
B3.2 GEOMETRY OF SURFACES - EXERCISE SHEET 1

Comments and corrections are welcome: ritter@maths.ox.ac.uk

Exercise 1. CP1 as a quotient of spheres.

Recall that the complex projective space CP 1 is the space of complex lines through 0
in C2. By thinking about how a complex 1-dimensional vector space intersects the sphere
S3 ⊂ R4 = C2, show that CP 1 as a topological surface can be viewed as a quotient

CP 1 = S3/S1

where you need to explain how the group S1 acts on S3.

Exercise 2. The Möbius band.
The open Möbius band is the quotient

M = [0, 1]× (0, 1) / ((0, y) ∼ (1, 1− y) for all y ∈ (0, 1)).

Briefly explain why M is a smooth surface. Find (a homeomorphic copy of) M inside the
real projective space RP 2 and inside the Klein bottle K. The Möbius band M , is obtained
by replacing (0, 1) by [0, 1] above. Show1 that the boundary of M is homeomorphic to S1.
Show that RP 2 = (closed disc) ∪M glued along the circular boundary, and K = M ∪M .

Exercise 3. Riemann surfaces arising from polynomial equations.
Briefly explain a natural way to make the sets

(1) S1 = {(z, w) ∈ C2 : w2 = (z − 1)(z − 2)} ∪ {+∞} ∪ {−∞}
(2) S2 = {(z, w) ∈ C2 : w2 = (z − 1)(z − 2)(z − 3)} ∪ {∞}

into Riemann surfaces. Find homeomorphisms S1
∼= sphere, S2

∼= torus. (Hints in footnote2)

Exercise 4. The Klein bottle as a quotient of R2.
Consider the quotient

S = R2/G

where G = Z2 acts3 by (n,m) • (x, y) = ((−1)mx+ n, y +m) on R2, where n,m ∈ Z. Briefly
explain why S is a smooth surface. Show that S is homeomorphic to the Klein bottle.

P.T.O.

Date: This version of the notes was created on February 13, 2019.
1Hint. Try cutting out a clever disc from RP 2.
2Hints. It helps if you first ask yourself what local holomorphic coordinate you would use at solutions (z, w)

of w2 = z (recall from lecture notes the discussion of the square root z1/2). Then try to build the solution set

S1 by gluing two cut-domains: two copies of C cut from 1 to 2. Just like for Log z in lectures, each subset you
cut gives rise to two copies of that subset in the Riemann surface. In order to be able to draw the Riemann

surface inside R3, it is convenient to reflect one of the cut-domains about the x-axis. Near infinity, try using

the coordinates X = 1
z

and Y = w
z

instead of z, w, and ask yourself what happens for X = 0 (corresponding

to “z =∞”). For S2 you will need a second cut, from 3 to ∞, and try instead Y = w
z2

.
3G = Z2 as a set, but as a group G = ZoϕZ is a semi-direct product where ϕ : Z→ Aut(Z), ϕ(m) = (−1)m.

Try checking the conditions of a “group action”, and you will see what group operation you must use on the

set Z2. In any case, S = R2/ ∼ for the equivalence relation (x, y) ∼ ((−1)mx+ n, y +m) for all n,m ∈ Z.
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Exercise 5. The space of lines in R2.

Let S be the set of all straight lines in R2 (not necessarily through 0). Show that there is
a natural4 way to make S into a topological surface. Show that S is homeomorphic to the
open Möbius band M .

Exercise 6. Tori and figure 8 loops.
A figure 8 loop consists of two circles touching at a point. Show that a torus can be

obtained by attaching a disc onto a figure 8 loop.

Exercise 7. The Euler characteristic constrains graphs.
Given five points in the plane, show that it is impossible to connect each pair by paths

which do not cross. Is it possible for five points in a torus?

Exercise 8. The Euler characteristic constrains Platonic solids.
Using the Euler characteristic, show that there are no more than five Platonic solids.5

Exercise 9. Bump functions and embedding the Klein bottle in R4.

Recall from analysis that α(x) = e−1/x2

is a function R → R (defining it to be zero at
x = 0) which is infinitely differentiable, so smooth, but all the derivatives at x = 0 vanish!
(so the Taylor series at 0 is useless)
� Sketch the following functions (no need to justify your sketches):

(1) β(x) = α(x) for x > 0, and β(x) = 0 for x ≤ 0.
(2) γ(x) = β(x− a) · β(b− x), where 0 < a < b.

(3) δ(x) =
∫ b

x
γ(t) dt/

∫ b

a
γ(t) dt.

� The function ε : Rn → R, ε(x) = δ(‖x‖) is called a bump function compactly supported
on the disc ‖x‖ ≤ b. Check that ε(Rn) ⊂ [0, 1], that ε = 1 on ‖x‖ ≤ a and ε = 0 on ‖x‖ ≥ b.
� A figure 8 loop can be obtained as the image of a continuous map f : S1 → R2 which is

injective except at ±1 ∈ S1 ⊂ C where f(+1) = f(−1) (so f is not an embedding). Using a
bump function, show that the figure 8 loop can be continuously embedded into R3.

� Show that the Klein bottle K can be smoothly embedded in R4.

� Optional harder question: Show that all compact surfaces can be embedded in R4.

4Hint. For example, lines which are not vertical can be parametrized by 2 numbers: the angle θ ∈
(−π/2, π/2) which tells you how much the line is tilted, and r ∈ R which is the signed distance of the
line from the origin 0 ∈ R2 (using the + sign if the line passes above 0, and the − sign if it passes below 0).

5A Platonic solid is a convex polyhedron with congruent faces consisting of regular polygons and the same
number of faces meet at each vertex.


