Distribution Theory and Fourier Analysis: An Introduction MT18/HT19 Problem Sheet 4

Problem 1. Prove that for every t > 0 and $\varphi \in \mathcal{S}(\mathbb{R})$ the identity

$$\int_{-t}^{t} \hat{\varphi}(\xi) \,\mathrm{d}\xi = 2 \int_{-\infty}^{\infty} \varphi(x) \frac{\sin(tx)}{x} \,\mathrm{d}x$$

holds true. Deduce that

$$\lim_{t \to \infty} \frac{\sin(tx)}{x} = \pi \delta_0 \quad \text{ in } \mathcal{S}'(\mathbb{R}),$$

where δ_0 is Dirac's delta-function concentrated at 0 on \mathbb{R} . (*Hint: For instance use the Product Rule and the Fourier Inversion Formula in* S' on the left-hand side of the identity.)

Problem 2. Let $f: \mathbb{R} \to \mathbb{R}$ be a measurable function satisfying $|f(x)| \leq e^{-|x|}$ for almost all $x \in \mathbb{R}$. Prove that the Fourier transform \hat{f} cannot have compact support unless f(x) = 0 for almost all $x \in \mathbb{R}$. (*Hint: Use a Differentiation Rule to see that* \hat{f} *is* C^{∞} *and consider a suitable Taylor expansion.*)

Problem 3. Let $f(x) = e^{-|x|}$, $x \in \mathbb{R}^n$. (a) Compute the Fourier transform $\hat{f}(\xi)$ when n = 1. Deduce for $\lambda \ge 0$ the identity

$$\mathrm{e}^{-\lambda} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1+|\xi|^2} \mathrm{e}^{i\lambda\xi} \,\mathrm{d}\xi.$$

(b) Using $\frac{1}{1+|\xi|^2} = \int_0^\infty e^{-(1+|\xi|^2)t} dt$ and (a) show that for each $\lambda \ge 0$ the identity

$$\mathrm{e}^{-\lambda} = \int_0^\infty \frac{1}{\sqrt{\pi t}} \mathrm{e}^{-t - \frac{\lambda^2}{4t}} \,\mathrm{d}t$$

holds.

(c) Compute the Fourier transform $\hat{f}(\xi)$ in the general *n*-dimensional case, for instance by use of the formula from (b) with $\lambda = |x|$ and calculations similar to those done in lectures when computing fundamental solutions.

Problem 4. Define for $\alpha > 0$ the function $g(x) = (1 + |x|^2)^{-\frac{\alpha}{2}}$, $x \in \mathbb{R}^n$. (a) Explain why $g \in S'(\mathbb{R}^n)$. For which values of $\alpha > 0$ is g integrable over \mathbb{R}^n ? (b) Show that there exists a positive constant $c = c(\alpha)$ such that

$$g(x) = c \int_0^\infty t^{\frac{\alpha}{2} - 1} e^{-t} e^{-t|x|^2} dt$$

holds for all $x \in \mathbb{R}^n$.

(c) Using (b) show that the Fourier transform \hat{g} is a positive and integrable function on \mathbb{R}^n . (*The function* \hat{g} *is called the Bessel kernel of order* α .)

Problem 5. The principal logarithm is defined on the cut plane $\mathbb{C} \setminus (-\infty, 0]$ as

$$\operatorname{Log} z := \log |z| + i\operatorname{Arg}(z), \quad \operatorname{Arg}(z) \in (-\pi, \pi).$$

Define Log(x + i0) and Log(x - i0) for each $\varphi \in \mathcal{S}(\mathbb{R})$ by the rules

$$\langle \operatorname{Log}(x\pm i0), \varphi \rangle := \lim_{\varepsilon \to 0^+} \int_{-\infty}^{\infty} \operatorname{Log}(x\pm i\varepsilon)\varphi(x) \, \mathrm{d}x.$$

(a) Show that $Log(x \pm i0)$ hereby are tempered distributions on \mathbb{R} , and that for some constant c the inequality

$$\left| \left\langle \operatorname{Log}(x \pm \mathrm{i0}), \varphi \right\rangle \right| \le c \overline{S}_{2,0}(\varphi)$$

holds for all $\varphi \in \mathcal{S}(\mathbb{R})$. Recall that for $m, n \in \mathbb{N}_0$ we defined

$$\overline{S}_{m,n}(\varphi) := \sup \bigg\{ |x^r \varphi^{(s)}(x)| : r \in \{0, \ldots, m\}, s \in \{0, \ldots, n\}, x \in \mathbb{R} \bigg\}.$$

Now let $k \in \mathbb{N}$ and define the tempered distributions $(x + i0)^{-k}$ and $(x - i0)^{-k}$ as

$$(x\pm \mathrm{i}0)^{-k} := \frac{(-1)^{k-1}}{(k-1)!} \frac{\mathrm{d}^k}{\mathrm{d}x^k} \mathrm{Log}(x\pm \mathrm{i}0) \quad \text{ in } \mathcal{S}'(\mathbb{R})$$

(b) Show that for each $\varphi \in \mathcal{S}(\mathbb{R})$ with $\varphi^{(j)}(0) = 0$ for $j \in \{0, \ldots, k\}$ we have

$$\langle (x \pm i0)^{-k}, \varphi \rangle = \int_{-\infty}^{\infty} \frac{\varphi(x)}{x^k} dx.$$

Show also that the inequality

$$\left| \langle (x \pm i0)^{-k}, \varphi \rangle \right| \leq \frac{c}{(k-1)!} \overline{S}_{2,k}(\varphi)$$

holds for all $\varphi \in \mathcal{S}(\mathbb{R})$, where c is the constant you found in (a) above. (c) Prove that $\operatorname{Log}(x + i0) - \operatorname{Log}(x - i0) = 2\pi i \tilde{H}$, where H is the Heaviside function. Deduce the *Plemelj-Sokhotsky jump relations*:

$$(x + i0)^{-k} - (x - i0)^{-k} = 2\pi i \frac{(-1)^k}{(k-1)!} \delta_0^{(k-1)},$$

where δ_0 is Dirac's delta-function on \mathbb{R} concentrated at 0. (d) Show that

$$x(x\pm i0)^{-1}=1$$
 in $\mathcal{S}'(\mathbb{R})$

Deduce that

$$(x + i0)^{-1}(x\delta_0) = 0 \neq \delta_0 = \left((x + i0)^{-1}x\right)\delta_0.$$

Next, show, for instance by using the differential operator $x \frac{d}{dx}$ on the case k = 1 iteratively, that

$$x^k (x \pm i0)^{-k} = 1$$
 in $\mathcal{S}'(\mathbb{R})$

holds for each $k \in \mathbb{N}$.

(e) Let H be the Heaviside function and define for each $\varepsilon > 0$ the function $H_{\varepsilon}(x) := e^{-\varepsilon x}H(x)$. By first calculating \hat{H}_{ε} show that

$$\mathcal{F}_{x \to \xi}(H) = -i(\xi - i0)^{-1}$$
 in $\mathcal{S}'(\mathbb{R})$.

Use the Fourier Inversion Formula in S' to find the Fourier transform of $(x + i0)^{-1}$.

Problem 6. For each $\varphi \in \mathcal{S}(\mathbb{R})$ we define its 2π *periodization* as

$$P\varphi(x) = \sum_{k \in \mathbb{Z}} \varphi(x - 2\pi k), \quad x \in \mathbb{R}.$$

(a) Check that $P\varphi$ is a 2π periodic C^{∞} function, and explain why

$$P\varphi(x) = \sum_{k \in \mathbb{Z}} \frac{1}{2\pi} \hat{\varphi}(k) e^{ikx}$$

holds for all $x \in \mathbb{R}$. (*Hint: For the latter it suffices to quote results postulated in Prelims.*) (b) Prove Poisson's summation formula:

$$2\pi \sum_{k \in \mathbb{Z}} \varphi(2\pi k) = \sum_{k \in \mathbb{Z}} \hat{\varphi}(k).$$

(c) Show that

$$\sum_{k\in\mathbb{Z}} e^{-4\pi^2 tk^2} = \frac{1}{\sqrt{4\pi t}} \sum_{k\in\mathbb{Z}} e^{-\frac{k^2}{4t}}$$

holds for all t > 0.

Problem 7. (Optional)

Let $F : \mathbb{C} \to \mathbb{C}$ be an entire function that is not identically zero. Explain why the formula $f = \log |F|$ defines a distribution on \mathbb{C} that in general will not be tempered. Prove that its distributional Laplacian equals

$$\Delta f = \sum_{j \in J} 2\pi m_j \delta_{z_j}$$

where $\{z_j : j \in J\}$ are the distinct zeros for F and $\{m_j : j \in J\}$ their multiplicities.