B3.2 GEOMETRY OF SURFACES - EXERCISE SHEET 4

Comments and corrections are welcome: ritter@maths.ox.ac.uk

Exercise 1. Holomorphic maps between Riemann surfaces.

Using the local form of a holomorphic map between Riemann surfaces, deduce: *Open mapping theorem*: any holomorphic map $f: R \to S$ between Riemann surfaces, with Rconnected, is either constant or an open map, meaning f(any open set) is open.¹

Deduce the following, for $f: R \to S$ holomorphic, R, S Riemann surfaces:

- (1) If f is non-constant, R compact connected, then $f(R) \subset S$ is a connected component.
- (2) If f is non-constant, R, S both compact connected, then f is surjective: f(R) = S.
- (3) If R is compact connected, S non-compact connected, then f is constant.
- (4) A holomorphic map $S \to \mathbb{C}$ on a compact connected Riemann surface is constant.
- (5) Fundamental theorem of algebra: non-constant complex polynomials have a root.

Exercise 2. Riemann-Hurwitz formula.

In the following, all spaces are compact connected Riemann surfaces, and all maps are holomorphic maps. Deduce from the Riemann-Hurwitz formula that:

- (1) if $f: R \to S$ is not constant, then the genus $g(R) \ge g(S)$.
- (2) if $f: \mathbb{C}P^1 \to S$ is not constant, then S is homeomorphic to a sphere.
- (3) if $f: R \to S$ has degree 1 then f is a biholomorphism.
- (4) if R admits a meromorphic function with only one pole of order 1, then $R \cong \mathbb{C}P^1$.

Exercise 3. Implicit function theorem.

Consider $R = \{(z, w) \in \mathbb{C}^2 : w^3 = z^3 - z\}$. Use the implicit function theorem to check that R is a Riemann surface. Now consider the projection $\pi : R \to \mathbb{C}, \pi(z, w) = z$. Find the branch points of π and the valency $v_{\pi}(p)$ at the ramification points.

Next, we seek how many points are "missing" at infinity. Write $z^3 - z = z^3(1-z^{-2})$ for large |z|, and briefly explain that there are three holomorphic solution functions to $w^3 = z^3 - z$. Deduce that $\pi^{-1}(\{z \in \mathbb{C} : |z| > 100\})$ is biholomorphic to three punctured discs.

Compute the Euler characteristic of R using the Riemann-Hurwitz formula. Deduce that R is homeomorphic to a torus with three points removed.

Exercise 4. Meromorphic functions on Riemann surfaces.

Show that a map $f: S \to \mathbb{C}P^1$ is meromorphic if and only if locally f is expressible as a quotient of holomorphic functions (where the denominator is not identically zero).

Show that if f, g are two meromorphic functions on a compact connected Riemann surface having the same zeros and the same poles (including multiplicities) then $f = \text{constant} \cdot g$.

By comparing Taylor series of \wp, \wp' near ramification points, deduce by the previous part (by viewing the two sides of the equation below as meromorphic functions) that:

$$\wp'(z)^2 = 4(\wp(z) - e_1)(\wp(z) - e_2)(\wp(z) - e_3)$$

where $e_1 = \wp(\frac{1}{2}\omega_1), e_2 = \wp(\frac{1}{2}\omega_2), e_3 = \wp(\frac{1}{2}(\omega_1 + \omega_2)), \infty = \wp(0)$ are the branch points of \wp .

Please turn over.

Date: This version of the notes was created on November 16, 2017.

¹Hint. Notice that to show a map is open, it's enough to show that for each p, there are some nice arbitrarily small open neighbourhoods of p which map to open sets.

Exercise 5. Elliptic curves and the Weierstrass \wp -function.

The goal is to prove that the following is a biholomorphism:

$$\mathbb{C}/\Lambda \rightarrow S = \{(Z,W) \in \mathbb{C}^2 : W^2 = 4(Z-e_1)(Z-e_2)(Z-e_3)\} \cup \{\infty\}$$

$$z \mapsto (\wp(z), \wp'(z))$$

where on the right we compactify as done in Exercise Sheet 1. Here is a checklist/hints:

- (1) Explain why e_1, e_2, e_3 are distinct,
- (2) Show S is a Riemann surface. In particular, what is the local holomorphic coordinate?
- (3) Explain why the map is well-defined,
- (4) Show that the map is holomorphic (do this carefully, locally),
- (5) For very general reasons, explain why the map has to be surjective,
- (6) Show that the degree of the map is 1, and use Exercise 2.

Exercise 6. Hyperbolic Geometry.

For $k \in (0, \infty) \subset \mathbb{R}$, show that the dilation $\mathbb{H} \to \mathbb{H}$, $z \mapsto kz$ is an isometry, by directly verifying that the hyperbolic metric is preserved.

Verify directly that the geodesic equation holds for the curve $\gamma : \mathbb{R} \to \mathbb{H}, t \mapsto e^t i$.

Find the locus of all points in \mathbb{H} that are equidistant from γ (by a given fixed distance).

Describe the locus of all points in \mathbb{H} equidistant from a general geodesic in \mathbb{H} . (You may use your knowledge of the isometries of \mathbb{H} and the geodesics in \mathbb{H} .)