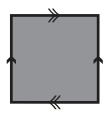
Topology & Groups Michaelmas 2016 Question Sheet 7

Questions with an asterisk * beside them are optional.

- 1. For each of the following subgroups of $\langle x, y \rangle = \pi_1(S^1 \vee S^1)$, construct a based covering map $p: (\tilde{X}, \tilde{b}) \to (S^1 \vee S^1, b)$ such that $p_*\pi_1(\tilde{X}, \tilde{b})$ is that subgroup:
 - (i) $\langle x \rangle$
 - (ii) $\{x^{n_1}y^{m_1}x^{n_2}y^{m_2}\dots y^{m_k}: \sum m_i \text{ is even}\}.$
 - (iii) the kernel of the homomorphism $\langle x, y \rangle \to \mathbb{Z} \times \mathbb{Z}$ that sends x to (1,0), and y to (0,1).
- 2. Recall that the Klein bottle K is defined to be a square with the following side identifications.



Construct a covering map from \mathbb{R}^2 to K and use it show that $\pi_1(K)$ is isomorphic to the group whose elements are pairs (m,n) of integers, with the non-abelian group operation given by

$$(m,n) \star (x,y) = (m + (-1)^n x, n + y).$$

- 3. Suppose that a group G has a left action on a path-connected space Y. This means that there is a homomorphism $\phi: G \to \operatorname{Homeo}(Y)$, where $\operatorname{Homeo}(Y)$ is the group of homeomorphisms of Y. This is known as a covering space action if each $y \in Y$ has an open neighbourhood U such that $\phi(g)(U) \cap U = \emptyset$ for each $g \in G \{e\}$. Let Y/G denote the quotient space that identifies two points y_1 and y_2 in Y if and only if $\phi(g)(y_1) = y_2$ for some $g \in G$.
 - (i) Prove that the quotient map $Y \to Y/G$ is a covering map.
 - (ii) When Y is simply-connected, prove that $\pi_1(Y/G) \cong G$.
 - (iii) Find a covering space action of $\mathbb{Z} \times \mathbb{Z}$ on \mathbb{R}^2 , and use this to provide another proof that the fundamental group of the torus is $\mathbb{Z} \times \mathbb{Z}$.

- 4. Construct Cayley graphs for each of the following groups, with respect to the given generators:
 - (i) $(\mathbb{Z}/2\mathbb{Z}) * (\mathbb{Z}/2\mathbb{Z}) = \langle a, b \mid a^2, b^2 \rangle$, with respect to the generators a and b;
 - (ii) $(\mathbb{Z}/3\mathbb{Z}) * (\mathbb{Z}/2\mathbb{Z}) = \langle a, b \mid a^3, b^2 \rangle$, with respect to the generators a and b.

[You should find Question 2 on Problem Sheet 6 useful.]

- 5. (i) Using covering spaces, prove that for each integer $n \geq 2$, F_n is a finite index subgroup of F_2 , where F_n is the free group on n generators.
 - (ii) Prove that if F_m is subgroup of F_n with index i, then m = ni i + 1. Deduce that $m \ge n$.
 - (iii) Prove that F_2 is a subgroup of F_3 (but necessarily its index is infinite). Construct a covering space of $S^1 \vee S^1 \vee S^1$ corresponding to this subgroup.
- * 6. Prove that there are 13 index 3 subgroups of F_2 , of which 4 are normal.
 - 7. Let G be the group $\langle x,y \mid x^3y^3 \rangle$. Let $\phi: G \to \mathbb{Z}/3\mathbb{Z}$ be the homomorphism that sends x and y to the generator of $\mathbb{Z}/3\mathbb{Z}$. Find a finite presentation for the kernel of this homomorphism. [We know from Theorem VI.37 that a finite index subgroup of a finitely presented group is again finitely presented. To answer this question, you should use the proof of this theorem.]