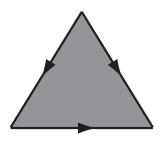
Topology & Groups Michaelmas 2016 Question Sheet 2

Questions with an asterisk * beside them are optional.

- 1. Let $\alpha: S^n \to S^n$ be the antipodal map (defined by $\alpha(x) = -x$). Prove that α is homotopic to the identity if n is odd.
- 2. For any two maps $f, g: X \to S^n$ such that $f(x) \neq -g(x)$ for all $x \in X$, show that $f \simeq g$.
- 3. Let X be a contractible space and let Y be any space. Show that
 - (i) X is path-connected;
 - (ii) $X \times Y$ is homotopy equivalent to Y;
 - (iii) any two maps from Y to X are homotopic;
 - (iv) if Y is path-connected, any two maps from X to Y are homotopic.

The wedge $X \vee Y$ of two spaces X and Y, containing basepoints x and y, is the space obtained from the disjoint union of X and Y by identifying x and y. Often, the resulting space is independent of the choice of basepoints, in which case there is no need to specify them. (See Definition V.26.)

- 4. Prove that the following spaces are homotopy equivalent:
 - (i) $S^1 \vee S^1$,
 - (ii) the torus with one point removed,
 - (iii) \mathbb{R}^2 minus two points.
- * 5. (Harder) For maps $f, g: S^{n-1} \to X$, let $X \cup_f D^n$ and $X \cup_g D^n$ be the spaces obtained by attaching *n*-cells to X along f and g respectively. Show that if f and g are homotopic maps $S^{n-1} \to X$, then $X \cup_f D^n$ and $X \cup_g D^n$ are homotopy equivalent. Deduce that the space (known as the 'dunce cap') obtained by identifying the three sides of a triangle, as shown overleaf, is contractible.



- 6. Let K and L be finite simplicial complexes. Prove that there are only countably many homotopy classes of maps $|K| \rightarrow |L|$.
- 7. Prove that any two maps $S^m \to S^n$, where m < n, are homotopic. [Hint: use the Simplicial Approximation Theorem.]