb{R}^n :

$$
\delta_x = \lim_{j \to \infty} (2\pi)^{-n} \int_{(-j,j)^n} e^{i(\cdot - x) \cdot \xi} d\xi \quad \text{in } \mathcal{S}'(\mathbb{R}^n).
$$

(c) Explain why a polynomial $p(x)$ on R is a tempered distribution and calculate its Fourier transform \hat{p} . What can you say about a tempered distribution $u \in \mathcal{S}'(\mathbb{R})$ whose Fourier transform \hat{u} has supp $(\hat{u}) = \{0\}$? (*Hint: Use Theorem 13.13 from the Lecture Notes.*)

(d) Show that $f \in L^1(\mathbb{R}^n)$ is real-valued if and only if $\hat{f}(-\xi) = \hat{f}(\xi)$ holds for all $\xi \in \mathbb{R}^n$. What is the corresponding result for general tempered distributions?

(e) Show that $\mathcal{F}^4(\varphi) = (2\pi)^{2n}\varphi$ for all $\varphi \in \mathcal{S}(\mathbb{R}^n)$. What does this say about the possible eigenvalues for $\mathcal{F}: \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$? Generalize your result to the Fourier transform on the tempered distributions.

Problem 6. Let $u \in \mathcal{S}'(\mathbb{R}^n)$ be a tempered distribution that is homogeneous of degree $\alpha \in \mathbb{R}$: $d_r u = r^\alpha u$ holds for all $r > 0$. Show that the Fourier transform \hat{u} is homogeneous of degree $-n-\alpha$.

Problem 7. (Optional)

Let $f(x) = x_1 |x|^{\alpha}$, $x \in \mathbb{R}^n$, where the dimension $n \ge 2$ and the exponent $\alpha \in (-n-1, -2)$. Compute $\hat{f}(\xi)$.

(*Hint: Consider* $\frac{\partial}{\partial x_1}|x|^{\alpha+2}$ and look at the proof of Lemma 13.9 in the Lecture Notes.)

Problem 8. (Optional)

Define for each $\varphi \in \mathcal{S}(\mathbb{R}),$

$$
\langle \text{pv}\left(\frac{1}{x}\right), \varphi \rangle = \lim_{a \to 0^+} \left(\int_{-\infty}^{-a} + \int_a^{\infty} \right) \frac{\varphi(x)}{x} dx.
$$

Show that hereby $pv(\frac{1}{r})$ $(\frac{1}{x}) \in \mathcal{S}'(\mathbb{R})$ and calculate its Fourier transform.

(The map $\varphi \mapsto \text{pv}\left(\frac{1}{\pi x}\right) * \varphi$ is called the Hilbert transform.)