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B3.2 Course policy: It is essential that you read your notes after each lecture, otherwise
you may feel lost. In the third and fourth year courses, the majority of courses will not cover
all the material in lectures. You are expected to read the lecture notes to complement the
lectures. Geometry of surfaces is a difficult and vast course, and I will do my best to make it
digestible. But this will not happen by itself: it requires effort on your part, thinking on your
own about the notes, the examples, the exercises.

B3.2 Homework policy: Homeworks are typically much harder than the exams: the aim of
the homeworks is to make you better mathematicians, to stretch you and to inspire you. The
homeworks are not designed to assess your basic understanding of the course (unlike exams).
So homework marks are not aiming to predict your exam marks.

Date: This version of the notes was created on September 19, 2018.

1



2 B3.2 GEOMETRY OF SURFACES, PROF. ALEXANDER F. RITTER

1. Examples

1.1 Four classes of surfaces

Our goal is to study and relate three classes of surfaces:

(1) Topological surfaces (topological 2-manifolds),
(2) Smooth surfaces (smooth real 2-manifolds),

(a) embedded in R3,
(b) abstractly (i.e. possibly without a choice of embedding into RN ),

(3) Riemann surfaces (complex 1-manifolds).

We will postpone the precise definition to later. For now, the rough idea is that a surface
locally looks like a 2-dimensional disc. Whether it looks like the disc continuously, smoothly
or holomorphically distinguishes the cases (1), (2), and (3) respectively. The reason for study-
ing (2a) before (2b) is that you already know what it means for functions on R3 to be smooth
(infinitely differentiable), whereas in (2b) the definition is a little more difficult because you
need to first define local smooth coordinates on the surface. Some surfaces are part of all four
classes (such as a torus), others only of some, but all our surfaces belong to class (1).

Relation to future Part B and Part C courses.
You can study Riemann surfaces (and more generally algebraic curves) using tools from alge-
bra, in B3.3 Algebraic Curves. The word manifold is the generalization of surface to higher
dimensions, so n-manifold means your space locally looks like Rn (or rather, like a ball in
Rn). C3.3 Differentiable Manifolds, C3.5 Lie Groups (manifolds which are also groups)
and C7.5/7.6 General Relativity all study manifolds from various perspectives. Complex
manifolds locally look like Cn, and you can study them (in greater generality) using tools
from algebra in C3.4 Algebraic Geometry and in C3.7 Elliptic Curves, both of which
build upon B3.3. The best tools to study topological manifolds (and more general topologi-
cal spaces) come from topology and algebra, and this is done in C3.1: Algebraic Topology.

References for this course:
The notes from 2013 by Prof. Nigel Hitchin (see Course page online).
The notes from 1986 by Prof. Graeme Segal (see Course page online).
Manfredo P. do Carmo, Differential Geometry of Curves and Surfaces.
Pelham M. H. Wilson, Curved Spaces.
Several good references are suggested in the syllabus. In particular, the Course page online has
a link to the notes by Prof. Richard Earl of a former second year course that partly overlaps
with some of this course, called Geometry: The Local Theory of Curves and Surfaces.

Analysis and topology dictionary:
On the online course page you will also find the handout:
Analysis and Topology Dictionary – Handout
which summarises various useful terminology (e.g. topological space, Hausdorff, connected,
compact, continuous, homeomorphism, smooth, diffeomorphism, holomorphic, etc.)
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1.2 Examples in each of the three classes

(1) TOPOLOGICAL SURFACES:
• Gluing edges of a square yields various surfaces:

• A cube is a topological surface, and so are the other regular polyhedra (tetrahedron,
octahedron, icosahedron, dodecahedron). But in fact, they are topologically the same
(i.e. homeomorphic) to the sphere. Indeed, thinking of the polyhedra as sitting inside R3,
pick a huge sphere which contains the polyhedron and then simply “continuously push” each
point of the polyhedron radially outwards until the point reaches the sphere. This defines a
homeomorphism (convince yourself of this!)1

1It is useful to get an acquaintance for spotting whether something is a homeomorphism or not, without
the painstaking effort of writing down an explicit formula (if one is likely to make a mistake in spotting

homeomorphisms, then one is probably also likely to write down an incorrect formula!). However, in this case
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Remark. The image of the edges/vertices of the polyhedron divide the sphere into curved
polygons (e.g. on the right we got a triangulation of the sphere).

• The torus (up to homeomorphism) is also a polyhedron (non-regular, non-convex):

(2a) SMOOTH SURFACES IN R3:

• The R2 plane inside R3, so R2 = {(x, y, z) ∈ R3 : z = 0}.
• More generally a plane through q ∈ R3 with unit normal n ∈ R3:
{p ∈ R3 : (p− q) · n = 0} = {(x, y, z) ∈ R3 : n1x+ n2y + n3z = n1q1 + n2q2 + n3q3}.
• The unit sphere in R3: S2 = {p ∈ R3 : ‖p‖ = 1} = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

it is quite easy: if 0 lies on the inside of the polyhedron, then the map x 7→ x
‖x‖ is an explicit map from the

polyhedron to the unit sphere, one then easily checks that it is a continuous bijection, and finally one uses the

general theorem that a continuous bijection from a compact space to a Hausdorff space is a homeomorphism.
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Notice that near each point p you have two independent local smooth coordinates: at least two
of the coordinates x, y, z will work. For example, near the North Pole p = (0, 0, 1) you can use
local coordinates x, y to uniquely describe nearby points since (x, y) : (neighbourhood of p)→
(neighbourhood of 0) ⊂ R2 is a smooth homeomorphism. However near p you cannot use x, z
as there are points of the sphere (x, y, z), (x,−y, z), near the North Pole (so z ≈ 1), which
we cannot tell apart using just x, z (so they are no good as coordinates).

• Generalizing the above quadratic equation yields ellipsoids and hyperboloids:

Ellipsoid:
x2

a2
+
y2

b2
+
z2

c2
= 1

Hyperboloid with one sheet:
x2

a2
+
y2

b2
− z2

c2
= 1

Hyperboloid with two sheets:
x2

a2
− y2

b2
− z2

c2
= 1,

where a, b, c are fixed constants. Many other surfaces defined by quadratic polynomials will
reduce to one of these examples after changing coordinates (by diagonalising).

• A torus in R3: fix constants a > b > 0, then we can describe a torus by

T 2 = {((a+ b cosψ) cos θ, (a+ b cosψ) sin θ, b sinψ) : all θ, ψ ∈ [0, 2π]}

• Many more examples arise as surfaces of revolution, in which a curve in the (x, z)-plane
gets rotated about the z-axis. For example, take:

� Curve = vertical line, then rotating around the z-axis gives a cylinder.
� Curve = straight line which is neither vertical nor horizontal, then rotating around

the z axis gives two opposite cones touching at a vertex. At the vertex, the surface
is not smooth, so we need to remove the vertex.

� Curve = an ellipse x2

a2 + z2

b2 = 1, a parabola z = x2, or a hyperbola xz = 1, then
rotating gives an ellipsoid, paraboloid, hyperboloid. For example the paraboloid
would be {(x, y, z) : z = x2 + y2}.

• Ruled surfaces: these are surfaces swept out my a moving straight line,

{p(t) + s n(t) : s, t ∈ R}

so the straight line at time t is p(t) + Rn(t) (a straight line through the point p(t) ∈ R3

which is parallel to the unit vector n(t) ∈ R3). However, some care is needed: not all
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choices of p(t), n(t) will give a smooth surface. For example, for p(t) = (cos t, sin t, 0) and

n(t) = (sin t,− cos t, 1)/
√

2, we get the one-sheeted hyperboloid x2 + y2 − z2 = 1:

• Surfaces cut out by one equation:

{(x, y, z) ∈ R3 : f(x, y, z) = 0}.

Many, but not all, choices of smooth f : R3 → R ensure this is a smooth surface.

(2b) ABSTRACT SURFACES:

The question “when is a topological surface smooth?” does not quite make sense. For
example, the standard sphere S2 ⊂ R3 is a smooth surface, but the cube⊂ R3 is not smooth
due to the corners, yet both are homeomorphic topological surfaces. The correct question is
“when can we define a smooth structure on a given topological surface?”.1 We now explain
how we can give a cube in R3 a “smooth structure”. Near a vertex, the coordinates x, y, z
do not vary smoothly.2 However, we can define smooth local coordinates by composing
the homeomorphism cube → S2 ⊂ R3 with smooth local coordinates for S2. Such local
coordinates near the vertex of the cube will not be smooth functions of the original x, y, z
coordinates. Notice that what we have really done is define a smooth structure on the cube
by requiring the homeomorphism cube→ S2 ⊂ R3 to be smooth!

The reason the above may at first seem perplexing, is that R3 is causing unnecessary
confusion: there is no reason for considering surfaces as already sitting smoothly inside R3.
Indeed some smooth surfaces cannot be embedded inside R3 (here embedded roughly means3

a smooth injective map). For example, the Klein bottle is smooth (locally it looks like a square,
so we have smooth local x, y coordinates from the square). However, it cannot be embedded
inside R3 (without self-intersections).

• The torus can be viewed as the quotient of R2 by the group of integral translations parallel
to the two axes:

T 2 = R2/Z2 = {[x, y] : (x, y) ∈ R2, [x, y] = [x+ n, y +m] for all n,m ∈ Z}.

1Non-examinable: The answer is, we can always endow a topological surface with the structure of an
abstract smooth surface by choosing clever local coordinates. However, in higher dimensions (for manifolds)

it can happen that a topological manifold does not admit a smooth structure. This is a very difficult problem

(see “Relationship with topological manifolds” at http://en.wikipedia.org/wiki/Differentiable manifold ).
2convince yourself of this, using that each face is given by setting one of the coordinates to a constant.
3The precise definition of embedding is: a homeomorphism onto the image.
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We define local coordinates near a point [x0, y0] ∈ T 2 by simply using the x, y coordinates
of R2 near some pre-image point (x0, y0) ∈ R2 of [x0, y0]. There is a Z2-worth of choices of
pre-image points, and any two such choices of local coordinates will differ by a smooth map
(an integral translation).

Notice this torus is not sitting inside R3, and this construction of the torus is much simpler
to work with than the above formula for the torus inside R3. For example, we have a natural

notion of smooth function f : T 2 → R, namely it just1 means a smooth function f̃ : R2 → R
which is translation-invariant under the above group, so

f̃(x+ n, y +m) = f̃(x, y) for n,m ∈ Z.

• Thinking of surfaces as embedded inside R3 also makes it harder to notice which surfaces are
actually the “same”. For example, by cutting the torus, deforming, and regluing, we obtain
the following knotted torus:

This knotted torus is smoothly homeomorphic to the original torus (indeed, think about how
you would set up a smooth bijection between them). So the abstract surfaces are the “same”,
whereas the “knottedness” is extraneous information having to do with how we chose to
embed the surface inside R3. It turns out for example, that you cannot continuously deform
(inside R3) the torus into the knotted torus without creating self-intersections.2

• The effort of defining abstract surfaces is worth the trouble, and it is the modern viewpoint
in geometry. The sinful secret of geometry is that any smooth n-manifold can3 be smoothly
embedded inside RN for large enough N (indeed N = 2n works). So one could in principle
only study surfaces embedded in R4. For example, for the Klein bottle you can remove the
self-intersection that you see in R3 by “lifting” one patch of the two intersecting sheets into

1Compare this with the 1-dimensional case: what does it mean to have a smooth function on the circle,

f : S1 → R? It just means a smooth function f̃ : R→ R which is 1-periodic: f̃(x+ 1) = f̃(x) (or, 2π-periodic

f̃(x+2π) = f̃(x) if you think of the circle as parametrized by eit for t ∈ [0, 2π], instead of e2πit with t ∈ [0, 1]).
2This is a tricky exercise for you. If you need a hint, search for “trefoil knot”.
3This is the Whitney embedding theorem, and is well beyond the scope of this course.
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the fourth dimension.1

• Real projective space RP 2 (which we already mentioned in (1) above). As a set, RP 2

can be defined as the collection of all straight lines in R3 through the origin.

Such a straight line is determined by a non-zero point (x, y, z) ∈ R3 \ {0}, but rescaling such
a point by any λ 6= 0 ∈ R will yield the same line. Thus RP 2 arises as a quotient of R3 \ {0},
whose equivalence classes represent straight lines:

RP 2 = {[x, y, z] : (x, y, z) ∈ R3 \ {0}, [x, y, z] = [λx, λy, λz] for any λ 6= 0 ∈ R}.

These coordinates [x, y, z] are called the homogeneous coordinates for RP 2 (they are only
defined up to rescaling all of them by a non-zero real number).

More explicitly, such a straight line is determined by the antipodal intersection points {x,−x}
in S2. So we can locally parametrize this space by a disc, just like for S2, since nearby straight
lines are parametrized by points in S2 close to x ∈ S2 (the nearby lines form a double cone
with vertex at the origin).
Therefore we can view RP 2 as the quotient of S2 by the group {Id, A} generated by the
antipodal map A : S2 → S2, A(x) = −x:

RP 2 = {x ∈ S2}/(x ∼ −x).

Notice this also recovers the definition of RP 2 in (1) above, since we only need the upper
hemisphere to find a representative of each point.

(3) RIEMANN SURFACES:

These are surfaces which “holomorphically” locally look like

D = {z ∈ C : |z| < 1},

so locally there is a complex coordinate z. This is roughly the same as having two real
coordinates x, y with a notion of “rotation by 90◦” (multiplication by i), so that z = x+ iy.

• Complex projective space CP 1 is the sphere S2 as a topological surface, we now define
local holomorphic coordinates. One local complex coordinate z, defined everywhere except at
the North Pole, is obtained by using the stereographic projection from the North Pole:

1As an analogy: for a figure 8 loop (two loops joined at a point) in the (x, y)-plane z = 0 in R3, at the

crossing you have two lines intersecting: you can remove the self-intersection by slightly lifting vertically one

of the two lines.
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Explicitly, S2 \ (North Pole) is identified with C via

S2 \ (North Pole) 3 (X,Y, Z) 7→ X

1− Z
+ i

Y

1− Z
= z ∈ C,

where X2 + Y 2 + Z2 = 1. We can also define a local complex coordinate w by taking the
conjugate of the stereographic projection projecting from the South Pole.1 So S2\(South Pole)
is identified with C.
Notice we have identified S2\(North ∪ South) in two different ways with C\{0}, corresponding
to the two coordinates z, w.

Exercise. Show that the two coordinates are related by

w = 1/z.

Notice that this change of coordinates, C \ 0 → C \ 0, z 7→ 1
z is a holomorphic map (i.e.

complex differentiable). In fact, we will see that part of the definition of Riemann surfaces is
that coordinate changes must be holomorphic (for smooth surfaces they must be smooth).

• A more general way to think of CP 1, in analogy with RP 2 above, is as the set of complex
lines2 through 0 in C2. Thus, again introducing homogeneous coordinates,

CP 1 = {[z0 : z1] : (z0, z1) ∈ C2 \ {0}, [z0 : z1] = [λz0 : λz1] for any λ 6= 0 ∈ C}.

Then the region z0 6= 0 corresponds to S2 \ (North Pole) above, and you can rescale so that
[z0 : z1] = [1 : z], so you obtain the above local coordinate

z = z1/z0

with z = 0 being the South Pole. Whereas z1 6= 0 corresponds to S2 \(South Pole), [z0 : z1] =
[w : 1], so you obtain the local coordinate w = z0/z1, and w = 0 is the North Pole. On the
overlap (z0 6= 0, z1 6= 0), [1 : z] = [w : 1] recovers the above change of coordinates: w = 1/z.
Since z parametrizes a copy of C, you can think of CP 1 as the compactification C ∪ {∞}
where we add the extra point ∞ = [0 : 1] = (North Pole).

• Elliptic curves (over C) are the tori you get by quotienting C by a lattice. Above we
used the lattice Z2 ⊂ R2 ≡ C, but we could more generally use any R-linearly independent
vectors ω1, ω2 ∈ R2 and define the lattice Λ = Zω1 +Zω2 ⊂ R2. By rescaling, and relabelling
if necessary, we may as well assume that ω1 = 1 ∈ C and that ω2 = τ ∈ C lies in the upper
half-plane H = {z ∈ C : Im(z) > 0}:

1Exercise: w = X
1+Z

− i Y
1+Z

.
2A complex line through 0 in C2 is a complex vector subspace V ⊂ C2 of dimC V = 1. So V = C ·(z0, z1) ⊂

C2 for some (z0, z1) 6= 0 ∈ C2, and notice rescaling does not affect V = C · (λz0, λz1) for any λ 6= 0 ∈ C.
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• Surfaces cut out by one equation:

{(z, w) ∈ C2 : f(z, w) = 0}.

Many, but not all, choices of a holomorphic function f : C2 → C ensure this is a Riemann
surface. Example: f = complex polynomial in the two variables z, w. We will show that

{(z, w) ∈ C2 : w2 = 4(z − a)(z − b)(z − c)},

for distinct constants a, b, c ∈ C, is a torus with a point removed (there is a natural way to
add the point (z, w) = (∞,∞) to get the whole torus).

• Historically, Riemann surfaces first appeared in complex analysis when trying to deal with
the problem of multi-valued functions. For example, the complex logarithm

Log(z) = log |z|+ i arg(z)

for z ∈ C\0 has the problem that the argument is only defined up to adding multiples of 2πi,
since e2πin = 1 for n ∈ Z. There are two ways of solving this problem: the ad-hoc approach
is to make a cut in the complex plane, so we restrict to Log : C \ (−∞, 0]→ C and artificially
declare that −π < arg(z) < π. This is called a branch of the Log “function”.

Apart from the nuisance of making artificial choices, this has the problem that for a continuous
curve such as the circle γ(t) = e2πit, the function Log(γ(t)) is not continuous (it jumps from
π to −π at, or rather is not defined at, t = 1/2). Silly!

The natural remedy is really to consider all these “cut-domains” (for the various values of
arg) as being glued1 together according to arg(z)-values to form a surface:

1In each cut-domain C \ (−∞, 0], we re-insert two copies of (−∞, 0) along the two sides of the cut. We

glue the cut-domains by identifying the copies of (−∞, 0) in pairs (so each cut-domain is glued onto two other

cut-domains along the two copies of (−∞, 0)). The point “0” does not get re-inserted, we remove it.
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Locally the surface looks like C, and in the picture the vertical axis keeps track of the value
arg(z). Notice how the surface is made out of sheets (the cut-domains) and if you move
towards the cut from above you go up the staircase to the next level in the sheets (indeed
arg(z) increases), whereas if you approach the cut from underneath you move down in the
staircase (arg(z) decreases). The various branches of Log(z) thus determine a well-defined
complex logarithm function defined on the above Riemann surface (with the vertical axis
coordinate telling you which arg(z) value to use).

• The Riemann surface obtained from a multi-valued holomorphic function by gluing together
the “cut-domains” may not always be embeddable inside R3 (without self-intersections), the

case of Log z above was rather special. Consider the square root z1/2 = e
1
2 Log z (you get two

distinct solutions ±w with (±w)2 = z, for each z 6= 0).1 Analogously we obtain the surface:

The self-intersection is an illusion caused by wanting to view it in R3. We can think of this
surface S as being obtained by two cut-domains C \ R<0, pictured below, which are glued
along the cut.2 The bottom-cut of one cut-domain is identified with the top-cut of the other
domain. The two shaded half-discs glue together to form a disc in S. Walking in the direction
of the arrow in the left cut-domain will make us pop out where the arrow points in right
cut-domain (and this short walk does not intersect the shaded disc in the actual surface).

00

C \ R<0 C \ R<0

Consider the holomorphic map ϕ : S → C, w 7→ w2 = z. The preimage of a small disc in C
centred at z 6= 0 consists of two disjoint small discs in S centred at ±

√
z. The exception is

when z = 0, in that case the preimage of a small disc is just one disc in S: try drawing it in
inside the R3-picture above. What does this correspond to in the two cut-domains?

An equivalent way to describe S is as the “graph” S = {(z, w) ∈ C2 : z − w2 = 0} of
the square root function. In this case, S → C, (z, w) 7→ w is the square root function, and
(z, w) 7→ z is ϕ. We can use either z or w as a local holomorphic coordinate for S near (z, w)

1More explicitly: the two branches of the square root are reiθ 7→
√
reiθ/2 and reiθ = re2πi+iθ 7→

re(2πi+iθ)/2 =
√
reiπ+iθ/2 = −

√
reiθ/2. The surface is like an Escher staircase: if you go up two flights

of stairs (i.e. θ increases by 4π) then we will be back to where we started.
2To clarify: each cut R<0 = (−∞, 0) gets replaced by two copies of R<0 that we re-insert onto C\R<0. The

new boundary of the cut-domain consists of two half-lines that intersect at 0, call them bottom-cut, top-cut.

We modify the topology near the cuts: the shaded disc above, obtained by gluing two half-discs, is a typical

open neighbourhood of a point of one of the two copies of R<0. What does a neighbourhood of 0 look like?
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when z 6= 0, but near (0, 0) we must use w as our local coordinate, not z. Can you see why?

• In general, given a holomorphic function defined on some region of C, the aim is to build
a Riemann surface by analytic continuation. That is, you patch together local Taylor
series for the holomorphic function, and you try to build the largest possible surface (which
locally looks like C) on which the function can be (uniquely) extended to. For example,
the Riemann hypothesis is a conjecture about the zeros of a function, the Riemann zeta
function, which is constructed by analytic continuation.

1.3 Non-examples: spaces which are not surfaces

• The disc D = {z ∈ C : |z| < 1} together with a line segment: D ∪ [1, 2) is not a surface:
at points of the line segment [1, 2) the surface is not locally homeomorphic to a disc. Such
non-examples are easy to spot since surfaces have to be “locally 2-dimensional”.

• The double cone (two cones sharing the vertex) with angle θ,

{(x, y, z) ∈ R3 : z2 tan2 θ = x2 + y2},
is not a surface (not even topological): at the vertex it is not locally homeomorphic to a disc.1

• The closed disc

D = {z ∈ C : |z| ≤ 1}
is not a surface (not even topological): at any boundary point, it is locally homeomorphic to
a half disc

D+ = {(x, y) ∈ R2 : x2 + y2 < 1, y ≥ 0}.
One could define surfaces with boundary, by requiring that the surface is locally homeo-
morphic to D+ at points of the boundary. Then the closed disc D would be a surface (indeed
Riemann surface) with boundary. In this course, we will not study surfaces with boundary.

• The plane with two origins is obtained as the quotient of two copies of R2:

(R2 × {1}) t (R2 × {2})/((x, y, 1) ∼ (x, y, 2) : for all (x, y) except (0, 0)).

This space is not Hausdorff: any open set around (0, 0, 1) will intersect any open set around
(0, 0, 2), so you cannot separate the two origins (0, 0, 1) 6= (0, 0, 2). Locally the space is
nevertheless homeomorphic to a disc (for example near (0, 0, 1) it looks like D × {1}).
By convention, we prohibit surfaces from being non-Hausdorff. One reason is we want limits to
be unique: ( 1

n , 0, 1) ∼ ( 1
n , 0, 2) converges to two distinct points: (0, 0, 1) 6= (0, 0, 2). Physically,

it would be unrealistic to have a common path (t− 1, 0, 1) ∼ (t− 1, 0, 2) of a particle at time
t ∈ [0, 1] which at time t = 1 can be in two different places.

• Quotient spaces can often be non-Hausdorff. Recall that a quotient space is Hausdorff if
and only if the equivalence relation {(x, x′) ∈ X ×X : x ∼ x′} ⊂ X ×X is a closed set.

2. Definition of surface

2.1 Topological surfaces

Definition 2.1. A topological surface is a Hausdorff topological space S such that each
point p ∈ S has a neighbourhood homeomorphic to an open subset of R2.

Remark 2.2 (Locally you are a disc). If the above homeomorphism is

f : (neighbourhood U ⊂ S of p)→ V = f(U) ⊂ R2

1Exercise. Check this. Hint. what happens to connectedness properties if you remove the vertex?
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then we can shrink U by replacing it with1 Ũ = f−1(Dr(f(p)). Then compose f with the map
R2 → R2, x 7→ 1

r (x − f(p)) which rescales and translates Dr(f(p)) to our favourite unit disc

D = D1(0). The new map f̃ : Ũ → R2 shows that S is locally homeomorphic to D near p.

Example. The torus as a topological surface. Recall the quotient of the square:

T 2 = [0, 1]× [0, 1] / ((0, y) ∼ (1, y) and (x, 0) ∼ (x, 1) for all x, y ∈ [0, 1])

For an interior point (x, y) ∈ (0, 1)× (0, 1) of the square, we can simply pick a small disc around
it also lying in the interior, then the homeomorphism f is just the identity. Slightly harder, for a
point (0, y) on the left edge of the square, with y 6= 0, consider the half-disc

Dy = {(X,Y ) ∈ [0, 1]2 : X2 + (Y − y)2 < ε}
with centre (0, y), radius ε < min{y, 1− y}.

(0, y)
Dy

(1, y)
D′y

Notice D′y = {(1−X,Y ) ∈ [0, 1]2 : (X,Y ) ∈ Dy} is a half-disc with centre (1, y), radius ε. The
two half-discs glue together in the quotient along the common boundary edge (0, Y ) ∼ (1, Y ) to
form a disc Dy ∪D′y ⊂ T 2. Explicitly, we get a homeomorphism

f :
(
U = Dy ∪D′y ⊂ T 2

)
→
(
V = {(X,Y ) ∈ R2 : X2 + (Y − y)2 < ε} ⊂ R2

)
with f(X,Y ) = (X,Y ) on Dy, and f(X,Y ) = (X−1, Y ) on D′y. Exercise: run a similar argument
for the vertex (0, 0) of the square (glue four quarter-discs). I hope this example convinces you that
(often) writing tedious formulas does not make an argument more rigorous than drawing pictures.

Remark 2.3 (Topological manifolds). An n-manifold is a Hausdorff topological space S
such that each point p has a neighbourhood homeomorphic to an open subset of Rn. As above,
one can always find a local homeomorphism onto the ball B1(0) = {z ∈ Rn : ‖z‖ < 1}.

Remark 2.4 (Why not metric spaces?). Most topological surfaces arise as metric spaces.2

So it’s easy to describe the topology: each open set is a union of open balls. So why not start
off with a metric space? The metric is extra data which we do not care about: we think of two
topological surfaces as being the same if there is a homeomorphism between them, but these
rarely ever preserve distances. One could study topological surfaces together with a choice of
metric, and require homeomorphisms to be isometries (so distance-preserving).

2.2 Local coordinates and frames of reference

The homeomorphism f above, defined near p, determines continuous local coordinates

on the surface near p, by declaring q ∈ S near p has local coordinates (x, y) = f(q) ∈ R2.

The above f is called a chart, and the inverse F = f−1 is called a local parametrization,

F = f−1 : (V ⊂ R2)→ S.

Physicists like to call this a frame of reference.

1choose a small radius r > 0 for the open disc Dr(f(p)) = {q ∈ R2 : ‖q−f(p)‖ < r} so that Dr(f(p)) ⊂ V .
2Non-examinable: one usually requires surfaces and manifolds to be second-countable, and this implies

(by Uryshon’s metrization theorem) that the topology of a surface or a manifold is always induced by some

metric. Second-countable means that the topology has a countable base (i.e. there is a countable family of

open sets Ui, such that every open set is a union of some subfamily of such Ui).
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When observing a particle moving on a surface S you describe it in terms of some coordinates
(x(t), y(t)) depending on time t. It is important that two observers, using different frames
of reference, agree on whether or not the particle is moving continuously. Let’s compare two
frames of reference F1, F2 on the overlap of their images. The particle’s local coordinates are
(x(t), y(t)) and (x̃(t), ỹ(t)) for the two observers. They observe the same particle, so

F1(x(t), y(t)) = F2(x̃(t), ỹ(t)) = (position of particle in S at time t).

Therefore, the change of coordinates from observer 1 to observer 2 is:

(x̃(t), ỹ(t)) = (F−1
2 ◦ F1)(x(t), y(t)).

Since F1, F2 are homeomorphisms, the transition map F−1
2 ◦ F1 is continuous wherever it

is defined. Thus:

Corollary 2.5. For a topological surface, the transition maps (changes of coordinates between
two local parametrizations) are always continuous.

2.3 Smooth surfaces in R3

Definition 2.6 (Smooth maps). Given two open subsets U ⊂ Rn, V ⊂ Rm, a map f : U → V
is smooth if it is infinitely differentiable.1

Given two arbitrary subsets X ⊂ Rn, Y ⊂ Rm, a map f : X → Y is smooth if locally2 it is
the restriction of a smooth function Rn → Rm.

Definition 2.7 (Diffeomorphism). Given two arbitrary subsets X ⊂ Rn, Y ⊂ Rm, a map
f : X → Y is called diffeomorphism if f is a homeomorphism and f, f−1 are both smooth.

Definition 2.8. A smooth surface in R3 is a subset S ⊂ R3 such that each point p ∈ S
has a neighbourhood diffeomorphic to an open subset of R2.

Remarks.

� As before, we can always arrange to have diffeomorphisms f : U → D to the disc.
� Smooth surfaces in R3 are also topological surfaces, because diffeomorphisms are

homeomorphisms, and subspaces of a Hausdorff space such as R3 are Hausdorff.
� A local diffeomorphism f : S → R2 defined near p determines smooth local coor-

dinates: a point q near p has coordinates f(q) = (x, y) ∈ R2.
� The inverse F = f−1, which maps some open set of R2 to some open neighbourhood

of p ∈ S, is called a local parametrization near p.
� To define smooth n-manifolds in Rm you simply replace R2 by Rn above.

1Meaning: all partial derivatives of f of all orders exist (it follows that all partial derivatives are continuous,

so this definition is the same as requiring that f has derivative maps of all orders).
2Explicitly: for each p ∈ X there is an open neighbourhood U around p and a smooth map F : U → Rm,

such that F = f on U ∩ X. We need to extend f to an open set, because in order to take the limit
∂xif(p) = limt→0

1
t
(f(p+ tei)− f(p)) we need f to be defined along the ray p+ tei for small t, and for all we

know this ray may not belong to the given set X.
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Corollary 2.9. For a smooth surface in R3, the transition maps (changes of coordinates
between two local parametrizations) are always smooth.

Proof. As in Section 2.2, the transition map F−1
2 ◦F1 is defined between two open sets of R2.

Since F1, F
−1
2 are diffeomorphisms, F−1

2 ◦ F1 is a diffeomorphism (by the chain rule). �

It is easy to check whether a map R2 → S is smooth: you view it as a map R2 → R3

and check that it is infinitely differentiable. But checking whether a map S → R2 is smooth
is a nuisance, because by the above definition you would need to first extend the map to a
neighbourhood of S, at least locally. We will later prove (by the implicit function theorem)
that this nuisance is easily avoided using linear algebra:

Theorem 2.10. A smooth injective map F : V → S, defined on an open subset V ⊂ R2, is
a smooth local parametrization ⇐⇒ ∂xF, ∂yF are linearly independent at each point of V .

We will do one example explicitly, but I hope you agree that we do not want to carry out
such calculations every time we encounter a smooth surface. Your time is better spent at
developing the ability to spot instinctively whether or not a surface may fail to be smooth.

Example. The torus as a smooth surface in R3. Recall:

T 2 = {((a+ b cosψ) cos θ, (a+ b cosψ) sin θ, b sinψ) ∈ R3 : all θ, ψ ∈ [0, 2π]}.
Let’s check this is a smooth surface near the point p = (a+ b, 0, 0) (taking θ = ψ = 0). Perhaps
unsurprisingly, we will try the local parametrization

F : R2 ⊃ (−π, π)× (−π, π)→ T 2, (x, y) 7→ ((a+ b cos y) cosx, (a+ b cos y) sinx, b sin y).

This is manifestly smooth (since cos, sin are smooth). It is not so hard to check that it is injective
(check this, using that a > b > 0). So, by the Theorem, we reduce to linear algebra: we need
∂xF , ∂yF to be linearly independent in R3.
So we need to find a non-zero 2× 2 subdeterminant of the matrix

(
∂xF ∂yF

)
=

 −(a+ b cos y) sinx b sin y cosx
(a+ b cos y) cosx −b sin y sinx

0 b cos y

 .

The bottom two rows give subdeterminant (a+ b cos y)b cosx cos y. Since a > b, the first bracket
is non-zero, so this subdeterminant is non-zero except when x, y ∈ {±π/2}. But in that case, the
top two rows give subdeterminant (non-zero) · sin2 x with sin2 x = 1, again non-zero.

What does it mean to have a smooth map f : S1 → S2 between smooth surfaces in R3?
By Definition 2.6 it means f is a continuous map such that locally near each point of p ∈ S1,
f can be extended to a smooth function R3 → R3 defined in a neighbourhood of p ∈ S1 ⊂ R3.

2.4 Abstract smooth surfaces

Definition 2.11 (Abstract smooth surfaces). A smooth surface is a Hausdorff topological
space S, together with a family of homeomorphisms, called local parametrizations,

Fi : (open subset Vi ⊂ R2)→ (open subset Ui ⊂ S),

such that the Ui cover S, so S = ∪Ui, and on overlaps the transition maps are smooth:

F−1
j ◦ Fi : R2 → R2

is smooth wherever defined.1

1Explicitly, F−1
j ◦ Fi is defined on F−1

i (Ui ∩ Uj) ⊂ Vi ⊂ R2.
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� Notice that S is automatically a topological surface.
� As usual, each Fi determines smooth local coordinates: q ∈ S near p has local coordi-
nates (x, y) = F−1

i (q) ∈ R2 in the parametrization Fi.

Remark 2.12 (Smooth manifolds). To define smooth n-manifolds, replace R2 by Rn above.

Example. The torus as an abstract smooth surface. The quotient T 2 = R2/Z2 is a
topological space. It is Hausdorff as the equivalence relation {((x, y), (x+ n, y +m)) : (n,m) ∈
Z2, (x, y) ∈ R2} ⊂ R2 ×R2 is a closed subset. For any point p ∈ T 2, pick a representative point
p̃ = (x, y) ∈ R2, meaning p = [x, y]. Consider

Dp̃ = {(X,Y ) ∈ R2 : (X − x)2 + (Y − y)2 < ε},
the disc with centre (x, y) and radius ε = 1/100 (overkill: ε ≤ 1/2 would work). Notice that no
two points in Dp̃ differ by Z2, therefore the quotient map

Fp̃ :
(
Vp̃ = Dp̃ ⊂ R2

)
→
(
Up̃ = {[X,Y ] ∈ T 2 : (X,Y ) ∈ Dp̃} ⊂ T 2

)
, Fp̃(X,Y ) = [X,Y ]

is a homeomorphism. Since p ∈ Up̃, we obviously get T 2 = ∪Up̃ (taking the union over all choices
of p̃ ∈ R2 for all p ∈ T 2). Now consider transition maps. Suppose w ∈ Up̃ ∩ Uq̃ ⊂ T 2 is in an
overlap. Say w has local coordinates (X,Y ) ∈ Vp̃ and (X + n, Y + m) ∈ Vq̃ respectively. By
definition of T 2 the n,m are integers. The transition map is smooth since it is the translation

F−1
q̃ ◦ Fp̃ : R2 → R2, (X,Y ) 7→ (X + n, Y +m).

What does it mean to have a smooth map f : S → S′ between smooth surfaces? We want:

(1) f is continuous as a map of topological spaces,
(2) f is smooth in local coordinates.

The idea in (2) is you pick local coordinates (x, y) near p, and (x̃, ỹ) near f(p). Then f(x, y) =
(x̃(x, y), ỹ(x, y)) and you want x̃(x, y), ỹ(x, y) to be smooth functions of x, y.

More abstractly: for each p ∈ S, we require that for some coordinate patches

Vi
Fi−→ Ui ⊂ S V ′j

F ′j−→ U ′j ⊂ S′

with p ∈ Ui, f(p) ∈ U ′j , the map f written in local coordinates:

(F ′j)
−1 ◦ f ◦ Fi : R2 ⊃ Vi

Fi−→ Ui
f−→ U ′j

(F ′j)−1

−→ V ′j ⊂ R2

is smooth wherever it is defined.1 A tedious exercise is to show that if it holds for some Vi, V
′
j

as above, then it must hold for all Vi, V
′
j as above (using that transition maps are smooth).

1Explicitly, it is defined on F−1
i (f−1(U ′j)).
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Remark. Any abstract surface that “lives inside” R3 is a smooth surface in R3 in the sense of
Section 2.3. We first clarify what “lives inside” means: you have an abstract smooth surface
S and a smooth embedding f : S → R3 (meaning a homeomorphism onto the image, such
that the map and its inverse are smooth). Then f(S) ⊂ R3 is a smooth surface in R3: the
local parametrizations for f(S) are given by f ◦ Fi using the Fi of Definition 2.11.

2.5 Riemann surfaces

In Definition 2.11, replacing R2 by C, and “smooth” by “holomorphic” we obtain:

Definition 2.13. A Riemann surface is a Hausdorff topological space S, together with a
family of homeomorphisms, called local parametrizations,

Fi : (open subset Vi ⊂ C)→ (open subset Ui ⊂ S),

such that the Ui cover S, so S = ∪Ui, and on overlaps the transition maps are holomorphic:

F−1
j ◦ Fi : C→ C

is holomorphic wherever defined.1

� Notice that S is automatically a topological surface.
� Notice that S is automatically a smooth surface.
� Each Fi determines one holomorphic local coordinate: q ∈ S near p corresponds to
z = F−1

i (q) ∈ C in the parametrization Fi. As there is just one, we could call it fi = F−1
i ∈ C.

Remark 2.14 (Smooth manifolds). To define complex n-manifolds, replace C by Cn above.

Example. The torus as a Riemann surface. Consider T 2 = C/Λ for a lattice

Λ = Zω1 + Zω2 ⊂ C,
where ω1, ω2 ∈ C are R-linearly independent (i.e. not real multiples of each other). The quotient
C/Λ is a topological space. It is Hausdorff because the equivalence relation {(z, z + λ) : λ ∈
Λ, z ∈ C} ⊂ C× C is a closed subset. For any point p ∈ T 2, pick a representative point p̃ ∈ C,
meaning p = [p̃] in the quotient. Consider

Dp̃ = {z ∈ C : |z − p̃| < ε},
the disc with centre p̃, radius ε = min{|ω1|, |ω2|}/100. No two points in Dp̃ differ by Λ, so

Fp̃ : (Vp̃ = Dp̃ ⊂ C)→
(
Up̃ = {[z] ∈ T 2 : z ∈ Dp̃} ⊂ T 2

)
, Fp̃(z) = [z]

is a homeomorphism. Since p ∈ Up̃, we get T 2 = ∪Up̃ (the union over all choices of p̃ ∈ C for
all p ∈ T 2). Finally, suppose [w] ∈ Up̃ ∩ Uq̃ ⊂ T 2 is in an overlap. Say [w] has local coordinates
w ∈ Vp̃ and w + nω1 +mω2 ∈ Vq̃ respectively, where n,m ∈ Z are integers. Then the transition
map is holomorphic since it is a translation:

F−1
q̃ ◦ Fp̃ : C→ C, z 7→ z + nω1 +mω2.

What is a holomorphic map f : S → S′ between Riemann surfaces? We want:

(1) f is continuous as a map of topological spaces,
(2) f is holomorphic in local coordinates.

The meaning of (2) is just as in Section 2.4, replacing R2 by C, “smooth” by “holomorphic”.

Example. Viewing CP 1 = C ∪ {∞}, we show f : CP 1 → CP 1, z 7→ 1
z is holomorphic (with

f(0) =∞, f(∞) = 0). Notice f is continuous (in particular, the preimage of a neighbourhood of
∞ is a neighbourhood of 0). Write Z for the usual coordinate of C on the codomain. For z 6= 0,

1Explicitly, F−1
j ◦ Fi is defined on F−1

i (Ui ∩ Uj) ⊂ Vi ⊂ C.
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the local expression of the map is Z(z) = 1
z which is holomorphic in z (complex-differentiable).

For z close to 0, we need to use the local coordinate W = 1/Z on the codomain because Z = f(z)
is close to∞. The local expression becomes W (z) = 1/f(z) = z, which is holomorphic in z. Near
z = ∞, we use the local coordinate w = 1/z on the domain, and the local expression becomes
Z(w) = f(z) = f(1/w) = w, which is holomorphic in w.

3. When are two surfaces different?

3.1 Homeomorphisms, diffeomorphisms, biholomorphisms

The class of surfaces affects when we want to view two surfaces as being the same or
different. You have seen this in mathematics before: we think of two sets as “being the same”
(isomorphic) if there is a bijection : S1 → S2 between them, whereas for vector spaces (sets
with additional structures called addition and rescaling) we want the bijection to preserve the
additional structures, so we want a bijection f with f, f−1 both linear. We define:

(1) Two topological surfaces are isomorphic if they are homeomorphic.
Explicitly: f : S1 → S2 is a bijection, and f, f−1 are continuous.

(2) Two smooth surfaces in R3 are isomorphic if they are diffeomorphic.
Explicitly: f : S1 → S2 is a bijection, and f, f−1 are smooth.1

(3) Two abstract smooth surfaces are isomorphic if they are diffeomorphic.
(4) Two Riemann surfaces are isomorphic if they are biholomorphic,

Explicitly: f : S1 → S2 is a bijection, and f, f−1 are holomorphic.

Notice that a diffeomorphism/biholomorphism is also a homeomorphism, so the underlying
topological surfaces are the same. However, for all we know, there may be several ways to
turn a topological surface into a smooth surface or a Riemann surface, and these may not be
related by a diffeomorphism/biholomorphism even though the surfaces are homeomorphic.

Example. In previous courses you have seen Möbius maps: they are biholomorphisms

C ∪ {∞} = CP 1 → CP 1 = C ∪ {∞}, z 7→ az + b

cz + d
,

where a, b, c, d ∈ C with ad− bc 6= 0. These maps don’t change if you rescale all a, b, c, d by the
same non-zero complex number, so you may arrange that ad− bc = 1 (which leaves the freedom
of rescaling all by ±1). So such maps are parametrized by

(
a b
c d

)
∈ SL(2,C)/(±I) = PSL(2,C).

As the maps compose according to matrix multiplication, the group of Möbius maps is isomorphic
to PSL(2,C). For example, the inverse of a Möbius map can now be calculated by finding the
inverse matrix: z−i

z+i is inverse to iz+i
−z+1 since

(
1 −i
1 i

)
is inverse to 1

2i

(
i i
−1 1

)
. Möbius maps have

nice properties: circles/lines map to circles/lines, and angles are preserved (see Section 21.1).
Exercise. Recall we defined homogeneous coordinates for CP 1, so z ∈ C ⊂ C∪{∞} becomes
the point [1 : z]. Show that Möbius maps become CP 1 → CP 1, [z0 : z1] 7→ [cz0+dz1 : az0+bz1]
in homogeneous coordinates. This is why they are also called projective linear transformations.
Exercise. Check that Möbius maps are holomorphic.
Example. We check that the upper half-plane H = {z ∈ C : Im z > 0} is biholomorphic to
the open unit disc D = {z ∈ C : |z| < 1} via f(z) = z−i

z+i . We know f : CP 1 → CP 1 is a

biholomorphism (and f−1(z) = iz+i
−z+1 ), so it remains to check f(H) = D. As 0, i,∞ ∈ C ∪ {∞}

map to −1, 0, 1 ∈ C ∪ {∞}, the circle/line R ∪ {∞} must map to the circle/line S1 = ∂D.
Since f sends open sets to open sets (as f−1 is continuous), the connected component H of

1Non-examinable: Since surfaces in R3 are an abstract surface S together with the additional structure
of an embedding S → R3, a more appropriate notion of isomorphic is actually isotopy: a smooth family of

embeddings. Explicitly: a smooth map H : S × [0, 1] → R3 such that H(·, 0) : S → R3, H(·, 1) : S → R3 are
the two embedded surfaces, and we want H(·, t) : S → R3 to be an embedding for each t ∈ [0, 1].
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(C ∪ {∞}) \ (R ∪ {∞}) must map bijectively onto one of the two connected components of
(C ∪ {∞}) \ S1. As f(i) = 0, it follows that f(H) = D. (Alternatively, notice that the distance
of z ∈ H from i is less than the distance from −i, so | z−iz+i | < 1, so the map lands inside D.)
Exercise. Show that a Möbius map sends H → H precisely when a, b, c, d ∈ R are real and
ad − bc > 0. Thus, these Möbius maps determine the subgroup PSL(2,R) ⊂ PSL(2,C).
(Hint: first impose that R→ R, then you just need to ensure the maps don’t flip H to −H).)

Cultural Remark. An automorphism of S is a biholomorphism S → S. We will prove
in the course that the automorphisms of CP 1 are precisely the Möbius maps PSL(2,C).
The automorphisms of H and D are also precisely the Möbius maps, respectively PSL(2,R)
and PSU(1, 1) (see Section 21.1). The result for CP 1 does not immediately imply the other
two because it is not easy to show that a given automorphism extends continuously to the
boundary (once we know this for f : H → H, a reflection principle trick f(z) = f(z) gives
us an automorphism of CP 1). A simpler approach is to first prove the result for D, then the
result for H follows by using the above biholomorphism H → D (can you see why?). For D
the result follows by Schwartz’s lemma: see the last two Lemmas in the Appendix.

3.2 Classification of tori

Definition 3.1 (Torus). A torus is any topological space X which is homeomorphic to S1×S1

(using the product topology).

There are several (homeomorphic) ways to describe S1 as a topological space:

(1) S1 = {z ∈ C : |z| = 1} ⊂ C with the subspace topology,
(2) S1 = R/Z with the quotient topology, where we identify x ∼ x+ n any n ∈ Z,
(3) S1 = [0, 1]/(0 ∼ 1) with the quotient topology.

For example, a homeomorphism from (2) to (1) is x 7→ e2πix.
The torus viewed as the square by identifying parallel sides arises from description (3) of

S1; the torus as a quotient R2/Z2 by the translation group Z2 arises from description (2);
and the torus S1 × S1 ⊂ C× C = R4 arises naturally from description (1).

As a topological surface, all tori are the same: homeomorphic to S1 × S1. But how many
different smooth surfaces are homeomorphic to S1 × S1, and how many different Riemann
surfaces are homeomorphic to S1 × S1? We will not prove the following hard theorem (a
consequence of the classification of compact surfaces):

Theorem 3.2. Any smooth surface which is topologically a torus is diffeomorphic to S1×S1.

This turns out to be false for Riemann surfaces: there are many non-biholomorphic Rie-
mann surfaces which are tori. Again, we will not prove the following hard theorem:

Theorem 3.3 (Elliptic curves over C). Any Riemann surface which is topologically a torus
is biholomorphic to C/Λ for some lattice Λ which we may rescale so that Λ = Z ·1 +Z · τ with
τ ∈ H = {z ∈ C : Im(z) > 0}. These are called the elliptic curves.

We will now show explicitly why two such tori C/Λ1,C/Λ2 are diffeomorphic, and we will
show that they are not always biholomorphic.

To show that they are diffeomorphic, we might as well show that all quotients C/Λ are dif-
feomorphic to R2/Z2 (which is the case τ = i), then C/Λ1

∼= R2/Z2 ∼= C/Λ2 are diffeomorphic,
as required. Identifying C = R2, z ≡ x+ iy, write τ = a+ ib. Matrix multiplication(

1 a
0 b

)
: R2 → R2
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is of course a smooth map (it is linear!) and it is bijective (the determinant b = Im(τ) > 0 is
non-zero), and it maps Z2 → Λ bijectively (the columns are the images of the standard basis).
Thus it defines a diffeomorphism R2/Z2 → C/Λ. The map is however not holomorphic.1

More generally, suppose we are given a biholomorphism

f : C/Λ→ C/Λ′ where Λ = Zω1 + Zω2, Λ′ = Zω′1 + Zω′2.
This means that2 it arises from quotienting a holomorphic map

f̃ : C→ C with f̃(Λ) ⊂ Λ′

which is injective on any Zω1 +Zω2-translate of the unit square (0, 1)× i(0, 1) ⊂ C. It follows

that f̃ maps Λ bijectively to Λ′. It easily follows that f̃ grows linearly in z ∈ C. So the

Taylor series of f̃ does not contain order z2 or higher terms. So f̃(z) = Az + B for some

A ∈ C \ {0}, B ∈ C. Taking z = 0 shows that B ∈ Λ′, so by composing f̃ with the translation

z 7→ z − B we may as well assume that B = 0. So f̃(z) = Az is linear. Thus the problem
reduces to classifying lattices Λ ⊂ C up to C-linear bijections!

Since Aω1, Aω2 is required to be a Z-linear basis for Λ′, the two bases Aω1, Aω2 and ω′1, ω
′
2

of Λ′ differ by a Z-linear bijection (think of row-reduction but working over Z). So

ω′1 = aAω1 + bAω2 ω′2 = cAω1 + dAω2.

for some invertible integer-valued matrix
(
a b
c d

)
∈ GL(2,Z). Thus, using the convention that

τ = ±ω1

ω2
adjusting the sign so that τ ∈ H = {z ∈ C : Im(z) > 0},

τ ′ = ±ω
′
1

ω′2
= ±aAω1 + bAω2

cAω1 + dAω2
= ±±aτ + b

±cτ + d
.

So the matrix acts on the τ parameter like a Möbius map. By properties of Möbius maps,
since τ, τ ′ ∈ H, we deduce that τ ′ = M · τ where M = ±

(±a b
±c d

)
∈ PSL(2,Z).

Corollary 3.4. C/(Z1 + Zτ) ∼= C/(Z1 + Zτ ′) are biholomorphic if and only if τ, τ ′ ∈ H =
{z ∈ C : Im(z) > 0} lie in the same orbit of the PSL(2,Z)-action on H by Möbius maps.

Corollary 3.5. Riemann surfaces which are topologically a torus are classified up to biholo-
morphism by [τ ] ∈ H/PSL(2,Z).

Cultural remark: this moduli space, H/PSL(2,Z), of modular parameters [τ ] is in fact
itself a Riemann surface biholomorphic to C.

4. The Euler characteristic

4.1 Euler characteristic of regular polyhedra

Notice the following pattern in the number of vertices, edges, faces of the Platonic solids:

Regular polyhedron Face type V E F χ = V − E + F
Tetrahedron Triangle 4 6 4 2
Cube Square 8 12 6 2
Octahedron Triangle 6 12 8 2
Dodecahedron Pentagon 20 30 12 2
Icosahedron Triangle 12 30 20 2

The alternating difference χ = V − E + F is called the Euler characteristic. Why is it

1f(x+ iy) = (x+ay) + iby has: ∂xf = 1, ∂yf = a+ ib. The Cauchy-Riemann equations ∂xf = −i ∂yf fail.
2Strictly speaking, we only know this locally, as we used the quotient C → C/Lattice to define the holo-

morphic local parametrizations. However, by the Identity theorem from complex analysis you know that

you can patch together the local Taylor series uniquely to obtain a global holomorphic map defined on C.
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always 2 for Platonic solids? It turns out χ is a topological invariant of topological surfaces,
meaning it is a quantity which is the same for any two surfaces which are homeomorphic.
Platonic solids are homeomorphic to the sphere, so χ = χ(S2) = 2. The homeomorphism
between the Platonic solid and the sphere defines a cellular decomposition of the sphere: a
subdivision of the sphere into regions homeomorphic to discs (in this case, curved polygons).
Example. Section 1.2.(1) shows a triangulation induced by a tetrahedron (get curved triangles).

4.2 Cellular decomposition

Definition 4.1 (Cellular decomposition). A cellular decomposition of a topological surface
S is a collection of continuous maps, called cells,

vi : D0 → S ej : D1 → S fk : D2 → S

respectively called 0-cells, 1-cells, 2-cells, where1 Dn = {p ∈ Rn : ‖p‖ ≤ 1} is the n-
dimensional unit disc, and we require that:

(1) each map restricted to the interior of the disc is a homeomorphism onto the image,2

(2) the boundary of the disc is mapped into the image of the lower-dimensional cells,3

(3) S is partitioned by the interiors of the cells.4

Remarks.
� The maps restricted to the boundary ∂Dn are called attaching maps (can be non-injective).
� Notice you are building the space inductively by dimension: you start with a bunch of points
X0 =

⊔
vi(D0), then you attach line segments X1 = X0∪

⋃
ej(D1) where the attaching maps

ej |{0,1} land inside X0, and finally you attach 2-discs X2 = X1 ∪
⋃
fk(D2) = S where the

attaching maps fk|S1 land in X1. The subspace Xi ⊂ S is called the i-skeleton.
� Condition (3) ensures there are no redundancies or silly overlaps: the vertices are distinct,
no vertices touch the interior of an edge or face, no edge touches the interior of a face.
� The above definition works more generally for any n-manifold M , in which case you can
have cells ci : Ddi →M of any dimension di ∈ {0, 1, 2, . . . , n}.
� A triangulation is a cellular decomposition, where the faces are identified (via homeomor-
phisms) with triangles and the attaching maps are all injective, so that the boundary edges of
the triangles are precisely the 1-cells, and the boundary vertices of the edges are precisely the
0-cells. These conditions are quite harsh, so it is usually very messy5 to triangulate a surface.

Examples. Here are three examples of cellular decompositions of S2:

1So D0 = {point}, D1 = [0, 1] ⊂ R, D2 = D = {(x, y) ∈ R2 : x2 + y2 ≤ 1} ⊂ R2. Interiors: Int(D0) = D0,

Int[0, 1] = (0, 1), Int(D2) = D = {z ∈ R2 : ‖z‖ < 1}. Boundaries: ∂D0 = ∅, ∂D1 = {0} ∪ {1}, ∂D2 = S1.
2ej : (0, 1)→ ej((0, 1)) ⊂ S, fk : D → fk(D) ⊂ S are homeomorphisms (no condition on vi as IntD0 = ∅).
3ej(0), ej(1) ∈

⋃
vi(D0) and fk(S1) ⊂

⋃
vi(D0) ∪

⋃
ej(D1).

4S =
⊔
vi(D0) t

⊔
ej(IntD1) t

⊔
fk(IntD2) is a disjoint union of subsets.

5try to triangulate the torus, viewed as a square with parallel sides identified.
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Here f1 : D2 ∼= (square)→ (square with identifications), and this map is a homeomorphism on the
interior, but on the boundary it is not injective. Notice that (just as for the Platonic solids, which
also yield cellular decompositions of S2) the alternating sum of the numbers of cells is always 2:

1− 0 + 1 = 2 1− 1 + 2 = 2 3− 2 + 1 = 2.

A very general (hard) fact from algebraic topology is:

Theorem 4.2. Any compact topological manifold M (e.g. a compact topological surface) “ad-
mits”1 a cellular decomposition and the alternating sum of the numbers of cells

χ(M) = (#0-cells)− (#1-cells) + (#2-cells)− (#3-cells) + · · ·
is the same for any cellular decomposition. It is called the Euler characteristic of M .

Corollary 4.3. If M,N are homeomorphic topological manifolds then χ(M) = χ(N). So the
Euler characteristic is a topological invariant.

Proof. If f : M → N is a homeomorphism, then a cellular decomposition ci : Ddi →M of M
determines a cellular decomposition f ◦ci : Ddi → N of N . So χ(M) =

∑
(−1)di = χ(N). �

Example. We obtained the torus from a square by identifying the parallel edges. The whole
square is a 2-cell f2 : D2 → T 2, the two non-parallel edges are two 1-cells e1, e2 : D1 → T 2, and
the four vertices of the square are identified with one 0-cell v1 : D0 → T 2. Thus

χ(T 2) = 1− 2 + 1 = 0.

For RP 2 the four vertices instead define two 0-cells, so

χ(RP 2) = 2− 2 + 1 = 1.
4.3 Connected sum

In general, given two surfaces S1 and S2, we can form two new surfaces:

(1) the disjoint union: S1 t S2,
(2) the connected sum: S1#S2.

Easy exercise. Show that any connected component of a surface is a surface. Deduce that
any surface equals a disjoint union of connected surfaces.

The connected sum S1#S2 is obtained by removing a “disc” from each of the two sur-
faces and identifying the circular boundaries. This identification is the same (up to homeo-
morphism) as attaching a cylinder by gluing the two boundaries of the cylinder onto the two
boundaries of the removed discs.

Exercise. Check that S1#S2 is indeed a topological surface. Convince yourself that if S1, S2

are connected then, up to homeomorphism, it does not matter which “discs” you pick.

Exercise. Connected sum with a sphere does nothing.

1Non-examinable: the statement as written is known in all dimensions except 4 (and in dimension 2 one

can even obtain a triangulation). In reality, one only cares about a cellular decomposition “up to homotopy
equivalence”: loosely, a type of continuous deformation that is more drastic than just homeomorphisms, and
it happens to preserve χ. As an example, you can squash a cylinder to turn it into a circle, both have χ = 0.

That, up to homotopy, manifolds have cellular decompositions was proved by John Milnor in his 1959 paper,
On spaces having the homotopy type of a CW-Complex.
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Connected sum with a torus is the same as attaching a handle (Section 4.5).

Example. By Exercise sheet 1, RP 2 is obtained by gluing a disc D onto a Möbius band M along
the circular boundary. So RP 2 \ D = M . So connected sum with RP 2 is the same as attaching
a Möbius band (Section 4.6).

4.4 Additivity of the Euler characteristic

Lemma 4.4.
(1) χ(S1 t S2) = χ(S1) + χ(S2),
(2) χ(S1#S2) = χ(S1) + χ(S2)− 2.

Proof. 1 Pick a cellular decomposition of S1, S2. Then this defines a cellular decomposition of
S1 t S2 so (1) follows immediately. The idea in (2) is that we remove two faces, which makes
χ drop by 2, and we identify the circular boundaries so we lose one copy of S1, which does
not matter for χ since χ(S1) = 0 (since S1 is a point with an interval attached to the point,
so χ = 1 − 1 = 0). This idea is correct if you triangulate S1, S2 and remove two triangular
faces. However, if we instead want to work with cellular decompositions (which arise more
naturally than triangulations) then the rigorous proof is a little more involved, as follows.

The surface S1#S2 up to homeomorphism only depends on the the choice of connected
components in S1 and in S2 where you pick the “discs”. So we might as well pick each “disc”
in the interior of a 2-cell in the cellular decomposition. To do this without destroying the
cellular decomposition2 we subdivide each original 2-cell f0 : D2 → Si as in the picture.

The new edges e1, e2 map injectively into Si since the original f0 is injective on Int(D2),
and similarly the new faces f1, f2 are injective on Int(D2). However, a comment is required
about v1. If f0(S1) already contains a 0-cell, then we can use that for v1, and χ will not have
changed.3 If f0(S1) does not4 contain a 0-cell then, by the partitioning condition, f0(S1) lies
inside the image of an edge, so creating a new v1 means subdividing an edge into two. So we
are also creating a new edge. So this new vertex/edge pair does not affect χ: 1− 1 = 0. This
invariance of χ is a special instance of the very general invariance Theorem 4.2.

Next, we remove the small faces (f2 in the picture) from S1, S2, which makes χ drop by 2.
Finally we identify the two boundaries of those faces which means we identify the copies in
S1, S2 of v2, e2 in the above picture, so χ does not change (+1− 1 = 0). So (2) follows. �

Remark. If a topological space S = A∪B (such as a surface) is a union of two closed subsets,
and suppose5 S admits a cellular decomposition such that it induces cellular decompositions

1Non-examinable exercise. For n-manifolds M,N , explain how one constructs a connected sum M#N

and show that χ(M#N) = χ(M) + χ(N)− χ(Sn), where Sn is the n-sphere.
2making a hole inside the “disc” gives an annulus (up to homeomorphism), so it is no longer a 2-cell.
3before subdivision, f0 contributes +1, after subdivision v2, e1, e2, f1, f2 contribute 1− 2 + 2 = 1.
4the boundary of the disc must land inside the 1-skeleton, but it may land in the interior of some 1-cell.
5Non-examinable: More generally, this formula for χ holds whenever S is the union of the interiors of the

closed sets A,B, as a consequence of the so-called Mayer-Vietoris sequence (see C3.1 Algebraic Topology).
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for A ∩B,A,B, then by counting you deduce χ(S) = χ(A) + χ(B)− χ(A ∩B). Can you see
how to use this to prove the above formula for χ(S1#S2)?

4.5 Attaching handles to a sphere

Observe that there is a natural way to orient the boundary of a “disc”1 in the sphere: we
ask that it obeys the right-hand rule2, with the thumb pointing in the normal outward
direction (so for very small discs, the boundary is oriented anti-clockwise if you are looking
at the sphere S2 ⊂ R3 from far away).

A cylinder is a space homeomorphic to [0, 1]× S1. The boundaries are oriented as follows:
{1} × S1 is oriented clockwise, {0} × S1 is oriented anticlockwise.

Attaching a handle to S2 means you remove two disjoint “discs” from S2, and you glue
the two boundary circles of the cylinder [0, 1]× S1 onto the two boundaries of the discs you
removed in a way which preserves the above orientations (in practice: draw arrows on the
circular boundaries, and glue in a way that respects the arrow directions). The orientation
choices ensure that we can think of the handle as attached onto S2 ⊂ R3 from the “outside”:

Thus, starting from a sphere, we obtain a sequence of surfaces:

The number g of handles attached to S2 is called the genus of the surface, and corresponds
to the number of “doughnut holes”:

Exercise. Suppose you instead remove two disjoint discs from the surface, and identify the
two boundary circles (in a way that preserves their orientations). Show that the resulting
surface is homeomorphic to the above handle-attachment. Hint. Near one of the circles you
can pick a closed neighbourhood that looks like S1 × [−1, 0], now construct the required map.

Lemma 4.5. Attaching a handle decreases χ by 2.

Proof. To obtain a cellular decomposition of a cylinder S1×[0, 1], we declare that e1 = [0, 1] ∼=
{1} × [0, 1] ⊂ S1 × [0, 1] is a 1-cell. View each of the circles S1 × {0} and S1 × {1} as 1-cells
e2, e3 which have been attached by identifying both endpoints to the same point, namely
the endpoints v1 = (1, 0), v2 = (1, 1) of e1. The cylinder itself defines a 2-cell bounded
by e1, e2, e3. Thus χ(cylinder) = 2 − 3 + 1 = 0. When we attach the cylinder, we run a
construction similar to the picture in the proof of Lemma 4.4. Namely, we remove two discs
from the original surface (so a 2-cell), which makes χ drop by 2, whilst the identification of

1“Disc” will mean a continuous map D2 → S which is a homeomorphism onto its image.
2thumb pointing in the normal outward direction, index finger pointing in the oriented circular direction,

and middle finger pointing towards the centre of the circle.
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the boundary circles does not change χ (viewing the boundary circle as a 1-cell with both
endpoints attached to the same 0-cell, we lose a 1-cell and a 0-cell, leaving χ unaffected). �

4.6 Attaching Möbius bands to a sphere

In Exercise sheet 1 you study Möbius bands. The Möbius band M is the quotient of the
square [0, 1]× [0, 1] by identifying the vertical edges in opposite directions, (0, y) ∼ (1, 1− y).
The boundaries [0, 1]× {0} and [0, 1]× {1} glue to give a circle.

Attaching a Möbius band to S2 means you remove a “disc” from S2, and you glue the
boundary circle of M onto the boundary of the disc you removed. One cannot draw this in
R3 without self-intersections, so schematically we will draw M as a wiggly cap:

The above are the first two of a sequence of surfaces one obtains by attaching Möbius bands
to S2 (see Exercise Sheet 1, Ex.2).

Lemma 4.6. Attaching a Möbius band decreases χ by 1.

Proof. This is similar to Lemma 4.5. M has a 2-cell (the square), three 1-cells (two of the four
edges of the square are identified), two 0-cells (vertices are identified in pairs). So χ(M) = 0.
When we attach M , χ drops by 1 as we remove a disc (a 2-cell) from the original surface. �

5. Classification of surfaces

5.1 Classification of compact topological surfaces

At the end of Part A Topology you played with gluing edges of polygons, and “proved”:

Theorem 5.1. Any compact connected topological surface is homeomorphic to:

(1) a sphere S2 with g ≥ 0 handles attached, or
(2) a sphere S2 with h ≥ 1 Möbius bands attached.

Actually you proved the above under the additional assumption that the surface can be
triangulated (see the Remarks in 4.2 for the definition of a triangulation).

A hard theorem1 of topology is that every topological surface admits a triangulation.
Once a triangulation has been chosen for the compact connected surface S, by compact-

ness there are only finitely many triangles. You then inductively build a “polygon” (up to
homeomorphism, so it may have curved edges) in the plane R2. Start with a triangle from
S, identify it with a “triangle” T1 (a homeomorphic copy, so it can be curved) in the plane.
Then consider an adjacent triangle in S, identify it with a “triangle” T2 adjacent to T1, and
so on. Since S is connected, once you have exhausted all triangles you end up with a (typi-
cally non-convex) “polygon” in R2: the union of the triangles T1, T2, . . .. However, the outer
boundary edges will be identified in pairs since in S each edge belongs to two triangles. Thus,
up to homeomorphism, the problem reduces to classifying regular polygons with pairwise edge
identifications. You solved this combinatorial exercise in Part A Topology.

By Section 4.3, Theorem 5.1 can also be stated as follows:

1See http://mathoverflow.net/questions/17578/triangulating-surfaces. It is quite easy to find cellular
decompositions, but much harder to triangulate. In fact, in higher dimensions, it is not true that topo-

logical manifolds are always “triangulable” (using the higher dimensional analogues of tetrahedra). See

http://en.wikipedia.org/wiki/Triangulation (topology).
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Corollary 5.2. Any compact connected topological surface is homeomorphic to one of:

(1) S2 or T 2#T 2# · · ·#T 2 for some number g ≥ 0 of copies of T 2,
(2) RP 2#RP 2# · · ·#RP 2 for some number h ≥ 1 of copies of RP 2.

Corollary 5.3. For the surfaces in Theorem 5.1,

(1) χ(S2 with g ≥ 0 handles attached) = 2− 2g,
(2) χ(S2 with h ≥ 1 Möbius bands attached) = 2− h.

Proof. Follows by Corollary 5.2 and Lemma 4.4, using that χ(T 2) = 0 and χ(RP 2) = 1. �

Viewing the torus as a square with the usual side-identifications aba−1b−1 (reading clock-
wise), by performing the connected sum of two such squares we obtain the standard model
of the genus 2 surface as a regular octagon with a complete set of side identifications,
aba−1b−1cdc−1d−1. Repeating this procedure inductively, the regular polygon with 4g sides,
identified by a1b1a

−1
1 b−1

1 · · · agbga−1
g b−1

g , is the standard model of the genus g surface.

Exercise. Show similarly that the regular polygon with 2h sides identified by a1a1a2a2 · · · ahah
is a model for the non-orientable surface with χ = 2− h (recall that RP 2 is obtained from a
digon with identifications aa, which is the case h = 1).

The Euler characteristic does not distinguish the torus T 2 from the Klein bottle K: both
have χ = 0. One reason why T 2 and K are not homeomorphic is that K contains a Möbius
band but T 2 does not (if they were homeomorphic then T 2 would also contain one). Indeed,
one can define orientability by saying that a topological surface is orientable if and only if
it does not contain a Möbius band. In Section 6 we will discuss orientability, and show:

Corollary 5.4. The Euler characteristic and orientability uniquely determine the topological
surfaces in Theorem 5.1 up to homeomorphism ((1) are orientable, (2) are non-orientable).

5.2 Classification of compact smooth surfaces

The analogue of Theorem 5.1 is the following hard theorem:

Theorem 5.5. Any compact connected smooth surface is diffeomorphic to:

(1) a sphere S2 with g ≥ 0 handles attached, or
(2) a sphere S2 with h ≥ 1 Möbius bands attached.

Exercise. Convince yourself that you can make attachments smoothly.

5.3 Classification of Riemann surfaces

This Section is non-examinable.

For cultural reasons, I mention the following theorem (we come back to this in the Appendix).
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Theorem 5.6 (Uniformization theorem).

Every simply-connected1 Riemann surface is biholomorphic to one of:

(1) CP 1 (sometimes called the Riemann sphere),
(2) C (the complex plane)
(3) D = {z ∈ C : |z| < 1} (the open disc).

Remark. Recall the upper half-plane H = {z ∈ C : Im(z) > 0} is biholomorphic to D (Sec.
3.1).
Every connected Riemann surface is biholomorphic to a quotient of one of those three simply-
connected models by a discrete2 group which acts holomorphically, freely3 and properly.4

Later we’ll see how this is related to geometry: the three models have respective curvatures
+1 (Spherical geometry), 0 (Euclidean geometry), −1 (Hyperbolic geometry).

Example: genus 1 Riemann surfaces are, up to biholomorphism, elliptic curves by Section
3.2, so quotients of C by a discrete group of translations described by a lattice.

Corollary 5.7. By studying the possible group actions in the above three cases, it turns out
every connected Riemann surface is biholomorphic to one of:

(1) CP 1,
(2) C, C∗ = C \ {0}, or C/Λ for a lattice Λ ⊂ C (these three options come from groups

isomorphic to {1},Z,Z2 respectively),
(3) H/G for a discrete subgroup G ⊂ PSL(2,R) = {

(
a b
c d

)
: a, b, c, d ∈ R, ad−bc = 1}/±I

acting freely by Möbius maps on H.

6. Orientability

6.1 Orientable versus non-orientable surfaces

There are two ways to orient a triangle, i.e. choosing arrows along the edges indicating how
we wish to travel once around the triangle. One could equivalently say a surface is orientable
if in a triangulation of the surface it is possible to pick an orientation for each triangle, so
that for any two triangles which share an edge we have picked opposite orientations for that
edge for the two triangles. However, the natural5 definition is Definition 6.1.
We will loosely use the expression disc in S to mean a continuous injective6 map D → S,
and continuous family of discs in S to mean a continuous map F : D × [0, 1] → S, such
that each Ft : D→ S, Ft(z) = F (z, t) is a disc in S.

1Simply-connected means: connected, and every continuous loop can be continuously shrunk to a point

(every continuous map S1 → S can be extended to a continuous map D→ S on the closed unit disc).
2Discrete means that “points are open”: i.e. the one-element subsets {g} are open sets, for g ∈ G. Example:

Z2 ⊂ R2 with addition.
3Freely means all stabilizers are trivial: StabG(p) = {g ∈ G : g • p = p} = {1}.
4Properly, for a discrete group G acting on a space S, means: any p, q ∈ S have neighbourhoods Up, Uq

with Up ∩ (g • Uq) 6= ∅ for only finitely many g ∈ G. This ensures, in particular, that S/G is Hausdorff.
5Non-examinable Remark. It is the only definition which generalizes to higher dimensions. A topo-

logical n-manifolds M is orientable if, after moving a disc Dn → M continuously in M along any path
until its image coincides with the original image, the starting and ending positions yield two embeddings
Sn−1 = ∂Dn → M that differ by a homeomorphism Sn−1 → Sn−1 which can be continuously deformed to
the identity map (see the analysis handout for the definition of deformation). For a non-orientable n-manifold,
there will exist some path yielding a homeomorphism Sn−1 → Sn−1 which can be continuously deformed to

the reflection (x1, . . . , xn) 7→ (−x1, x2, . . . , xn) (viewing Sn−1 ⊂ Rn).
6We could strengthen this to “embedding”, meaning a homeomorphism onto the image.
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Definition 6.1 (Orientable surface). A topological surface S is orientable if for any con-
tinuous family of discs Ft(D) in S, starting and ending at the same disc F0(D) = F1(D), the
circular boundaries F0(S1), F1(S1) are oriented in the same direction.1

This fails for the Möbius band M , so any surface containing a copy of M is non-orientable:

Thus any surface in family (2) in Theorem 5.1 is non-orientable.
The surfaces in family (1) in Theorem 5.1 are all orientable, since they can be embedded in

R3 with a well-defined outward normal direction, and then a family of discs will have circular
boundaries oriented either always agreeing or always disagreeing with the right-hand-rule
orientation.2

Remark. You may wonder why attaching a handle to a surface S in family (2) in Theorem
5.1 does not give anything new. Up to homeomorphism, you can move one boundary circle
of the cylinder once around a Möbius band in S, which will switch the orientation of the
boundary circle. If you think of S inside R3 with (fictitious) “self-intersections”, then the
cylinder is no longer attached on the outside of the sphere: one of the ends is attached from
the inside. The cylinder attached in this way corresponds to connected sum with a Klein
bottle K = RP 2#RP 2 (in the picture we drew the circle along which we take the connected
sum with K). So attaching a cylinder to a surface which contains a copy of M is the same, up
to homeomorphism, as the connected sum #RP 2#RP 2 with two copies of RP 2. This is what
we expected from the classification theorem, since χ drops by 2 when attaching a cylinder.

6.2 Non-orientable compact surfaces cannot be embedded in R3

Definition 6.2 (Embedding). For a topological surface S, a map f : S → R3 is an embed-
ding if S → f(S) ⊂ R3 is a homeomorphism (in particular f is injective and continuous).
Remark. For smooth/Riemann surfaces S, one requires in addition that the derivative map3

Df is injective at every point.

Think of embeddings in R3 as giving you an identical copy of the surface in R3.

Theorem 6.3. A non-orientable compact surface S cannot be embedded in R3.

1Meaning, F−1
1 ◦ F0 : S1 → S1 sends the anticlockwise path eit to a path eis(t) for a strictly increasing

function s(t) (so eis(t) is also an anticlockwise path).
2thumb pointing in the normal direction, index finger pointing in the oriented circular direction, and middle

finger pointing towards the centre of the circle.
3in local coordinates, the matrix of partial derivatives.
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Sketch proof. Choose a point p ∈ R3 near infinity, far away from S. For any point q ∈ R3 \S,
call q even if there is a continuous curve c : [0, 1] → R3 starting at c(0) = q, ending at
c(1) = p, intersecting S in a finite even number of points. Define q odd if the number is
odd. For example, the straight line segment c from q to p often works. This definition is not
quite correct,1 but some algebraic topology machinery beyond this course ensures that this
definition can be made rigorous and that even/oddness is independent of the choice of c. But
now, if you consider an ant walking along the equator of a Möbius band, then the positions
qstart, qend of the head of the ant before and after going around the equator has changed parity
(to visualise, consider the straight line segments to p). But joining the curve from qstart to
qend traced out by the head of the ant (which has not intersected S) with a curve from qend

to p shows that qstart and qend have the same parity. Contradiction. �

Remark. The closed Möbius band embeds into R3, but is not a surface (we do not allow
boundaries in this course). The open Möbius band embeds into R3 but is non-compact.

Remark. One can improve this proof to show that the complement of any compact surface
S embedded in R3 has two connected components, called the “inside” and the “outside”
(the 3-dimensional analogue of the Jordan curve theorem, which says that a continuous
non-self-intersecting closed curve divides the plane into two regions).

6.3 Orientability of smooth surfaces in terms of the transition maps

If we want to show that a smooth surface S is orientable then we would have to prove
that it contains no copy of the Möbius disc – this is hard in practice. It turns out there is an
equivalent definition of orientability, which is more practical.

Definition 6.4 (Orientable smooth surface). A smooth (abstract) surface S is orientable, if
the derivatives of all transition maps F−1

j ◦ Fi have positive determinant on the overlaps:

det(DF−1
j ◦DFi) > 0.

(Warning: the failure of this condition does not imply non-orientability)2

We now explain this. In R2 the possible ordered bases v1, v2 come in two types:

(1) right-handed bases: these differ from the standard basis e1 = (1, 0), e2 = (0, 1) by a
linear map with positive determinant,3

(2) left-handed bases: those which differ by a linear map with negative determinant.

The first type, are called positively oriented bases, and correspond to the right-hand-rule: the
thumb points in the direction v1, the index finger points in the direction v2. Notice the unique
angle less than 180◦ from v1 to v2 determines an orientation of a circle centred at 0.

Thus, the intuition for det(DF−1
j ◦ DFi) > 0 is that it ensures that two observers (so

Fi, Fj) agree on which bases are right-handed and which are not: e1 = (1, 0), e2 = (0, 1) is
right-handed for the first observer in their local coordinates, and these correspond to the basis
Te1, T e2 for the second observer where T = DF−1

j ◦DFi (the derivative of the transition map

F−1
j ◦ Fi). So detT > 0 ensures Te1, T e2 is right-handed also for the second observer.

Example. The reflection R2 → R2, (x, y) → (x,−y) (corresponding to complex conjugation)
has det = −1 < 0. The right-handed basis e1, e2 maps to the left-handed basis e1,−e2. Notice
the reflection flips the orientation of the boundary of the unit disc from anticlockwise to clockwise,

1Even if S is smooth some care is needed, e.g. if c touches S tangentially then the intersection should be
counted multiple times. Compare with the phenomenon that the polynomial x2 really has two roots, not one.

2You can always compose Fi with the reflection R2 → R2, (x, y) 7→ (x,−y), to get a new local parametriza-
tion, and the transition maps will still all be smooth. So negativity does not imply non-orientability.

3v1 = Ae1, v2 = Ae2 and detA > 0. Explicitly A has columns v1, v2. So the condition is det(v1|v2) > 0.
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since eit 7→ e−it.

Exercise. A smooth family of embedded discs Gt : D → S starting and ending at the same
disc G0(D) = G1(D) will flip the orientation of the boundary ⇔ det(DG−1

1 ◦DG0) < 0.

Proof that Definition 6.4 really implies orientability. Let G : D → S be a continuously
embedded disc, and Fi : Vi → S a local parametrisation with Fi(p) = G(0). Let γ be a
small anti-clockwise Euclidean circle in Vi ⊂ R2 centred at p. Then c(t) = G−1(Fi(γ(t))) is
a curve in D avoiding 0. The integral of the angle variable of c(t) is either1 +2π or −2π,
or equivalently: c(t) is either oriented anti-clockwise or clockwise (if G is smooth, the two
cases correspond respectively to whether det(F−1

i ◦ G) is positive or negative). We could
have also used a point q different than 0 ∈ D (by translating z 7→ z − q and then calculating
the angle variable). Changing G, γ or q continuously will change the value of that integral
continuously, but as it can only take values ±2π it must stay constant. By the same reasoning,
we can also allow more general continuous loops γ ⊂ Vi avoiding p, not just circles, as long
as the angle with respect to the centre p integrates to +2π (i.e. “anti-clockwise” loops).
Since det(DF−1

j ◦ DFi) > 0 for two overlapping parametrisations, the Fi, Fj agree on what
orientation such γ curves have. So on the whole surface we have at our disposal such embedded
oriented arbitrarily small “test curves” γ which determine whether an embedded disc G is
“positively-oriented” or “negatively-oriented”. So any continuous family Gt : D → S of
embedded discs are either all positively or all negatively oriented, in particular G0(D), G1(D)
are oriented the same way. �

Lemma 6.5. If a smooth surface is an orientable topological surface, then we can ensure (by
composing with reflections) that the parametrizations Fi satisfy det(DF−1

j ◦DFi) > 0.

Sketch proof. Once you pick a local parametrization Fi : Vi → S, this will determine (on the
connected component of S where Fi lands) whether or not you need to compose each other
Fj with the reflection r : R2 → R2, (x, y)→ (x,−y). You do this by hopping from Fi to other
local parametrizations, each time comparing signs on the overlaps (if you get a negative sign,
then replace Fj by Fj ◦ r to ensure the derivative of the transition has positive determinant).

The only problem is if there are two paths obtained by hopping from Fi to Fj , and one
path requires Fj to be composed with r to obtain positivity and the other path does not
require it (see the picture). But in that case, composing the first path with the reverse of the
second yields a closed path along which we can move a small smooth embedded disc. Because
of the disagreement in signs, the boundary of this disc at the start and end of the closed path
will have flipped boundary orientation. But this contradicts that S is orientable.

�

1That winding around 0 in the plane more than ±1 times is impossible without the curve self-intersecting

itself is a relatively easy consequence of the Jordan Curve Theorem (a non-self-intersecting continuous curve

in the plane divides the plane into two connected components).
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6.4 Riemann surfaces are always orientable

Theorem 6.6. Any Riemann surface S is an orientable surface.

Proof. The transition maps F−1
j ◦ Fi are holomorphic so, viewed as a map R2 → R2, the

derivative matrix is a composition of scaling and rotation, so the determinant is positive. �

7. Local analysis: the inverse and implicit function theorems

7.1 The inverse function theorem

Theorem 7.1 (Inverse function theorem). For any smooth map f : Rn → Rn, if the matrix
of partial derivatives at p ∈ Rn is invertible, then f is a local diffeomorphism1 near p.
Explicitly: the theorem hands us a unique smooth map g : Rn → Rn defined near f(p) such
that f(g(y)) = y and g(f(x)) = x for all x, y close enough to p, f(p) respectively.

Example. Let f be the change of variables from polar coordinates (r, θ) to (x, y). So f(r, θ) =
(r cos θ, r sin θ), so Df =

(
cos θ −r sin θ
sin θ r cos θ

)
, so detDf = r 6= 0 for r 6= 0. So near any (r, θ) ∈ R2

with r 6= 0, there is a unique local inverse of f . Aside from the r = 0 issue, there is no global
inverse as f is 2π-periodic in θ.
Remarks.

� Arguably the most important theorem in analysis. It says simple linear algebra (the
non-vanishing of a determinant) ensures the smooth invertibility of the map, locally.

� Invertibility of Df is a necessary condition:2 if g(f(x)) = x for all x close to p in Rn,
then by the chain rule Dg ◦Df = D(Id) = Id (the identity map), so Dg = (Df)−1.

� Since surfaces are locally parametrized by R2, the above theorem also holds for smooth
maps between surfaces.

� It holds also for smooth maps between manifolds, since these are locally Rn.
� Invertibility of Df can be equivalently phrased as the linear independence of the vec-

tors ∂x1
f, . . . , ∂xn

f (which form the columns of the matrix Df of partial derivatives).

Corollary 7.2 (Inverse function theorem in complex analysis).
For any holomorphic map f : C→ C, if f ′(z0) 6= 0 then f is a local biholomorphism near z0.

Non-examinable proof. The previous theorem implies there is a smooth inverse f−1 : R2 → R2

defined near f(z0). We need to check f−1 is holomorphic. So we need to check f−1 satisfies the
Cauchy-Riemann equations. But this is equivalent to showing the matrix of partial derivatives
is a scaling times a rotation (think f ′(z0) = reiθ). By the chain rule, Df ·Df−1 = D(Id) = Id,
so Df−1 is the inverse of Df , so it is a scaling times a rotation since Df is. �

Remarks.

� As before, the invertibility of Df (that is, non-vanishing of f ′(z0)) is a necessary
condition. Explicitly: if g(f(z)) = z for all z close to z0 in C, then by the chain rule
g′(f(z0)) · f ′(z0) = 1 so g′(f(z0)) = 1/f ′(z0).

� Since Riemann surfaces are locally parametrized by C, the above theorem also holds
for holomorphic maps between Riemann surfaces.

1Meaning: there are open neighbourhoods U ⊂ Rn of p and V ⊂ Rn of f(p) such that the restriction

f |U : U → V is a diffeomorphism, so there is a unique smooth inverse f−1 : V → U .
2As an example, for functions f : R → R, for invertibility you need that the line y = constant intersects

the graph of f in exactly one point. By the intermediate value theorem, you deduce that f has to either
always increase or always decrease. So f ′ ≥ 0 or f ′ ≤ 0. There are bijective smooth functions R→ R with f ′

sometimes zero, such as x 7→ x3, but they are not diffeomorphisms: x 7→ x1/3 is not smooth at 0, because the

derivative blows up there (the horizontal tangents to f become vertical tangents to f−1).
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� Consider a holomorphic map f : Cn → Cn (i.e. each entry f1, . . . , fn is holomorphic
in each of the coordinates z1, . . . , zn). Then linear independence of the complex
derivatives ∂z1f, . . . , ∂znf at p ∈ Cn implies that f is a local biholomorphism near p.

� The result holds also for holomorphic maps between complex manifolds, since these
are locally Cn.

7.2 The implicit function theorem

Motivation. When the dimensions n,m are different, there is of course no chance of finding
a (local) inverse of a smooth map f : Rn → Rm. When n = m and f is invertible, f(x) = c
has a unique solution f−1(c) = (g1(c), . . . , gn(c)), giving rise for each c ∈ Rm some unique
numbers g1, . . . , gn for which f(g1, . . . , gn) = c. Now assume n > m, then the next best thing
to finding an inverse (which cannot exist) is finding some functions gi which can be used to
get rid of some of the variables in Rn and which only depend on the other variables. For
example: f : R2 → R, f(x, y) = x2 − 2y, then f(x, g(x)) = c if we take g(x) = 1

2 (x2 − c).
So for the purpose of solving f = c the variable y is redundant since we can replace it with a
function g(x) of x, but the variable x is essential. Notice the redundant variable y is the one
for which ∂yf = −2 is never zero, whereas ∂xf = 2x can vanish, at x = 0.

Let f : Rn → Rm be smooth, and n ≥ m. We want to describe the solutions of

f(x) = c

near a given solution f(p) = c, where x, p ∈ Rn and c ∈ Rm.

Theorem 7.3 (Implicit function theorem). If m columns of Dpf are linearly independent,
then the variables xi1 , . . . , xim corresponding to those columns are redundant. Namely, they
can be replaced by unique smooth functions

gi1 , . . . , gim : Rn−m → R,
depending only on the remaining variables xj (so j 6= i1, . . . , im), defined near x = p and
satisfying gi1(p) = pi1 , . . . , gim(p) = pim , so that1

f(x)|(xi1
=gi1 , ..., xim=gim ) = c

describes all solutions x near p.

Examples. Below, we seek solutions of f = 0 near p = (0, . . . , 0).

(1) f(x, y) = y: ∂yf = 1 6= 0, so f(x, g(x)) = 0 (indeed g(x) = 0).
(2) f(x, y) = x2 − y: ∂yf = −1 6= 0, so f(x, g(x)) = 0 (indeed g(x) = x2).
(3) f(x, y) = (x + 1)2 − 1 + y2: ∂xf |x=0,y=0 = 2 6= 0, so f(g(y), y) = 0 (indeed g(y) =

−1 +
√

1− y2, which is defined near y = 0, and notice g(0) = 0).
(4) The unit circle S1 is the solution set f = 0 for f(x, y) = x2+y2−1. For points (a, b) ∈ S1

with b 6= 0, ∂yf = 2y 6= 0 for y close enough to b. So x is a local coordinate: S1 is

described by (x, g(x)) near (a, b) (secretly we know g(x) =
√

1− x2, which is smooth
away from x = ±1, y = 0). For a 6= 0, ∂xf = 2x 6= 0 for x close to a, so y is a local

coordinate: S1 is (g(y), y) near (a, b) (secretly we know g(y) =
√

1− y2). So we have
local coordinates everywhere (a, b cannot both be zero: f(0, 0) = −1 6= 0).

(5) In the previous example, notice that we are locally parametrizing S1 as the graph of a
function, so we get either (x, g(x)) or (g(y), y).

1More pedantically: f−1(c) = {(x1, x2, . . . , xi1−1, gi1 (x), xi1+1, . . .) : x = (x1, x2, . . . , xi1−1, xi1+1, . . .) ∈
Rn−m}, where we omit the variables xi1 , xi2 , . . . , xim and we replace them by the values of gi1 , gi2 , . . ..
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(6) For the unit sphere in R3, defined by f(x, y, z) = x2+y2+z2−1 = 0, near any point either
(x, y) or (x, z) or (y, z) are local smooth coordinates. Indeed, for the implicit function
theorem to fail for f in those three cases, it would mean respectively that ∂zf = 0,
∂yf = 0, and ∂xf = 0. But then x = y = z = 0, which is not a point of the sphere.
Notice that we are locally paramerizing S2 as the graph of a function, e.g. for the (x, y)
case (when ∂zf 6= 0) we deduce that S2 is locally (x, y, g(x, y)) there.

Non-examinable proof of Theorem 7.3. By relabeling coordinates, we may assume the
last m columns of Dpf are linearly independent. Abbreviate k = n−m. Consider

F : Rn → Rn, F (x1, . . . , xn) = (x1, . . . , xk, f(x1, . . . , xn)).

Then DpF is invertible (try writing the matrix). By the inverse function theorem,

F−1(x1, . . . , xk, c1, . . . , cm) = (x1, . . . , xk, gk+1, . . . , gn)

for unique functions gk+1, . . . , gn of x1, . . . , xk, c. �

Corollary 7.4 (Smooth dependence on c in Theorem 7.3). Notice above gi1 , . . . , gim depend
smoothly on c. So there are unique smooth functions

Gi1 , . . . , Gim : Rn−m × Rm → R

defined near x = p, y = c and depending only on the non-redundant xj variables (so j 6=
i1, . . . , im) and on y ∈ Rm, so that

f(x)|(xi1=Gi1 , ..., xim=Gim ) = y

describes all solutions of f(x) = y for x near p, and y near c.

Remark 7.5. The set of solutions of f(x) = y is therefore locally cut out by the vanishing of
m functions: xi1 −Gi1 , . . . , xim −Gim .

Consider the change of coordinates on Rn (so a local diffeomorphism) defined by first
permuting the coordinates of Rn so that we may assume the i1, . . . , im above are n − m +
1, . . . ,m, and then changing the coordinates by xj 7→ x̃j(x) with

x̃j(x) = xj for j ≤ m and x̃j(x) = xj − gj for j = n−m+ 1, . . . ,m.

In these coordinates the solution set of f(x) = y is parametrized by the first n−m coordinates
x̃j and is cut out by the m equations given by the vanishing of the last m coordinates:

x̃n−m+1 = 0, . . . , x̃n = 0.

So locally, you can think of the inclusion of the solution set (f(x) = y) ⊂ Rn as being smoothly
“the same” (diffeomorphic) to the standard inclusion Rn−m ⊂ Rn.

8. Local analysis: Embedded surfaces are locally graphs

8.1 Criterion for a local parametrization of a smooth surface in R3

Our next goal, is to prove Theorem 2.10, and to show that a smooth surface S ⊂ R3 is
locally defined by the vanishing of a smooth function (just like S2 is locally, in fact globally,
the zero set of the function x2 + y2 + z2 − 1 : R3 → R). Let S ⊂ R3 be a smooth surface,
F : V → S a smooth map, V ⊂ R2 an open set, and F (v0) = p.

Theorem 8.1. F is a smooth local parametrization near p when restricted to a possibly
smaller open neighbourhood V ′ ⊂ V of v0 ⇐⇒ ∂xF, ∂yF are linearly independent at v0.
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Proof. The easy direction is ⇒: there is a smooth inverse F−1, so F−1 ◦ F = Id : V ′ → V ′,
so by the chain rule DF−1 ◦DF = Id, so DF is injective, so the two columns ∂xF, ∂yF of the
matrix DF must be linearly independent at each v ∈ V ′, in particular at v = v0.

Now the hard direction ⇐. The matrix DF is a 3 × 2 matrix, and since its columns are
linearly independent at v0, there must be a 2×2 submatrix with non-zero determinant (basic
linear algebra). WLOG assume it’s the first two rows, so(

∂xF1 ∂yF1

∂xF2 ∂yF2

)
is invertible at v = v0, where we clarify: we use x, y coordinates on V ⊂ R2, and we use
X,Y, Z coordinates on R3, so explicitly F (x, y) = (F1(x, y), F2(x, y), F3(x, y)).

Compose F with projection to the first two coordinates (X,Y ) of R3,

F̃ = (X,Y ) ◦ F : R2 ⊃ V → R3 → R2, F̃ (x, y) = (F1(x, y), F2(x, y)).

Then DF̃ is the above 2× 2 matrix. By the inverse function theorem, F̃ has a unique inverse

F̃−1 : R2 → V ⊂ R2 defined near F̃ (v0). Thus F̃ (x, y) = (X,Y )⇔ F̃−1(X,Y ) = (x, y), so

F (F̃−1(X,Y )) = F (x, y) = (X,Y, g(X,Y ))

only depends smoothly on (X,Y ) and thus it determines a unique smooth function g(X,Y )
(that is: the Z coordinate of points in S is determined by X,Y , near F (v0)).

We now define the map that we hope is the chart inverse to the parametrization F :

f : R3 → R2, (X,Y, Z) 7→ F̃−1(X,Y ).

Notice that f is a smooth map R3 → R2, defined near F (v0), and f restricted to S near F (v0)

becomes f(X,Y, g(X,Y )) = F̃−1(X,Y ) = (x, y) so it is the inverse of F . This concludes the
proof that F is a local diffeomorphism V → S near v0, and hence a local parametrization. �

(Non-examinable) Exercise. Can you use the idea in the above proof to state and prove a
general implicit function theorem for smooth maps f : Rn → Rm when n < m?

Corollary 8.2 (Theorem 2.10). If F , above, is also injective then F is a smooth local
parametrization on all of V ⇐⇒ ∂xF, ∂yF are linearly independent at each point of V .

Proof. Since F : V → F (V ) is injective, and by construction surjective, it is bijective, so
it remains to check that F−1 : F (V ) → V is smooth. But F : V → F (V ) ⊂ S is a local
diffeomorphism near each v0 ∈ V by the previous Theorem, so F−1 is smooth. �

8.2 Smooth surfaces in R3 are locally graphs

Theorem 8.3. For any smooth surface S in R3, near each point p ∈ S,

(1) S is either1a smooth graph (X,Y, g(X,Y )) over the coordinates (X,Y ), or a graph
over the (X,Z) coordinates, or a graph over the (Y, Z) coordinates,

(2) either (X,Y ), or (X,Z), or (Y,Z) are smooth local coordinates for S,
(3) S is locally cut out as the zero set of a function R3 → R.

Proof. The proof of Theorem 8.1 showed that S is locally (X,Y, g(X,Y )), for smooth g, if
the first two rows of DF are linearly independent. The cases (X, g(X,Z), Z), (g(Y,Z), Y, Z)
occur if rows 1, 3, respectively rows 2, 3 of DF are linearly independent. This proves (1). Also
(2) follows since, say in the first case, (X,Y ) 7→ (X,Y, g(X,Y )) is a local parametrization.2

1We always mean non-exclusive “either . . . or . . .”, so several options may occur.
2The composition of the diffeomorphisms F ◦ F̃−1 in the proof of Theorem 8.1, hence a diffeomorphism.
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Finally (3) follows, say in the first case, by considering the function R3 → R, (X,Y, Z) 7→
Z − g(X,Y ) since Z − g(X,Y ) = 0 cuts out the set (X,Y, g(X,Y )) as required. �

8.3 Riemann surfaces in C2 are locally graphs

Consider a subset of C2 cut out by a holomorphic equation

S = {(z, w) ∈ C2 : f(z, w) = 0}
where f : C2 → C is holomorphic (e.g. a complex polynomial in z, w). Analogously to Theo-
rems 8.1 and 8.3 (using Section 7.1 to get holomorphicity), we deduce:

Theorem 8.4. S is a Riemann surface near (z0, w0) ∈ S if and only if

(1) either ∂f
∂z 6= 0 at (z0, w0), then S is locally (g(w), w),

(2) or ∂f
∂w 6= 0 at (z0, w0), then S is locally (z, g(z)),

so S is locally the graph of a holomorphic function g : C → C, and S is locally cut out by a
holomorphic function (respectively z − g(w) = 0, or w − g(z) = 0).

Example. Consider S = {(z, w) ∈ C2 : f(z, w) = w2 − (z − 1)(z − 2) = 0} (recall Exercise
sheet 1). Then ∂wf = 2w is non-zero except at w = 0. When w = 0, either z = 1 or 2. But then
∂zf = −(2z − 3) 6= 0. So S is a Riemann surface. Recall we compactify S at ±∞ by rewriting
the equation in the new variables

X = 1/z, Y = w/z,

so the defining equation for S becomes f̃(X,Y ) = Y 2−(1−X)(1−2X) = 0, and ±∞ correspond
to the two new points (X,Y ) = (0,±1). Finally we check S ∪ {±∞} is a Riemann surface at

those new points: ∂Y f̃ = 2Y 6= 0 at Y = ±1.

The following definition and remark are non-examinable, but I hope it will inspire your
interest in B3.3 Algebraic Curves.

Definition 8.5 (Complex algebraic curve). A complex algebraic curve S is the zero set
f(z, w) = 0 of a complex polynomial f in two variables z, w. The singular points are the
(z0, w0) ∈ S where both conditions above fail: ∂zf = 0, ∂wf = 0. So non-singular complex
algebraic curves are Riemann surfaces.

Remark 8.6 (Projective algebraic curve). Because of the maximum modulus principle, S ⊂
C2 can never be compact (otherwise |z|, |w| would attain maxima, so z, w would be constant
functions on S). As in the example above, S is missing some points at infinity and one
systematic way of compactifying is to projectivize the equation. That means, you view S
as a subset of1 CP 2. So S ⊂ C2 are the points of the form [1 : z : w] of the compactification
S ⊂ CP 2. To projectivize a polynomial, you make it homogeneous by simply replacing z =
z1/z0, w = z2/z0 and then rescaling by the least power of z0 to get rid of denominators.

Example. w2 − (z − 1)(z − 2) = 0 becomes z2
2 − (z1 − z0)(z1 − 2z0) = 0. We already know

solutions when z0 6= 0 (we are then allowed to rescale z = z1/z0, w = z2/z0). Suppose instead
z1 6= 0, then we may use local coordinates X = z0/z1, Y = z2/z1 so [z0 : z1 : z2] = [X : 1 : Y ]
(can you see why these are the same as the X,Y in the above example?). The equation becomes:
Y 2 − (1 − X)(1 − 2X) = 0. So we get two new points (X,Y ) = (0,±1), which correspond
to [0 : 1 : ±1] ∈ CP 2. Finally, suppose z2 6= 0 (by definition of CP 2, the z0, z1, z2 cannot all
vanish). We could use X = z0/z2, Y = z1/z2, so [z0 : z1 : z2] = [X : Y : 1], and rewrite the

1By analogy with CP 1, we define

CP 2 = {[z0 : z1 : z2] : (z0, z1, z2) ∈ C3 \ {0}, [z0 : z1 : z2] = [λz0 : λz1 : λz2] for any λ ∈ C \ {0}}
(geometrically, think of the point [z0 : z1 : z2] as the complex line C · (z0, z1, z2) ⊂ C3).
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equation, but because we are not in the previous two cases, we may assume that z0 = z1 = 0, so
it only remains to check whether [0 : 0 : 1] is a solution, and it isn’t.

(Non-examinable) Exercise. Show that if you projectivize w2 = (z − 1)(z − 2)(z − 3),
you need to add the point ∞ = [0 : 0 : 1] (and you get a torus). However, show that if you
projectivize w2 = (z − 1)(z − 2) · · · (z − 5) you get a projective curve which is singular at
infinity. A better compactification than this, is described in the next example.

Example. Consider the polynomial

f(w, z) = w2 − (z − a1)(z − a2) · · · (z − an) = 0.

Notice ∂wf = 2w 6= 0 unless w = 0, and for w = 0 we get z = aj so the condition ∂zf 6= 0 is
equivalent to requiring that none of the roots aj ∈ C are repeated. So we get a Riemann surface
when the aj are pairwise distinct.

By the methods of Exercise sheet 1, question 3, one can define a compactification at infinity which
yields a Riemann surface. At infinity, we use the coordinates

X =
1

z
Y =

w

zm

where m = n/2 if n is even, and m = (n + 1)/2 if n is odd. The equation becomes Y 2 =
(1 − a1X) · · · (1 − anX) for n even, and Y 2 = X(1 − a1X) · · · (1 − anX) for n odd. So we
compactify by adding new points (X,Y ) = (0,±1) called ±∞ for n even, and (X,Y ) = (0, 0)
called∞ for n odd. In both cases, we declare that Y is a local holomorphic coordinate at infinity.1

Recall from Exercise sheet 1, question 3, that you can visualize the Riemann surface by gluing two
copies of C with cuts and then compactifying at infinity. In the above picture, we first compactified
each C to a CP 1, then drew the cuts,2 and in the lower pictures we glued the cuts to obtain the
Riemann surface and determined its genus g.

Imagine increasing n by 2: this means we require two extra cuts in the planes CP 1 that we

1We need to check that in a small neighbourhood of a point (z, w) for large z 6= ∞, the transition map
from the local coordinate z to the local coordinate Y is biholomorphic. But near (X,Y ) with X 6= 0 we

can use either X or Y as local coordinate since we can express Y in terms of a holomorphic branch of the

square root of a polynomial in X (this is the same argument that proves that for the Riemann surface w2 = z
you may declare that w is a holomorphic coordinate near (w, z) = (0, 0), and z is a holomorphic coordinate

elsewhere). Thus it suffices to find a holomorphic transition from z to X, away from X = 0. But that we
know: z 7→ X = 1/z is the required local biholomorphism in z.

2To understand the cut: for w2 = (z − 1)(z − 2), why do we cut the segment (1, 2)? The local model near

z = 1 and near z = 2 is that of the square root, and for the square root we typically choose the cut along the
negative real axis. In our case, we make cuts (−∞, 1) and (−∞, 2) and we pick branches of

√
z − 1 and of√

z − 2. For one copy of C, for z = 1+aeiθ = 2+beiψ let’s declare
√
z − 1 = a1/2eiθ/2 and

√
z − 2 = b1/2eiψ/2

for θ, ψ ∈ (−π, π). We would think that this is only acceptable if there is a cut along (−∞, 2) ⊂ R ⊂ C, but

in fact for real z < 1 the two discontinuities cancel out: eiπ/2eiπ/2 = eiπ = e−iπ = ei(−π/2)ei(−π/2).
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glue, giving rise to an extra handle, so the genus of the compactified Riemann surface increases
by 1. For n = 2 we get a sphere (genus 0) and for n = 3 we get a torus (genus 1), so inductively:

genus = 1
2 (n− 2) for n even, and 1

2 (n− 1) for n odd

(corresponding respectively to χ = 4 − n and χ = 3 − n). These Riemann surfaces are called
hyperelliptic curves.1

9. The tangent space

9.1 Tangent space for smooth surfaces in R3

Let F be a local parametrization near p ∈ S, for a smooth surface S in R3. Recall by Theorem
2.10) that ∂xF , ∂yF are linearly independent at p (we will suppress from the notation that
we are evaluating at p). Thus we obtain a 2-dimensional vector subspace of R3, called the
tangent space, as follows

TpS = span(∂xF, ∂yF ) = span(DF · e1, DF · e2) = DF · R2 ⊂ R3

where e1, e2 is the standard basis on the domain R2 of F . Think of the plane TpS as the
plane2 in R3 which best approximates S near p.

The picture also shows the unit vector n(p) normal to TpS, obtained from the cross product
of ∂xF, ∂yF in R3 and then normalizing. We will discuss this in Section 9.5.

The above vector subspace TpS of R3 is independent of the choice of parametrization F ,

since for another parametrization F̃ (so another “observer”), we have

DF̃ · R2 = DF̃ · (DF̃−1 ◦DF ) · R2 = DF · R2,

using that the derivative of the transition, Dτ = DF̃−1◦DF , is a linear isomorphism R2 → R2.

9.2 Tangent space for abstract smooth surfaces

For a surface in R3, notice that DF identifies the local tangent space

Tp0R2 ≡ R2 = span(e1, e2)

with the tangent space TpS = span(∂xF, ∂yF ) ⊂ R3 (where F (p0) = p). We saw above that

two observers agree which plane TpS ⊂ R3 is, because DF · Tp0R2 = DF̃ · Tp̃0R2. We can
rewrite this as

Dτ · Tp0R2 = Tp̃0R
2

1If you are curious why these clever coordinates work at infinity, unlike the projectivization which typically
gives rise to a singularity at infinity, see http://en.wikipedia.org/wiki/Hyperelliptic curve

2To be precise, the plane which best approximates S near p is the translate p+ TpS ⊂ R3, but it is more

convenient to work with a vector subspace so one uses TpS.
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where τ = F̃−1 ◦ F is the transition map between the two observers. For abstract smooth
surfaces, we simply turn this equation into the definition. For abstract surfaces, there is no
common ambient space (such as R3 above) where local observers can compare tangent spaces,
so one simply works with the local tangent spaces and one remembers that Dτ is the map
which transforms vectors from one observer’s coordinate system to the other.

An equivalent description of the tangent space, is as equivalence classes of curves. Namely,
in local coordinates, given a local tangent vector v ∈ R2 ≡ TpU , there is a smooth curve
c : (−ε, ε) → U passing through c(0) = p with initial velocity c′(0) = v. For example, the
straight line c(t) = p + tv. We only care that the curve is defined for small times, so ε > 0
can be small. There are many choices of such curves c(t), since we only prescribe the first
two terms p + tv of a Taylor series, e.g. c(t) = p + tv + t2w is another acceptable choice
of curve for any w. Thus v corresponds to an equivalence class of curves: two curves c1, c2
are equivalent if c1(0) = c2(0), c′1(0) = c′2(0). We can define the tangent space TpS as the
collection of equivalence classes of smooth curves c in S defined for small times with c(0) = p
(the equivalence relation gets checked in any local parametrisation by comparing velocities).

Assuming for simplicity that F (0, 0) = p, there are two obvious curves in a local parametri-
sation t 7→ (t, 0) and t 7→ (0, t) corresponding to the standard basis vectors e1, e2 ∈ R2 = T0U .
In TpS these correspond to the curves t 7→ F (t, 0) and t 7→ F (0, t), whose tangent velocity
vectors at p are ∂xF = DF · e1 and ∂yF = DF · e2. In general, for F (x0, y0) = p, we can
represent the general tangent vector v = a∂xF + b∂yF by the curve F (x0 + at, y0 + bt).

Exercise. If F, F̃ are two local parametrisations defined near p, let τ = F̃−1 ◦ F denote the
transition map, show that the local curves corresponding to a given curve in S get naturally

identified by τ : U → Ũ , and that the velocities transform by Dτ : R2 = TpU → TpŨ = R2,
i.e. by left multiplication by the matrix of partial derivatives of τ .

For smooth maps ϕ : S1 → S2 of surfaces, one can also define the derivative map purely in
terms of equivalence classes of curves:

Dpϕ · [curve c(t)] = [curve ϕ ◦ c(t)].

Exercise. Check that in local coordinates this corresponds to the matrix of partial derivatives
of ϕ at p, acting by left-multiplication on c′(0) = v ∈ R2, thusDpϕ : TpS1 → Tϕ(p)S2 is a linear

map between the tangent spaces (in local coordinates, e1, e2 ∈ R2 map to ∂xϕ, ∂yϕ ∈ R2).
Tangent vectors can also be defined as differential operators acting on smooth functions.

For example, if f : S → R is smooth, then locally e1 · f means the partial derivative ∂xf ∈ R.



B3.2 GEOMETRY OF SURFACES, PROF. ALEXANDER F. RITTER 39

A tangent vector v acts on a smooth function f : S → R by taking the directional derivative

v · f = ∂t|t=0(f ◦ c(t)),

using any representative curve c(t) for v (exercise: show that the choice of representative does
not matter). It tells you how much f varies in the v-direction. Explicitly if v = a∂xF + b∂yF
then v · f = a∂xfloc + b∂yfloc where floc(x, y) = (f ◦ F )(x, y). For this reason, one often
abbreviates the notation by simply writing v = a∂x + b∂y, in particular ∂xF = ∂x, ∂yF = ∂y.

9.3 Using the tangent plane to construct local parametrizations

Theorem 9.1. Let S be a smooth surface in R3. Near any point p ∈ S, we can locally
parametrize S by using the orthogonal projection to the tangent plane TpS. In this case, S is
locally the graph of a function h : TpS → R over the tangent plane (for fixed p).

Proof. First apply a rotation to R3 to make the tangent plane TpS horizontal: so vectors in
TpS = R2 ⊂ R3 have zero in the third entry. Then the Z coordinate cannot be used together
with X or Y to give two local coordinates (e.g. if S were a graph F (X,Z) = (X, g(X,Z), Z)
then ∂ZF would be a tangent vector with a non-zero third entry). Therefore X,Y must be
local coordinates and S must be a graph (X,Y, h(X,Y )) for a smooth function h (using results
from Section 8.2). �

9.4 Vector fields

Definition 9.2 (Vector field). A tangent vector field v on S is a smooth map

v : S → R3 such that v(p) ∈ TpS ⊂ R3,

that is a choice of tangent vector v(p) at each point p of S varying smoothly with p ∈ S.

Locally, we can write:

v(x, y) = a(x, y)X1 + b(x, y)X2 (v(x, y) ∈ TF (x,y)S ⊂ R3),

for smooth functions a, b of the local variables x, y, where X1, X2 is the basis of TF (x,y)S given
by the local vector fields:

X1(x, y) = ∂xF X2(x, y) = ∂yF.

Remark. Vector fields can also be defined for abstract surfaces: v(x, y) ∈ R2 = T(x,y)V is a

smooth function v : V → R2, and this must transform correctly if we change observer:

ṽ(τ(x, y)) = (D(x,y)τ)v(x, y).

Example. For the cylinder X2 + Y 2 = r2, consider the vector fields

E1 = (− sin θ, cos θ, 0) E2 = (0, 0, 1)

where p = F (θ, Z) = (r cos θ, r sin θ, Z). Notice E1 points equatorially in the circle direction of
the cylinder, and E2 points in the axis direction. Since X1 = (−r sin θ, r cos θ, 0), X2 = (0, 0, 1),

E1 =
1

r
X1 E2 = X2.

So a general vector field on the cylinder has the form

a(θ, Z)E1 + b(θ, Z)E2

for any smooth functions a, b which are 2π-periodic in θ.
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9.5 Smooth surfaces in R3: normals and the Gauss map

By Theorem 6.3, a compact smooth surface S ⊂ R3 must be orientable. By Lemma 6.5,
we can pick a cover of S = ∪Fi(Vi) by local parametrizations Fi : Vi → S so that on overlaps:

det(DF−1
j ◦DFi) > 0.

Given any point p ∈ Fi(Vi) we can define a unit normal vector n(p) ∈ R3 to S by requiring
that the three vectors

DFi · e1 = ∂xFi, DFi · e2 = ∂yFi, n(p)

obey the right-hand rule: if ∂xFi, ∂yFi are the index and middle finger respectively, then
n(p) points in the thumb direction.

Explicitly, we take the cross product and normalize:

n(p) =
∂xFi × ∂yFi
‖∂xFi × ∂yFi‖

∈ R3 (where ∂xFi, ∂yFi are evaluated at p)

Recall in Section 9.2 we defined the tangent space. Namely (again, evaluating at p):

TpS = span(∂xFi, ∂yFi) = span(DFi · e1, DFi · e2) = DFi · R2 ⊂ R3

We saw that this vector subspace is independent of the choice of parametrization, since
DFj ·R2 = DFj ·(DF−1

j ◦DFi) ·R2 = DFi ·R2, using that DF−1
j ◦DFi is a linear isomorphism

R2 → R2. By construction, the vector n(p) is a unit normal to the 2-dimensional subspace
TpS. Since a plane in R3 has exactly two unit normals, the question is whether n(p) ever
flips if we change parametrizations. But this will never happen because S is orientable: the
transitions have det(DF−1

j ◦ DFi) > 0 on overlaps, so the two vectors ∂xFi, ∂yFi have the

same orientation inside TpS as the two vectors ∂xFj , ∂yFj (indeed, the two pairs differ by

multiplication by the transition map DF−1
j ◦DFi), therefore the cross-product of each pair

is oriented in the same direction.

More intuitively said: two observers will agree which plane TpS ⊂ R3 is, they will agree
about which ordered basis of TpS is right-handed, so they will agree about which of the two
normals to TpS gives rise to a right-handed basis for R3, so they compute the same n(p).

The Gauss map is the normal vector field

n : S → R3, p 7→ n(p).

Remark. The fact that you have a well-defined normal vector field is related to the fact that
the field either always points outwards, or always points inwards to the surface.

Example. Let S be the sphere X2 + Y 2 +Z2 = r2. For a curve γ(t) = (X(t), Y (t), Z(t)) ∈ S,
differentiate the defining equation to get:

0 = 2XX ′ + 2Y Y ′ + 2ZZ ′ = (X,Y, Z) · 2(X ′, Y ′, Z ′).

For any tangent vector v ∈ TS, there is1 a curve γv in S with that tangent vector γ′(0) = v. So
the above shows that (X,Y, Z) is normal to TpS (indeed the radial vector is outward and normal
to the sphere). Normalizing, we get a Gauss map:

n(p) = (X,Y, Z)/r.

1For F a parametrization, DpF : R2 → TpS = span(∂xF, ∂yF ) is surjective. So if Dp0F (vF ) = v, then

cv(t) = p0 + tvF ∈ R2 has c′v(0) = vF . Then γv = F ◦ cv works by the chain rule: γ′v(0) = Dp0F (c′v(0)) = v.
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Lemma 9.3. A choice of orientation on a smooth surface S ⊂ R3 is the same as a choice of
a smooth map

n : S 7→ S2 = {(X,Y, Z) ∈ R3 : X2 + Y 2 + Z2 = 1} ⊂ R3,
p 7→ n(p)

such that n(p) is orthogonal to TpS ⊂ R3 for all p ∈ S. More explicitly, a parametrization
F : R2 ⊃ V → F (V ) = U ⊂ R3 respects the orientation precisely if:

n(p) · (∂xF × ∂yF ) ≡ det
(
∂xF ∂yF n(p)

)
> 0.

Proof. Declare that a basis v, w ∈ TpS ⊂ R3 is right-handed ⇔ v × w = λn(p) for positive
λ > 0 (so in fact, λ = ‖v × w‖), so ⇔ λ ≡ n(p) · (v × w) > 0. �

Our goal will be to use the Gauss map to define various notions of curvature (Gaussian
curvature, principal curvatures, mean curvature).

10. Surfaces in R3: the first fundamental form

10.1 The first fundamental form

Let S be a smooth surface in R3. Using the dot product1 · on R3 we can define an inner
product on TpS called the first fundamental form:

I : TpS × TpS → R, I(v, w) = v ·w = vTw

The properties of an inner product (bilinearity, symmetry, positive-definiteness) all follow
from the analogous properties of the dot product.

In a local parametrization F : R2 ⊃ V → F (V ) = U ⊂ R3 with F (p0) = p, the vectors
v, w ∈ TpS = DpF (R2) can be written locally as vF , wF , where

v = Dp0F (vF ) w = Dp0F (wF ).

So locally the fundamental form is, evaluating at p0 but omitting that from the notation,

IF (v, w) = DF (vF ) ·DF (wF ) = vTF (DFTDF )wF

Example. For the standard basis e1, e2 of R2, I(e1, e2) = DF (e1) ·DF (e2) = ∂xF · ∂yF.
Locally, identifying Tp0V = R2, the inner product becomes, evaluating at p0,

R2 × R2 → R, (v, w) 7→ vTAw, where A =

(
e f
f g

)
=

(
∂xF · ∂xF ∂xF · ∂yF
∂yF · ∂xF ∂yF · ∂yF

)
indeed, the symmetric matrix A = DFTDF has entries Aij = eTi Aej = IF (ei, ej), and DF (ei)
is respectively ∂xF and ∂yF for i = 1, 2.

Example. For the plane S = R2 ⊂ R3 given by Z = 0, and the parametrization F (r, θ) = r cos θ
r sin θ

0

 we get ∂rF =

 cos θ
sin θ

0

 and ∂θF =

 −r sin θ
r cos θ

0

, thus

A =

(
cos2 θ + sin2 θ −r cos θ sin θ + r sin θ cos θ

−r cos θ sin θ + r sin θ cos θ r2 sin2 θ + r2 cos2 θ

)
=

(
1 0
0 r2

)
so IF (v, w) = v1w1 + r2v2w2 (written in components, so v = (v1, v2), etc.)

1Recall, in matrix notation using T for transpose, that v ·w = vTw.
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10.2 Change in local first fundamental form under coordinate changes

How does the local expression A of the first fundamental form depend on the observer?

Consider the picture in Section 9.2. Let F, F̃ be two local parametrizations, giving funda-

mental forms A, Ã. Let

τ = F̃−1 ◦ F : V → Ṽ

be the transition map (defined on the overlap F−1(Ũ) ⊂ V ).
The local tangent spaces get identified via the linear isomorphism

Dτ = DF̃−1 ◦DF : Tp0V → Tp̃0 Ṽ .

Explicitly, in local coordinates: τ(x, y) =

(
x̃(x, y)
ỹ(x, y)

)
and Dτ =

(
∂xx̃ ∂yx̃
∂xỹ ∂y ỹ

)
.

So we expect that vTAw = I(v, w) = (Dτ(v))T Ã(Dτ(w)) = vT (Dτ)T Ã(Dτ)w. Indeed:

A = DFTDF

= DFT (DF̃T )−1(DF̃TDF̃ )DF̃−1DF

= (Dτ)T Ã (Dτ)

Often, in practice, you will want to rewrite this as: Ã = (Dτ−1)TA (Dτ−1) .

Example. For the plane S = R2 ⊂ R3, we could use the obvious F (x, y) = (x, y, 0) or polar

coordinates F̃ (r, θ) = (r cos θ, r sin θ, 0). Since τ−1(r, θ) = (x, y) = (r cos θ, r sin θ),

(Dτ)−1 = D(τ−1) =
(

cos θ −r sin θ
sin θ r cos θ

)
.

Now IF (v, w) = v ·w and A = I, so we confirm the result of the previous example:

Ã = (Dτ−1)TA (Dτ−1) =
(

cos θ sin θ
−r sin θ r cos θ

)(
cos θ −r sin θ
sin θ r cos θ

)
=

(
1 0
0 r2

)
.

Thus the two local expressions of the first fundamental form are:

IF̃ (ṽ, w̃) = ṽ1w̃1 + r2ṽ2w̃2 = v1w1 + v2w2 = IF (v, w).

10.3 Application 1: the length of a curve and isometric surfaces

A smooth curve in S is a smooth map γ : [a, b] → S. This is the same as saying that
γ : [a, b] → R3 is smooth and γ(t) ∈ S for all t ∈ [a, b]. The length of the curve (induced
by the norm on R3) is

L(γ) =

∫ b

a

‖γ′(t)‖ dt

Lemma 10.1. The length of a curve is independent of the choice of time-parametrization.

Proof. Let µ(t) = γ(s(t)) be a time-reparametrization of γ, so s : [A,B] → [a, b] is a smooth
strictly increasing function. Integrating by substitution (change of variables) using s′ > 0:

L(µ) =
∫ B
A
‖µ′(t)‖ dt =

∫ B
A
‖γ′(s(t))‖ s′(t) dt =

∫ b
a
‖γ′(s)‖ ds = L(γ). �

Taking a = 0, we say a curve γ : [0, b]→ S is parametrized by arc-length if L(γ|[0,t]) = t
for all t. By differentiating in t, this is equivalent to having unit speed: ‖γ′(t)‖ = 1 for all t.

Lemma 10.2. Every smooth curve with γ′(t) 6= 0 for all t can be parametrized by arc-length.

Proof. Let s(t) =
∫ t

0
‖γ′(t)‖ dt. Since s′ > 0, s is invertible and (s−1)′(t) = 1/s′(s−1(t)) =

1/‖γ′(s−1(t))‖. Hence µ(t) = γ(s−1(t)) works: ‖µ′(t)‖ = ‖γ′(s−1(t))‖(s−1)′(t) = 1. �
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Notice that for any smooth curve γ, the velocity vector always lies in the tangent space

γ′(t) ∈ Tγ(t)S

Indeed: write γ locally using the parametrization F , say γloc(t) ∈ V ⊂ R2, then γ(t) =
F ◦ γloc(t), thus γ′(t) = Dγloc(t)F · γ′loc(t) ∈ Dγloc(t)F (R2) = Tγ(t)S.

Theorem 10.3. Lengths of curves in S are determined by the first fundamental form.

Proof. L(γ) =
∫ b
a
‖γ′(t)‖ dt =

∫ b
a

√
γ′(t) · γ′(t) dt =

∫ b
a

√
I(γ′(t), γ′(t)) dt. �

Assuming that γ lies entirely in the parametrization patch U (we can add local contributions
by covering γ[a, b] by several parametrization patches), we can be even more explicit using

the matrix A =
(
e f
f g

)
defined previously and writing γloc(t) = (x(t), y(t)) ∈ V ⊂ R2:

L(γ) =
∫ b
a

√
e
(
dx
dt

)2
+ 2f(dxdt )(dydt ) + g(dydt )2 dt

where e = e(x(t), y(t)), etc. depend on the local coordinates, so depend on t.

Example. Letting γloc(t) = p0 + (t, 0) for t ∈ [0, ε], with ε ≥ 0 a variable, by the fundamental
theorem of calculus:

d

dε
L(γloc) =

d

dε

∫ ε

0

√
e(p0 + (t, 0)) dt =

√
e(p0 + (ε, 0)),

from which we recover e(p0) by taking ε = 0. So if we know the values L(γ) of lengths of all
curves in V , we recover the values of e on V .
Exercise. For any continuous real-valued function f prove that lim 1

ε

∫ ε
0
f(t) dt = f(0), as

ε→ 0. Deduce that lim 1
εL(γloc) =

√
e(p0) for the curve in the example.

Theorem 10.4. Lengths of curves determine I locally.

Proof. The example above recovered e. Similarly, we recover g by considering γloc(t) =
p0 + (0, t) and we recover f by using γloc(t) = p0 + (t, t) (in the latter case d

dε

∣∣
ε=0

L(γloc) =√
e(p0) + 2f(p0) + g(p0), but we know e, g so we recover f). �

Definition 10.5 (Isometric surfaces). Two surfaces S1, S2 in R3 are isometric if there is a
diffeomorphism ϕ : S1 → S2 preserving lengths of curves: L(ϕ ◦ γ) = L(γ) for γ ⊂ S1.

Theorem 10.6. Two surfaces S1, S2 in R3 are locally isometric near p1, p2 if and only if
there are local parametrizations F1 : V → U1, F2 : V → U2 near p1, p2 yielding the same local
first fundamental form IF1

= IF2
on V .

Proof. (⇐): is immediate from the local expression of I, and the local calculation of L(γ).
(⇒): take F2 = ϕ ◦ F1 where ϕ is the local iso, and apply Theorem 10.4. �

Example. Suppose we have a cone made out of paper and we cut out a straight ray from
the vertex. When we unfold this piece of paper we get a pie-sliced piece of paper. So these
two surfaces are obviously isometric. Let’s prove it. Consider the cone S = {(X,Y, Z) ∈ R3 :
X2 + Y 2 = a2Z2, Z > 0} with angle tan−1(a) to the axis. Calculate:

F (x, y) =

 ax cos y
ax sin y

x

 ∂xF =

 a cos y
a sin y

1

 ∂yF =

−ax sin y
ax cos y

0

 A =

(
1 + a2 0

0 a2x2

)
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Remove the line (−aX, 0, X)X∈R from S: F parametrizes S \ (line) for (x, y) ∈ V = (0,∞) ×
(−π, π). We claim S \ (line) is isometric to a pie-shape in R2 bounded by two rays. Parametrize
a pie-shape by (x, y) 7→ (xb cos(cy), xb sin(cy), 0) ∈ R3 for (x, y) ∈ V . To get the same A let
b = (1 + a2)1/2, c = a/b (note: c ≤ 1

2 ).

10.4 Quadratic form for I, differentials, a fast change of coordinates

It is convenient to abbreviate the quadratic form corresponding to I, written locally, by:

I = e dx2 + 2f dx dy + g dy2 = (∂xF · ∂xF ) dx2 + 2(∂xF · ∂yF ) dx dy + (∂yF · ∂yF ) dy2

where e, f, g are functions of the coordinates (x, y) ∈ V ⊂ R2. The symbols dx, dy are called
differentials (or differential 1-forms, or covectors). They are elements of the dual vector
space

(TpS)∗ = {linear functions TpS → R}
called cotangent space. Locally, dx, dy are the dual basis of the standard basis e1, e2 ∈
R2 = Tp0V . Explicitly, if v = (v1, v2) ∈ R2 = Tp0V :

dx : Tp0V → R, dx(v) = v1, dy : Tp0V → R, dy(v) = v2.

Example. As before, writing γloc(t) = (x(t), y(t)),

dx(γ′loc(t)) =
dx

dt
, dy(γ′loc(t)) =

dy

dt
.

One often denotes the standard basis e1, e2 ∈ R2 = Tp0V by the symbols e1 = ∂
∂x , e2 = ∂

∂y ,

and so the condition of being a dual basis are the memorable looking formulas

dx( ∂
∂x ) = 1, dx( ∂∂y ) = 0, dy( ∂

∂x ) = 0, dy( ∂∂y ) = 1.

Other formulas also become more memorable: DF ( ∂
∂x ) = ∂xF , DF ( ∂∂y ) = ∂yF .

The change of I under changes of coordinates also becomes easier in this notation. Writing

γ̃loc(t) = (x̃(t), ỹ(t)) in the parametrization F̃ , by the chain rule

dx̃

dt
= ∂xx̃

dx

dt
+ ∂yx̃

dy

dt
,

dỹ

dt
= ∂xỹ

dx

dt
+ ∂y ỹ

dy

dt
therefore

dx̃ = ∂xx̃ dx+ ∂yx̃ dy, dỹ = ∂xỹ dx+ ∂y ỹ dy.

Example. For the plane S = R2 ⊂ R3, F (r, θ) = (r cos θ, r sin θ, 0) = (x, y, 0) = F̃ (x, y),

dx = cos θ dr − r sin θ dθ, dy = sin θ dr + r cos θ dθ.

Recall that for τ the transition, Dτ =
(
∂xx̃ ∂yx̃
∂xỹ ∂y ỹ

)
, so(

dx̃
dỹ

)
= Dτ ·

(
dx
dy

)
Let’s check this is consistent with how the local quadratic form I changes, in matrix notation:

( dx̃ dỹ )

(
ẽ f̃

f̃ g̃

)(
dx̃
dỹ

)
=

(
dx
dy

)T
(Dτ)T

(
ẽ f̃

f̃ g̃

)
Dτ

(
dx
dy

)
= ( dx dy )

(
e f
f g

)(
dx
dy

)
.

So if you happen to know I = e dx2 + 2f dx dy + g dy2 and you want to compute I in the

other coordinates, I = ẽ dx̃2 + 2f̃ dx̃ dỹ+ g̃ dỹ2, then simply write dx = · · · , dy = · · · in terms
of dx̃, dỹ, then simply substitute and formally square/multiply.

Example. For the plane S = R2 ⊂ R3, F (x, y) = (x, y, 0) and F̃ (r, θ) = (r cos θ, r sin θ, 0):

I = dx2 + dy2 = (cos θ dr − r sin θ dθ)2 + (sin θ dr + r cos θ dθ)2 = dr2 + r2 dθ2.
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10.5 Examples of calculations of I

Sphere of radius a: I = a2 sin2 y dx2 + a2dy2 using:

F (x, y) =

 a cosx sin y
a sinx sin y
a cos y

 ∂xF =

 −a sinx sin y
a cosx sin y

0

 ∂yF =

 a cosx cos y
a sinx cos y
−a sin y


Cylinder of radius a: I = dx2 + a2dy2 using:

F (x, y) =

 a cos y
a sin y
x

 ∂xF =

 0
0
1

 ∂yF =

 −a sin y
a cos y

0


Cone with angle tan−1(a) to the axis: I = (1 + a2)dx2 + a2x2dy2 using:

F (x, y) =

 ax cos y
ax sin y

x

 ∂xF =

 a cos y
a sin y

1

 ∂yF =

 −ax sin y
ax cos y

0


Surface of revolution, rotate Y = f(Z) about Z-axis: I = (1 + f ′(x)2) dx2 + f(x)2dy2

using:

F (x, y) =

 f(x) cos y
f(x) sin y

x

 ∂xF =

 f ′(x) cos y
f ′(x) sin y

1

 ∂yF =

 −f(x) sin y
f(x) cos y

0



10.6 A substantial example: ruled surfaces in R3

Remark. You do not need to memorize for exams the terminology or formulas that appear
in this example, it is only supposed to be an interesting example to see.

Recall a ruled surface S is swept out by lines p(t) + Rn(t) along a curve t 7→ p(t), where
n(t) is the unit direction of the line at time t. So we can parametrize S by:

F (x, y) = p(x) + yn(x)

As written, S may self-intersect, and even worse S may not be smooth locally.
Example. Let S be the double cone {(X,Y, Z) ∈ R2 : X2 +Y 2 = a2Z2}. This arises as a ruled
surface p(x) + yn(x) taking:

p(x) =

 a cosx
a sinx

1

 n(x) =
p(x)

‖p(x)‖
=

p(x)√
1 + a2

p(x)+yn(x) = (1+ y√
1+a2

)

 a cosx
a sinx

1


S does not self-intersect, but it fails to be locally smooth at the vertex (0, 0, 0).

In general S is a smooth surface near F (x, y) ⇔ ∂xF, ∂yF are linearly independent.

∂xF = p′(x) + yn′(x) and ∂yF = n(x).
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So smoothness at F (x, y) is equivalent to linear independence of p′(x) + yn′(x) and n(x),
which is equivalent to the non-vanishing of the cross-product:1

(p′(x) + yn′(x))× n(x) 6= 0.

We often use, without mentioning, the basic trick:

Trick: If n(t) ∈ R3 has unit norm ‖n(t)‖ = 1, then the velocity n′(t) is perpendicular to
the curve n(t). Proof: 0 = d

dt (1) = d
dt (n(t) ·n(t)) = 2n′(t) ·n(t). �

Since n(x) ·n(x) = 1, we get n′(x) ·n(x) = 0, thus:

I = (‖p′‖2 + y2‖n′‖2 + 2yp′ ·n′) dx2 + 2(p′ ·n) dx dy + dy2

Example. For the double cone S from the previous example,

p′(x) =

 −a sinx
a cosx

0

 n′(x) =
p′(x)√
1 + a2

so: ‖p′‖2 = a2, ‖n′‖2 = ‖p′‖2
1+a2 = a2

1+a2 , p′ ·n′ = ‖p′‖2√
1+a2

= a2√
1+a2

, p′ ·n = p′ · p√
1+a2

= 0.

Substituting in the formula above we obtain:

I = (a+ ay√
1+a2

)2 dx2 + dy2.

The general formula for I becomes I = (‖q′‖2 + y2‖n′‖2) dx2 + 2(q′ ·n) dx dy + dy2 if
one replaces p(x) by a clever choice of curve q(x) called line of striction which satisfies

q′(x) ·n′(x) = 0.

Let’s find q(x). We want a curve

q(x) = p(x) + y(x)n(x) ∈ S
such that q′(x) ·n′(x) = 0. Notice we can then replace p by q because the surface is made up
of the same straight lines p(x) + Rn(x) = q(x) + Rn(x). Compute:

q′ ·n′ = (p′ + y′n+ yn′) ·n′ = p′ ·n′ + y‖n′‖2

so taking y(x) = − p′(x) ·n′(x)
‖n′(x)‖2 works. Thus:

q(x) = p(x)− p′(x) ·n′(x)

‖n′(x)‖2
n(x) S = {q(x) + yn(x) ∈ R3 : x, y ∈ R}

This is well-defined provided we assume that n′(x) 6= 0 for all x. The ruled surface is called
non-cylindrical if it satisfies n′(x) 6= 0 for all x. One can break up a ruled surface into pieces
where this condition holds, and then separately study the cylindrical pieces where n′ = 0 for
an interval of values of x (these pieces are very simple: n(x) is constant in x, so we just draw
parallel lines through the points p(x) in the constant direction n(x)).
Example. For the double cone S from the previous example,

q(x) =

 a cosx
a sinx

1

− a2√
1+a2

a2

1+a2

1√
1 + a2

 a cosx
a sinx

1

 = 0.

1Recall the cross-product in the standard basis i, j,k of R3 is:

a× b = det

 a1 b1 i
a2 b2 j

a3 b3 k


which points in the right-hand thumb direction if a is the index and b is the middle finger, and which has

length ‖a× b‖ = ‖a‖ ‖b‖ | sin θ| if θ is the angle between a, b.
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So the line of striction is the constant curve at the vertex (0, 0, 0).
The condition q′ ·n′ = 0, makes it is also easy to check where S is a locally smooth surface.

We require the non-vanishing of the cross-product (q′(x) + yn′(x)) × n(x) 6= 0. Since n′ is
perpendicular to both q′, n, we deduce1 that q′ × n = λn′ for some λ = λ(x) ∈ R. Thus:

‖(q′ + yn′)× n‖2 = ‖λn′ + yn′ × n‖2 = λ2‖n′‖2 + y2‖n′ × n‖2 = (λ2 + y2) ‖n′‖2,
where we used that n′, n′ × n are perpendicular, and some cross-product tricks.2

Theorem 10.7. For non-cylindrical ruled surfaces p(x) + yn(x) (meaning n′(x) 6= 0 for all
x), one can parametrize S by q(x) + yn(x) with q′(x) ·n′(x) = 0, in which case q(x) is called
the line of striction. Moreover S is locally smooth everywhere except at those points on the
line of striction where q′, n become linearly dependent. The first fundamental form is

I =

(
‖q′‖2 + y2‖n′‖2 (q′ ·n)

(q′ ·n) 1

)
.

Proof. This follows by the above calculation, since λ2 + y2 = 0 if and only if y = 0 and λ = 0,
and the latter implies q′ × n = 0, equivalently: q′, n are linearly dependent. �

Example. For the double cone S, the line of striction is q(x) = (0, 0, 0), and q′(x)× n(x) = 0
since q′ = 0. So (0, 0, 0) is the only singular point (as expected).

10.7 Application 2: the angle between curves in a surface

The angle θ between two vectors v, w ∈ TS ⊂ R3 satisfies v ·w = ‖v‖ ‖w‖ cos θ, therefore

cos θ =
v ·w
‖v‖ ‖w‖

=
I(v, w)√

I(v, v)
√
I(w,w)

which only depends on I (and the vectors v, w). Notice this can be used to measure angles
between intersecting curves: if γ1, γ2 are smooth curves in S which intersect at p = γ1(t) =
γ2(s), then we can measure the angle between their tangent vectors v = γ′1(t) and w = γ′2(s).

10.8 Application 3: the area of a region in a surface

Motivation. Consider the region near p where the surface S is parametrized by F . The re-
gion is approximated by infinitesimal parallelograms with edges the vectors (∂xF ) dx, (∂yF ) dy
where we think of dx, dy as infinitesimal increments of x, y. The area of this parallelogram is

(‖∂xF‖ dx) (‖∂yF‖ dy) | sin θ| = ‖∂xF × ∂yF‖ dx dy,
where θ is the angle between the two edges. Using the following rule about cross-products:3

(a× b) · (a× b) = (a · a)(b · b)− (a · b)2,

we obtain, in terms of the first fundamental form I = e dx2 + 2f dx dy + g dy2 =
(
e f
f g

)
,

‖∂xF × ∂yF‖ dx dy =
√
eg − f2 dx dy =

√
det(I) dx dy.

1This follows for λ 6= 0 when q′, n are linearly independent, and when they are dependent just take λ = 0.
2Using the cyclic symmetry

c · (a× b) = det

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 = a · (b× c)

we get (n′ × n) · (n′ × n) = n′ · (n× (n′ × n)) = n′ ·n′ (the last equality follows because the directions agree,

and the lengths agree using ‖a× b‖ = ‖a‖ ‖b‖ | sin θ|, or alternatively use: a× (b× c) = (a · c)b− (a · b)c).
3coming from the more general rule: (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c).
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As mathematicians, we just turn this into a definition:

Definition 10.8 (Area of a region in a surface). The area of R = F (V ) ⊂ S is defined as

Area(R) =

∫
V

‖∂xF × ∂yF‖ dx dy =

∫
V

√
eg − f2 dx dy =

∫
V

√
det(I) dx dy.

More generally, for any open region R ⊂ S, we cover R by (closures of) such sets and add
the areas.

Theorem 10.9. The area is well-defined independently of choices of parametrization.

Proof. Suppose (restricting to an overlap) F : V → S, F̃ : V → S are two parametrizations,

yielding local first fundamental forms A, Ã. Using the transition τ ,√
det(A) =

√
det((Dτ)T Ã(Dτ)) = |det Dτ |

√
det(Ã).

Recall (see the Analysis handout) the change of variables formula for integrals will replace
dx dy by |det Dτ−1| dx̃ dỹ, thus |det Dτ | |det Dτ−1| = 1 disappears when we integrate. �

Example. For the surface of revolution F (x, y) = (f(x) cos y, f(x) sin y, x) (where f(x) > 0)
we got I = (1 + f ′(x)2) dx2 + f(x)2dy2, so the area for (x, y) ∈ [a, b]× [0, 2π] is the familiar∫ 2π

0

∫ b

a

f(x)
√

1 + f ′(x)2 dx dy =

∫ b

a

2πf(x)
√

1 + f ′(x)2 dx.

10.9 Riemannian metric: first fundamental forms for abstract surfaces

For any surface (or submanifold) in Rn one can define a first fundamental form by using
the dot product on Rn. However, for an abstract smooth surface S, there is no preferred way
to embed it in Rn, so there is no preferred inner product on TpS.

Definition 10.10 (Riemannian metric). A Riemannian metric for a surface (or manifold) S
is a well-defined inner product on each tangent space TpS, which in local coordinates depends
smoothly on p ∈ S.

Let’s unpack this definition. By tangent space TpS we mean locally Tp0V = R2 for a

parametrization F : V → S subject to the rule that if we change parametrization to F̃ then

we identify the local tangent spaces using the derivative of the transition τ = F̃−1 ◦ F :

Tp0V = R2 Dτ−→ R2 = Tp̃0 Ṽ .

The Riemannian metric is locally given by an inner product

Tp0V × Tp0V = R2 × R2 → R, (v, w) 7→ vTAw where A =

(
e f
f g

)
,

and we require that A = A(p0) depends smoothly on p0, that is: the functions e, f, g are
smooth functions of the local coordinates p0 = (x0, y0).

In order for this to be an inner product, we need: bilinearity (automatic), symmetry
(automatic), and positive definiteness which by linear algebra is ensured by the conditions

e > 0 and eg − f2 > 0 (it follows that also g > 0).

Asking that the inner product is well-defined means that we want observers to agree on what
inner product is being used having identified their local tangent spaces by Dτ as mentioned
above. So by Section 10.2 we require:

A = (Dτ)T Ã (Dτ)
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It follows that, once a Riemannian metric is chosen on S (for example, the first fundamental
form obtained from a particular embedding S → Rn), we can define as before: lengths of
smooth curves, angles between intersecting curves, and areas of open sets in S.
Examples.

(1) On the torus R2/(Zω1 + Zω2) we can use the Riemannian metric 1

I = dx2 + dy2 = dz dz = |dz|2

but there are lots of other choices: e.g. rescale the above by any (smooth) strictly positive
doubly periodic function, meaning f(x+ ω, y + ω) = f(x, y) for ω ∈ Zω1 + Zω2.

(2) On the upper half-plane H = {z ∈ C : Im(z) > 0}, the hyperbolic metric is the
Riemannian metric

I =
dx2 + dy2

y2
=

dz dz

Im(z)2
=
|dz|2

Im(z)2

(3) On the unit disc D = {z ∈ C : |z| < 1}, the hyperbolic metric is the Riemannian metric

I =
4(dx2 + dy2)

(1− x2 − y2)2
=

4 dz dz

(1− |z|2)2
=

4 |dz|2

(1− |z|2)2

Remark. (Non-examinable) A connected2 surface with a Riemannian metric is a metric space,
by defining the distance function d : S × S → R by letting d(p, q) be the infimum of the
lengths of all smooth curves from p to q (you can also allow piecewise smooth curves without
affecting d). In particular, the open balls for this metric are a basis for the topology of S.

Given two smooth surfaces S1, S2 with choices of Riemannian metric, we say S1, S2 are
isometric if there is a diffeomorphism preserving lengths of curves.
Example. Recall from Section 3.1 that there are biholomorphisms

D → H, z 7→ τ(z) =
iz + i

−z + 1
H→ D, z 7→ τ−1(z) =

z − i
z + i

.

Let’s check this is an isometry if we use the hyperbolic metrics from the previous example. The
above specifies a change of coordinates z 7→ z̃ = τ(z). Rather than switching to real coordinates,
recall that differentials change by multiplication by Dτ , and since we may identify Dτ with τ ′(z)
when identifying R2 ≡ C, we deduce:3

dz̃ = τ ′(z) dz.

Now calculate:

τ ′(z) =
i(−z + 1)− (iz + i)(−1)

(−z + 1)2
=

2i

(z − 1)2

Im(z̃) = Im(τ(z)) = Im
(iz + i)(−z + 1)

|z − 1|2
= Im

i(−|z|2 + 2iIm z + 1)

|z − 1|2
=

1− |z|2

|z − 1|2

IH =
|dz̃|2

Im(z̃)2
=

4

|z − 1|4
|z − 1|4

(1− |z|2)2
|dz|2 =

4|dz|2

(1− |z|2)2
= ID.

1where z = x + iy, dz = dx + i dy, z = x − iy, dz = dx − idy. Here dz : TpS → C is again viewed as a

linear functional on the tangent space of the given surface S.
2For surfaces (and manifolds) connectedness implies path-connectedness, so there is always a continu-

ous path [0, 1] → S between two given points p, q. Using local parametrisations one can approximate any
continuous path by a piecewise smooth path, and then one can round off corners to get a smooth path.

3I’m saying we can identify
(
dx
dy

)
≡ dz and hence dz̃ =

(
dx̃
dỹ

)
= Dτ ·

(
dx
dy

)
≡ τ ′(z) dz. Although we

won’t need it, you may be curious how dz changes: the rule is as expected: dz̃ = τ ′(z) dz. Indeed as a linear

function, dz = dx − i dy maps ∂x 7→ 1, ∂y 7→ −i, whereas dz = dx + i dy maps ∂x 7→ 1, ∂y 7→ i. So dz is the

conjugate of the linear function dz. So dz̃ = dz̃ = τ ′(z) dz = τ ′(z) dz
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11. Surfaces in R3: the second fundamental form

11.1 A basic toy model: what is the curvature of a curve?

Let γ be a smooth curve in R3, γ : [0, b]→ R3 parametrized by arc-length (i.e. unit speed:
‖γ′(t)‖ = 1, see Sec.10.3). Then the unit tangent vector is the velocity γ′(t), and the
curvature is the norm of the acceleration γ′′(t):

κ(t) = ‖γ′′(t)‖

Remark. As ‖γ′‖ = 1, the velocity γ′ is perpendicular to the acceleration γ′′ by the Trick:
Trick. ‖γ′‖ = 1⇒ γ′ · γ′ = 1⇒ ∂

∂t (γ
′ · γ′) = 0⇒ 2γ′′ · γ′ = 0⇒ γ′′ ⊥ γ′.

Example. Consider the circle X2 + (Y − r)2 = r2 inside the plane Z = 0 of R3, with centre
(0, r, 0) and radius r. Near 0 ∈ R3, it equals the curve

γr(t) = (r sin t
r , r − r cos tr , 0)

for t close to 0. We use t
r instead of t so that γr has unit speed:

‖γ′r(t)‖ = ‖(cos tr , sin
t
r , 0)‖ = 1.

As γ′′r (t) = (− 1
r sin t

r ,
1
r cos tr , 0), the curvature is

κr(t) =

√
1

r2
=

1

r
.

In general, a rotation and translation in R3 will not change the curvature of a curve γ nor
the property that γ is parametrized by arc-length (rotations and translations preserve lengths).
By rotating and translating, we may assume γ(0) = 0 = γr(0), γ′(0) = (1, 0, 0) = γ′r(0), and
γ′′(0) = (0, κ(0), 0). Pick r = 1/κ(0). Then also γ′′r (0) = γ′′(0), so the Taylor series for γ, γr
agree up to the second order. So that circle of radius r = 1/κ(0) is the best quadratic curve
which approximates γ at 0 (when κ(0) = 0, we can think of the circle γ∞ of infinite radius as
the straight line equal to the x-axis, indeed γ is “flat” up to second-order). The circle γr is
called the osculating circle for γ at γ(0) = 0, and r is called the radius of curvature.

A more geometric way of interpreting the curvature is as follows.

Recall γ′′ is orthogonal to γ′. For this reason,

n =
γ′′

‖γ′′‖

is called the normal vector to γ (equivalently: γ′′(t) = κ(t)n(t)). We now ask: by how much
does γ(t) swerve away from the line γ(0) + Rγ′(0) tangent to γ at t = 0?
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The distance of γ(t) from the straight line γ(0) + Rγ′(t) is, up to order t3 errors,1

n(0) · (γ(t)− γ(0)) = γ′′(0)
‖γ′′(0)‖ · (γ

′(0)t+ 1
2γ
′′(0)t2 + · · · )

= 1
2‖γ
′′(0)‖t2 + · · ·

= 1
2κ(0)t2 + · · · ,

where we used that γ′′, γ′ are orthogonal. So the curvature κ(0) measures how much the curve
γ(t) deviates from the tangent line.

11.2 The local second fundamental form

Let S ⊂ R3 be a smooth surface with a Gauss map n : S → R3, so n(p) ·TpS = 0 and
n(p) ·n(p) = 1. How much does S swerve away from the plane p+ TpS tangent to S at p?

Let F be a parametrization near p. By translating V ⊂ R2, we can assume for simplicity
that F (0, 0) = p. Abbreviate 0 = (0, 0). Recall the Taylor series of a smooth function
G(x, y) ∈ R in two variables is

G(x, y) = G(0) + D0G · ( xy ) + 1
2 ( xy )

T
Hess0G ( xy ) + · · ·

= G(0) + x∂xG+ y∂yG + 1
2 (x2 ∂xxG+ 2xy ∂xyG+ y2 ∂yyG) + · · ·

where the partial derivatives of G are all evaluated at (0, 0), the Hessian Hess0G is just the
matrix of second-order partial derivatives, and we abbreviate ∂xyG = ∂x(∂yG), etc. We can
compute this Taylor series taking G = one of the three components of F = (F1, F2, F3) ∈ R3.

Example. Consider F (x, y) = (x, y, ax2 + by2) near (x, y) = 0. The above becomes:

F (x, y) =
(

0
0
0

)
+ x

(
1
0
0

)
+ y

(
0
1
0

)
+

1

2

(
x2
(

0
0
2a

)
+ 2xy

(
0
0
0

)
+ y2

(
0
0
2b

))

Therefore, using that ∂xF, ∂yF ∈ TpS are orthogonal to n(p), the signed distance of a nearby
point F (x, y) from the plane p+ TpS is (again evaluating partial derivatives at p):

n(p) · (F (x, y)− F (0, 0)) =
1

2
(x2 n · ∂xxF + 2xy n · ∂xyF + y2 n · ∂yyF) + · · ·

Thus, the analogue for surfaces of the curvature of a curve is the form

IIF : R2 × R2 → R, (v, w) 7→ vT
(
n · ∂xxF n · ∂xyF
n · ∂yxF n · ∂yyF

)
w

which is clearly bilinear and symmetric (∂xyF = ∂yxF by smoothness of F ).

Example. IIF need not be positive definite, indeed it can vanish: for the plane R2 ⊂ R3 taking

1Here n(t) · (γ(t) − γ(0)) would be the correct distance if the curve lies inside the plane γ(0) +

span(γ′(0), γ′′(0)). If we truncate the Taylor series of γ after t3 terms, then the curve does lie in this plane.
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F (x, y) = (x, y, 0), the second partial derivatives of F are zero.

Example. Continuing with the example F (x, y) = (x, y, ax2 + by2), we pick:

n(0) =
∂xF × ∂yF
‖∂xF × ∂yF‖

∣∣∣∣
(x,y)=(0,0)

=
(

1
0
0

)
×
(

0
1
0

)
/norm =

(
0
0
1

)
So 2n(0) · (F (x, y)− F (0, 0)) = 2ax2 + 2by2, therefore at p = F (0, 0) = (0, 0, 0):

IIF (v, w) = vT
(

2a 0
0 2b

)
w = 2av1w1 + 2bv2w2.

Example. Let S be the sphere of radius r. The normal is n(p) = p. At the North pole

p = (0, 0, r), S is locally the graph F (X,Y ) = (X,Y,
√
r2 −X2 − Y 2), and n(p) = (0, 0, 1).

Dotting with n(p) means we take the third entry, so we need the Hessian of h =
√
r2 −X2 − Y 2

at (X,Y ) = (0, 0). Compute: ∂Xh = −X√
r2−X2−Y 2

, so ∂XXh|(0,0) = − 1
r and ∂Y Xh|(0,0) = 0,

and by symmetry also ∂Y Y h|(0,0) = − 1
r . Thus

IIF = vT
(
− 1

r 0

0 − 1
r

)
w = −1

r
v1w1 −

1

r
v2w2.

We get this same form at each point of the sphere by rotational symmetry.1

To avoid confusion later, we make a clear distinction between n : S → R3 and the Gauss
map in local coordinates (nF ) : R2 ⊃ V → R3:

nF (x, y) = n(F (x, y)).

Lemma 11.1. Locally the matrix for the second fundamental form is, evaluating at p,

B =

(
L M
M N

)
=

(
(nF ) · ∂xxF (nF ) · ∂xyF
(nF ) · ∂yxF (nF ) · ∂yyF

)
= −

(
∂x(nF ) · ∂xF ∂x(nF ) · ∂yF
∂y(nF ) · ∂xF ∂y(nF ) · ∂yF

)
Note: ∂x(nF ) · ∂yF = ∂y(nF ) · ∂xF as the right-hand side is symmetric using ∂xyF = ∂yxF .

Proof. Since n is orthogonal to TS = span(∂xF, ∂yF ),

(nF ) · ∂xF = 0 (nF ) · ∂yF = 0.

Differentiating in x or in y gives the equality between the matrices in the claim. �

Using matrix notation, with columns the first partial derivatives:

DF =
(
∂xF ∂yF

)
and D(nF ) =

(
∂x(nF ) ∂y(nF )

)
,

then by the Lemma, IIF (v, w) = vTBw where:

B = −D(nF )TDF

1Apply a rotation R about the origin. Then for the parametrization R◦F near R(p), using n(R(p)) = R(p),

we get the same IIF : n(R(p))T ∂ij(R ◦ F ) = pTRTR∂ijF = pT ∂ijF = n(p)T ∂ijF , using that rotations are

orthogonal maps (RTR = id).
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11.3 The local second fundamental form under a change of coordinates

Suppose we change coordinates using a transition τ = F̃−1 ◦F . Since F (x, y) = F̃ (τ(x, y)),

we have nF (x, y) = nF̃ (τ(x, y)). Differentiating using the chain rule:

DF = DF̃ Dτ and D(nF ) = D(nF̃ )Dτ.

Thus, the change in the second fundamental form is:

B = −D(nF )TDF = −(D(nF̃ )Dτ)T (DF̃ Dτ) = −DτT D(nF̃ )T DF̃ Dτ = DτT B̃ Dτ ,

thus as expected: B = DτT B̃ Dτ

11.4 The second fundamental form

Since the local forms change correctly under the transition (Dτ : TV → T Ṽ is the correct

identification between the local tangent spaces, so B = DτT B̃ Dτ is the correct change of
coordinates for bilinear forms), the local forms

IIF : R2 × R2 = TpV × TpV → R

determine a well-defined global bilinear form

II : TpS × TpS → R

independent of the observer. More explicitly, if v = DF (vF ), w = DF (wF ) are the actual
vectors in TS ⊂ R3, rather than the local versions vF , wF ∈ TV = R2, then by the chain rule:

IIF (vF , wF ) = −vTFD(nF )T DFwF = −(DnDF vF ) · (DF wF ) = −Dn(v) ·w = II(v, w)

is independent of the choice of F . Therefore:

Theorem 11.2. The local forms IIF determine a well-defined symmetric bilinear form, called
the second fundamental form,

II : TpS × TpS → R, II(v, w) = −(Dpn)(v) · w

We should now clarify better what exactly −Dn means. We want to avoid using extensions1

of n as in definition 2.6, which is messy and requires us to make choices (although the choice
of extension does not matter in the end). The derivative map

Dn : TpS → Tn(p)R3 = R3

of n : S → R3 is a well-defined map independent of parametrizations: in Section 9.2 this map
was defined in terms of curves in S without using parametrizations. A vector v ∈ TS is an
equivalence class of curves [cv] in S, satisfying p = cv(0), v = c′v(0), and

Dn[cv] = [n ◦ cv].
Notice that this makes sense by the chain rule: we identify [cv] ≡ ∂t|t=0cv = c′v(0) = v, so

[n ◦ cv] ≡ ∂t|t=0(n ◦ cv) = (Dcv(0)n) (c′v(0)) = Dpn(v).

Notice the above description gives a very useful formula, where γ′(t) = (X ′(t), Y ′(t), Z ′(t))
is a general vector in TS in terms of a curve γ(t) = (X(t), Y (t), Z(t)) ∈ S:

Dn(γ′(t)) = Dn

(
X′(t)

Y ′(t)

Z′(t)

)
=

∂

∂t

∣∣∣∣
t=0

n(γ(t))

1n is a map S → R3, so first choose an extension of n (at least locally) to a neighbourhood of S, then n

becomes a map n : R3 → R3 defined near S, hence we know what Dn means (matrix of partial derivatives).
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Example. For the plane S = R2 ⊂ R3, n = (0, 0, 1) is constant, so Dn = 0, so

II = 0.

Example. The cylinder S of radius r, X2 + Y 2 = r2, has Gauss map n(X,Y, Z) = (X,Y, 0)/r
(this is the outward normal to the cylinder). For γ(t) = (X(t), Y (t), Z(t)) in S, we have n(γ(t)) =
(X(t), Y (t), 0)/r so

Dn

(
X′(t)

Y ′(t)

Z′(t)

)
= ∂t|t=0n(γ(t)) =

(
X′(t)/r

Y ′(t)/r
0

)
.

A basis for TpS consists of a vector E1 tangent to the equatorial circle of the cylinder (so taking
Z(t) = constant), and a vector E2 parallel to the axis of the cylinder (so taking X(t), Y (t)
constant). It follows by the above calculation that Dn(E1) = E1/r, Dn(E2) = 0. Thus Dn :

TS × TS → TS, Dn =
(

1/r 0
0 0

)
in the basis E1, E2. Therefore

II(v, w) = −vT
(

1
r 0
0 0

)
w = −1

r
v1w1.

For example, an orthonormal choice of E1, E2 at p = (r cos θ, r sin θ, Z) is

E1 = (− sin θ, cos θ, 0) and E2 = (0, 0, 1).

Remark. Even if two surfaces are isometric, the second fundamental form can be substantially
different. E.g. the cylinder is locally isometric to the flat plane, but it has a non-trivial II.
So the second fundamental form depends on extrinsic information: the choice of embedding
into R3. Whereas we think of the first fundamental form as intrinsic (due to Theorem 10.6).

11.5 Summary of first and second fundamental forms

Fundamental form

TpS × TpS → R

v, w ∈ TpS ⊂ R3

Local fundamental form

TpV × TpV → R

vF , wF ∈ TpV = R2

(So DF (vF ) = v, etc.)

Local matrix
Coordinate change

τ = F̃−1 ◦ F

I(v, w) = v ·w IF (vF , wF ) = vTFAwF A = DFTDF A = DτT ÃDτ

II(v, w) = −Dn(v) ·w IIF (vF , wF ) = vTFBwF B = −D(nF )TDF B = DτT B̃ Dτ

11.6 The second fundamental form is the variation of the first

For the purposes of this course, the following is not a central result, it is just a curiosity.

Theorem 11.3. The second fundamental form is the variation of the first fundamental form,

∂
∂t

∣∣
t=0

It = −2 II,

when we deform the surface in the normal direction, meaning we vary the local parametrization
by (x, y) 7→ F (x, y) + t n(F (x, y)) in terms of time t ∈ [0, small].

Proof. Writing Ft = F + tnF , we get ∂xFt = ∂xF + t∂x(nF ), ∂yFt = ∂yF + t∂y(nF ), so

It = DFTt DFt = I0+t

(
2∂x(nF ) · ∂xF ∂x(nF ) · ∂yF + ∂y(nF ) · ∂xF

∂x(nF ) · ∂yF + ∂y(nF ) · ∂xF 2∂y(nF ) · ∂yF

)
+order t2.

Thus the claim follows by using the relations from the proof of Lemma 11.1 (in particular the
symmetry ∂x(nF ) · ∂yF = ∂y(nF ) · ∂xF ). �
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12. Curvature

12.1 The shape operator S = −Dn : TpS → TpS

Lemma 12.1. TpS = Tn(p)S
2 ⊂ R3 where S2 is the unit sphere in R3.

Proof. TpS is the vector subspace of R3 orthogonal to the normal n(p) at p ∈ S. Similarly,
Tn(p)S

2 is the vector subspace of R3 orthogonal to the normal to the sphere S2 at n(p). But

recall that the normal to S2 at n(p) is just n(p). So those vector subspaces equal. �

Corollary 12.2. Dn : TpS → Tn(p)S
2 can be viewed as a linear endomorphism of the 2-

dimensional vector space TpS, so Dn : TpS → TpS.

Proof. We need to show Dpn lands in Tn(p)S
2. Let γ ⊂ S be any curve through γ(0) = p.

Then Dn(γ′) = ∂t(n ◦ γ) is the velocity of a curve n ◦ γ ⊂ S2 so it is tangent to S2 (at
n(γ(0)) = n(p)). Another proof: differentiate n(γ) · n(γ) = 1 (since n is unit length) in time:
2n(γ) ·Dn(γ′) = 0 so Dn(γ′) is perpendicular to n, so it lies in Tn(p)S

2. �

Definition 12.3 (Shape operator). S = −Dn : TpS → TpS is the shape operator.

Theorem 12.4. The fundamental forms are related by:

II(v, w) = S(v) ·w = I(S(v), w)

Proof. II(v, w) = −Dn(v) ·w and Dn(v) ∈ Tn(p)S
2 = TpS, so that dot product can be

computed using I : TpS × TpS → R as both −Dn(v), w lie in TpS. �

Corollary 12.5. S is self-adjoint1 with respect to the inner product I

I(Sv, w) = I(v,Sw).

Proof. I and II are symmetric, so I(Sv, w) = II(v, w) = II(w, v) = I(Sw, v) = I(v,Sw). �

Lemma 12.6. Let nF = n ◦ F be the local expression for n in the parametrization F , then

∂x(nF ), ∂y(nF ) ∈ TS. (12.1)

Let [Sij ] be the matrix2 for S in the basis ∂xF , ∂yF of TS, then

−∂x(nF ) = S11 ∂xF + S21 ∂yF and − ∂y(nF ) = S12 ∂xF + S22 ∂yF

−D(nF ) = −
(
∂x(nF ) ∂y(nF )

)
=
(
∂xF ∂yF

)( S11 S12

S21 S22

)
= DF S. (12.2)

Proof. By differentiating n ·n = 1 we deduce that ∂x(nF ) ·nF = 0, ∂y(nF ) ·nF = 0. Hence
(12.1) follows, since TS is the plane orthogonal to n.

By the chain rule, −Dn(∂xF ) = −∂x(nF ) and −Dn(∂yF ) = −∂y(nF ).
Thus, abbreviating x, y by indices 1, 2, using the basis Xi = ∂iF we have:3 −Dn(Xi) =∑2
j=1 SjiXj . So the matrix Sij represents −Dn in the basis Xi = ∂iF . �

1Self-adjointness means that the matrix for S in a basis which is orthonormal with respect to I will

be symmetric. However, the matrix Sij discussed below is not symmetric in general. The symmetry
∂iXk = ∂i∂kF = ∂k∂iF = ∂kXi implies symmetry in i, k in −Dn(Xi) ·Xk = −∂i(nF ) ·Xk = (nF ) · ∂iXk (dif-

ferentiating the orthogonality relation (nF ) ·Xk = 0). This however does not imply the symmetry Sij = Sji,
it only implies that II(Xi, Xk) = −Dn(Xi) ·Xk is symmetric in i, k.

2So the Sij are smooth functions in the local variables x, y.
3The i-th column of the matrix S is the image of the i-th basis vector Xi, written in the basis Xj .
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Using the notation of the previous proof, Theorem 12.4 can be rewritten locally as

II(Xi, Xk) = −Dn(Xi) ·Xk =

2∑
j=1

SjiXj ·Xk =

2∑
j=1

SjiI(Xj , Xk).

Notice this implies B = STA (we come back to this proof in Theorem 12.8). Intuitively S is
“just the same as” II: we turned the 2-form II into a linear map using the inner product I.1

12.2 Principal curvatures, mean curvature, Gaussian curvature

Since the shape operator S is self-adjoint, it can be diagonalized using an orthonormal2

basis E1, E2 of eigenvectors for TS (where orthonormality is computed using I).

S =

(
κ1 0
0 κ2

)
Principal directions E1, E2 o.n. eigenvectors of S

Principal curvatures κ1, κ2 eigenvalues of S

Mean curvature H = 1
2 (κ1 + κ2) H = 1

2 trace(S)

Gaussian curvature K = κ1κ2 K = det(S)

We will see later, that the principal directions are the directions that a curve in the surface
must travel along to have maximum and minimum curvature (= the two principal curvatures).

Remark. Explicitly, we are diagonalizing the symmetric bilinear form II : TS × TS → R, so

II(Ei, Ej) = κiδij and I(Ei, Ej) = δij

where δij = 1 if i = j and δij = 0 for i 6= j. If you think of Ei, Ej as vectors in R3, then of
course orthonormality just means Ei ·Ej = δij for the usual dot product.

Example. For the cylinder X2 + Y 2 = r2 at the end of Sec.11.4, at p = (r cos θ, r sin θ, Z) the
eigenvectors E1 = (− sin θ, cos θ, 0), E2 = (0, 0, 1) are orthonormal w.r.t. dot product in R3, and
we found II = − 1

rdx
2, so κ1 = − 1

r and κ2 = 0 (as expected since in the E1 direction the surface
looks like a circle of radius r, and in the E2 direction the surface looks like a straight line).
Example. In the example F (x, y) = (x, y, ax2 + by2), we computed at (x, y) = 0:

IIF = ( 2a 0
0 2b )

in the basis vF = (1, 0), wF = (0, 1). The first fundamental form is

IF = ( 1 0
0 1 ) ,

so the basis vF , wF is orthonormal. So κ1 = 2a, κ2 = 2b.

1Compare the raising/lowering of indices in Sect.13.3. We are doing IIik = Sji gjk, where gjk = I(Xj , Xk).
2 Warning. If you compute locally, you must ensure orthonormality I(Ei, Ej) = δij . For example, if you

use F (λx, λy) instead of F (x, y), then the local matrix B would become λ2B, so curvatures computed for

these matrices would locally change by λ2 or λ4: but we want them to be independent of parametrizations!
More generally, if we pick a clever non-orthogonal linear transition τ = S, so Dτ = S, then we can turn B

into a matrix B̃ = STBS of the form
(
1 0
0 1

)
,
(
1 0
0 −1

)
,
(±1 0

0 0

)
, or

(
0 0
0 0

)
(a bilinear form is determined up to

congruency by its signature). So locally, if you ignore orthonormality, you could arbitrarily rescale by positive
numbers the eigenvalues of the local matrix B using changes of coordinates. So only the following signs are

preserved:

signK = sign detB (signs of κ1, κ2) = (signs of eigenvalues of B).

For example det(B̃) = det(DτTBDτ) = det(Dτ)2 det(B). For the same reasons, you have no control over the
sign of the mean curvature.



B3.2 GEOMETRY OF SURFACES, PROF. ALEXANDER F. RITTER 57

Lemma 12.7. If ∂xF , ∂yF ∈ R3 are orthonormal at p, then

κ1, κ2 = (the eigenvalues of the local matrix B for IIF )
K = detB.

Proof. The change of basis from ∂xF, ∂yF to E1, E2 will be an orthogonal matrix Q, and so

IIF = QT
(
κ1 0
0 κ2

)
Q = Q−1

(
κ1 0
0 κ2

)
Q, using orthogonality: QT = Q−1. But conjugation does

not change the characteristic polynomial, so the eigenvalues are still κ1, κ2. �

Theorem 12.8. Writing S for the matrix of the shape operator in the basis ∂xF, ∂yF yields
a relation between the local matrices A,B for IF , IIF :1

Weingarten equations S = A−1B

Gaussian curvature K = detS = detB
detA

These can be written out explicitly in terms of the coefficient functions of IF , IIF :

II = S = I−1
F IIF =

(
e f
f g

)−1(
L M
M N

)
=

1

eg − f2

(
g −f
−f e

)(
L M
M N

)
K = det(S) =

det(IIF )

det(IF )
=
LN −M2

eg − f2
.

Proof. It is enough to show that STA = B, since then S = (BA−1)T = (AT )−1BT = A−1B,
using that A,B are symmetric. Below are two ways to check that STA = B.

In local coordinates, for v, w ∈ R2, we have I(v, w) = vTAw, II(v, w) = vTBw. So
I(Sv, w) = II(v, w) becomes vTSTAw = vTBw. As this holds for all v, w, we deduce STA = B.

Alternatively, combine the matrix equation in Lemma 12.6 with Section 11.5,

B = −D(nF )T DF = (DF S)T DF = STDFTDF = STA. �

12.3 Normal curvature

The normal curvature of a curve γ in S through p = γ(0), with γ parametrized by
arc-length so speed ‖γ′‖ = 1, is the component of the acceleration γ′′ in the normal direction2

γ′′(0) ·n(p) = −Dn(γ′(0)) · γ′(0) = II(γ′(0), γ′(0))

Intuitively, if you are racing with a car on a surface, the normal curvature tells you how much
pull away from the surface you feel when you accelerate the car.

Since ‖γ′(0)‖ = 1, the normal curvatures are measured by the quadratic form II(v, v) on
unit vectors v = cos θ E1 + sin θ E2 ∈ TpS. Explicitly, we get the Euler formula:

II(v, v) = κ1 cos2 θ + κ2 sin2 θ

so κ1, κ2 are the extreme values (min and max)3 of the possible normal curvatures at p.

1It is easy to check that K does not change if we change local parametrization. More strikingly, Gauss’
Theorem Egregium (Section 13.2) says that K does not change under isometries, so it is intrinsic to the

surface with its Riemannian metric, it is not extrinsic (= dependent on the choice of embedding).
2where we used the usual tricks: ν(t) = n(γ(t)) is orthogonal to TS, so ν(t) · γ′(t) = 0, differentiating:

ν′ · γ′ + ν · γ′′ = 0, and finally ν′(0) = ∂t|t=0n(γ(t)) = Dn(γ′(0)). The formula then follows.
3Proof: if κ1 ≤ κ2, then κ1 = κ1(cos2 θ + sin2 θ) ≤ κ1 cos2 θ + κ2 sin2 θ ≤ κ2(cos2 θ + sin2 θ) = κ2.
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Corollary 12.9. The principal curvatures κ1, κ2 are the min and max of the ratio of the two
quadratic forms:

Lx2 + 2Mxy +Ny2

ex2 + 2fxy + gy2

Proof. We can rescale (x, y) without affecting the above ratio so that ex2+2fxy+gy2 = 1. But
this is precisely the condition that IF (vF , vF ) = 1 for the local vector vF = (x, y) ∈ TV = R2.
Then IIF (vF , vF ) is equal to the numerator. We proved above that for unit vectors v ∈ R3

the min and max of the quadratic form II(v, v) are the principal curvatures κ1, κ2. �

12.4 Qualitative interpretation of the curvatures

Loosely speaking:

(1) The principal directions E1, E2 tell you the directions of steepest increase/decrease,
(2) If κ1 > 0, a curve is S with tangent E1 is accelerating in the normal direction, since

γ′′ · n = II(γ′, γ′) = II(E1, E1) = κ1 > 0 (using Sec.12.3). So near p, the curve lies
on the same side of TS as n(p) does.

(3) If κ1 < 0, a curve in direction E1 accelerates away from n(p) so it lies on the other
side of TS.

(4) K > 0 means κ1, κ2 have the same sign, so either all curves accelerate towards n(p)
or away from n(p), so S is locally all on the same side of the tangent plane and S can
be locally approximated by an ellipsoid.
We call a point p ∈ S elliptic if κ1, κ2 have the same sign (⇔ K > 0)

(5) We call a point p ∈ S hyperbolic if κ1, κ2 have opposite sign (⇔ K < 0). This
means S locally looks like a saddle and S lies on both sides of the tangent plane.

Example. In the above example F (x, y) = (x, y, ax2 + by2) near (x, y) = 0:
For a, b > 0, the origin is an elliptic point: the surface is Z = aX2 + bY 2, it lies all above the

tangent plane Z = 0, and we get an ellipse when we slice S with a plane Z =(positive constant)
which is parallel to the tangent plane:

For a < 0, b > 0, the surface lies on both sides of the tangent plane Z = 0, and we get a
hyperbola when we slice S:
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12.5 Curvatures in terms of the Hessian

Theorem 12.10. Parametrizing S ⊂ R3 near p as the graph of a function h : TpS → R over
the tangent plane (Theorem 9.1), IIF at p becomes the Hessian of h at p:

IIF =

(
L M
M N

)
= ±

(
hxx hxy
hyx hyy

)
= ±Hessp h,

where the sign depends on the choice of normal. In particular the Gaussian curvature at p is

K(p) = hxxhyy − h2
xy = det Hessp h.

Proof. In the proof of Theorem 9.1, F (x, y) = (x, y, h(x, y)), so ∂xF = (1, 0, ∂xh) and ∂yF =
(0, 1, ∂yh) is a basis for TpS = (xy-plane). This forces ∂xh = ∂yh = 0 at (0, 0), so (0, 0) is a
critical point of h. Thus the normal is ±n(p) = (1, 0, 0)× (0, 1, 0) = (0, 0, 1), and dot product
with n just means taking ± the third component of a vector (the sign ± depends on the choice
of Gauss map). The basis ∂xF, ∂yF is orthonormal, and in this basis II is the matrix in the
claim. Now use Lemma 12.7. �

Notice that, rotating as in the proof with S locally (X,Y, h(X,Y )), the signs of the Hessian
of h are precisely what you studied in applied courses to discuss minima, maxima and saddles
of a function h(X,Y ) of two variables. So

κ1, κ2 > 0 ⇒ Z = h(X,Y ) has a minimum at 0 ⇒ S lies above Z = 0
κ1, κ2 < 0 ⇒ Z = h(X,Y ) has a maximum at 0 ⇒ S lies below Z = 0

K = κ1κ2 < 0 ⇒ Z = h(X,Y ) has a saddle at 0 ⇒ S lies on both sides of Z = 0

Example. Consider the sphere S of radius r, X2+Y 2+Z2 = r2, near the North pole p = (0, 0, 1).

Locally S is the graph F (X,Y ) = (X,Y,
√
r2 −X2 − Y 2) with normal n(p) = (0, 0, 1). The

Hessian of
√
r2 −X2 − Y 2 at 0 gives

II =

(
− 1
r 0

0 − 1
r

)
K = det II =

1

r2

This was expected: the great arcs are osculating circles of radius r which accelerate away from
the outward normal direction (0, 0, 1). Notice the curvature becomes small as r → ∞ since the
surface looks more and more “flat” for large r.

12.6 Locally flat surfaces

Theorem 12.11. If II = 0 near p, then S lies in a plane near p.

Proof. Let’s use the simpler notation n = n(x, y) instead of n(F (x, y)) for the local expression
of n in this proof. We need to show that locally the Gauss map n is constant and that S
satisfies the equation for a plane orthogonal to n:

n ·F = constant. (equivalently n · (F (x, y)− F (0, 0)) = 0)

From II = 0 we obtain ∂xn · ∂xF = 0, ∂xn · ∂yF = 0, etc. and hence by linearity ∂xn, ∂yn
are orthogonal to all of TS = span(∂xF , ∂yF ). Differentiating n ·n = 1 shows they are also
orthogonal to n: ∂xn ·n = 0 and ∂yn ·n = 0. So they are orthogonal to all of R3 and thus
must vanish. So n is locally constant in x, y. So n ·F is also constant: ∂x(n ·F ) = n · ∂xF = 0
(since n is orthogonal to ∂xF ∈ TS), and similarly ∂y(n ·F ) = 0. �
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12.7 The Gaussian curvature as a ratio of areas

Since n is a unit vector, it maps n : S → S2 ⊂ R3 into the unit sphere S2 of R3. So we

can compare the areas of two regions n(U) ⊂ S2 and U ⊂ S. The following says the Gaussian
curvature K precisely measures the infinitesimal ratio of those two areas.

Theorem 12.12. The Gaussian curvature at p ∈ S equals

K(p) = lim
U→p
±Area(n(U) ⊂ S2)

Area(U ⊂ S)
,

where the limit is over shrinking neighbourhoods U of p, and where ± = sign(K(p)).

Proof. Work locally with a parametrization F = F (x, y) such that F (0, 0) = p. Recall by
Section 10.8, the area of U = F (V ) ⊂ S is defined as

Area(U) =

∫
V

‖∂xF × ∂yF‖ dx dy.

The area of n(U) is analogously:1

Area(n(U)) =

∫
V

‖∂x(nF )× ∂y(nF )‖ dx dy.

We may assume that F is correctly oriented, so that n = (∂xF × ∂yF )/‖∂xF × ∂yF‖. Using
the shape operator S written in the basis ∂xF, ∂yF , we compute:

∂x(nF )× ∂y(nF ) = (∂xF S11 + ∂yF S21)× (∂xF S12 + ∂yF S22)
= (S11S22 − S21S12) ∂xF × ∂yF
= det(S) ∂xF × ∂yF
= det(S) ‖∂xF × ∂yF‖n.

Since K(x, y) = detS is the Gaussian curvature at F (x, y), and ‖n‖ = 1,

Area(n(U)) =

∫
V

|K(x, y)| ‖∂xF × ∂yF‖dx dy.

Writing |K(x, y)| = |K(p)|+ (|K(x, y)| − |K(p)|), we obtain

Area(n(U)) = |K(p)|
∫
V
‖∂xF × ∂yF‖dx dy +

∫
V

(|K(x, y)| − |K(p)|) ‖∂xF × ∂yF‖dx dy

= |K(p)|Area(U) +
∫
V

(|K(x, y)| − |K(p)|) ‖∂xF × ∂yF‖dx dy.

Divide that by Area(U), move the first term on the right to the left, and take absolute values:∣∣∣Area(n(U))
Area(U) − |K(p)|

∣∣∣ ≤ 1
Area(U) · max

(x,y)∈V
||K(x, y)| − |K(p)|| ·

∫
V
‖∂xF × ∂yF‖dx dy

= max
(x,y)∈V

||K(x, y)| − |K(p)||

and the final expression converges to 0 as we shrink V to (0, 0) since K(x, y)→ K(0, 0) = K(p)
by continuity of K (so x, y → 0). �

1Non-examinable technical remark. If ∂x(nF ), ∂y(nF ) are linearly independent at (0, 0) then near n(p) ∈
S2 we have a local parametrization n◦F : V → S2, and the formula for Area(n(U)) is valid. If ∂x(nF ), ∂y(nF )
are linearly dependent at (0, 0) then we cannot say that. However, one can still argue that the ratio of the
areas in the claim converges to zero (notice K(p) = 0 here, as the columns of II are linearly dependent).

Indeed, one can check that Area(n(U)) ≤ εArea(U) for small enough V where ε→ 0 as we shrink V . We will
not carry out these details.
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Lemma 12.13. We record two formulae, one from Sec.10.8 and one from the proof above:

∂xF × ∂yF = ±
√

det IF n and ∂xn× ∂yn = ±K
√

det IF n

where the sign is + precisely if ∂xF, ∂yF is a right-handed basis ((∂xF × ∂yF ) ·n > 0).

13. Tangential derivatives and Gauss’ Theorema Egregium

13.1 Tangential derivative (Levi-Civita connection)

Let S be a smooth surface in R3. Recall in Section 9.4 we defined vector fields on S, and
we abbreviated X1 = ∂xF , X2 = ∂yF for a local parametrization F near p ∈ S. Thus, at
each point p ∈ S, we have a basis of R3 given by:

X1(p), X2(p), n(p)

since R3 = TpS ⊕ Rn(p), as n is orthogonal to TpS. Therefore, the derivatives of a smooth
local tangent vector field v(x, y) ∈ TF (x,y)S defined near p ∈ S can be written in terms of
this basis. In particular, the orthogonal projection to TpS of such derivatives is called the
tangential derivative, which you study in Exercise Sheet 2:

∇xv = orthogonal projection of ∂xv onto TS
= ∂xv − (n · ∂xv)n
= ∂xv + (∂xn · v)n

where n = n(x, y) is the local expression n(F (x, y)) for the Gauss map (also n · ∂xv = −∂xn · v
by differentiating the orthogonality relation n · v = 0, compare Exercise 4 of Exercise Sheet
2). Abbreviate x, y by indices 1, 2. Then

∂jv = ∇jv + (Bv)jn

since, writing v =
∑
viXi by abbreviating the coefficient functions v1 = a(x, y), v2 = b(x, y),

and recalling the definition of the second fundamental form Bij = n · ∂iXj = −∂in ·Xj ,

∂jn · v = ∂jn ·
∑

viXi = −
∑

Bjiv
i = −(Bv)j .

The symbol ∇ is called nabla, and the operator ∇ is called a connection for the surface
S. Notice that a connection is a way to differentiate vector fields without ever leaving the
tangent space TS (it turns out connections exist also for abstract surfaces and manifolds).

Notice that in fact you can differentiate any vector field by any other vector field. Given
a vector field X =

∑
ajXj , we define ∇X linearly in the differentiating variable X:

∇Xv =
∑

aj∇jv.

Note ∇Xv is of course not linear (with respect to smooth functions) in the v variable since

∇j(fv) = (∂jf)v + f∇jv

where f = f(x, y) is a function (here we used that ∂j(f)v is already in TS, so doesn’t change
under orthogonal projection). That equation is called, of course, Leibniz rule.

Lemma 13.1. The tangential derivative only depends on the Riemannian metric I (the first
fundamental form), so it is an invariant of the surface up to isometries.1

1i.e. it does not change even if you pick a different embedding into R3, provided the two embedded surfaces

are isometric.
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Proof. This is a calculation:

∇iv = ∇i
∑

vjXj =
∑

∂i(v
j)Xj + vj∇iXj

so we just need to check that ∇iXj depends only on IF . You will do this rather explicitly in
Exercise Sheet 2 by expressing

∇iXj =
∑

ΓkijXk

in terms of the basis Xk, where the functions Γkij are called Christoffel symbols and showing
that there is a formula for these in terms of the first fundamental form and its derivatives.
Here we will just illustrate an example: since dotting with Xj kills the normal term (as n is
orthogonal to TS = span(X1, X2)), we get

X1 · ∇1X2 = X1 · ∂1X2 = ∂xF · ∂x∂yF = ∂xF · ∂y∂xF =
1

2
∂y(∂xF · ∂xF ) =

1

2
∂yA11

where A11 is the first entry of the matrix A for IF . Similarly, all Xk · ∇iXj are determined
by derivatives of Aij , hence this determines ∇iXj (by linear algebra). �

Cultural Remark. In Exercise Sheet 2 you prove the formula:

Γkij =
1

2

∑
`

gk`(∂igj` + ∂jgi` − ∂`gij)

which gives Γkij explicitly in terms of the Riemannian metric gij = I(Xi, Xj) = Xi ·Xj

(the first fundamental form). Conversely, given any abstract surface or manifold, with a
Riemannian metric, you simply define Γkij by that formula, thus you obtain a connection

∇ defined by ∇iXj =
∑

ΓkijXk, called Levi-Civita connection, which defines tangential
derivatives! More of this in C3.3: Differentiable Manifolds

13.2 Gauss’ Theorema Egregium

Theorem 13.2. The Gaussian curvature only depends on the first fundamental form.

Proof 2. Let v(x, y) ∈ TS be any non-zero local vector field (for example v = ∂xF ).
Recall ∇iv = ∂iv − ((∂iv) ·n)n. Consider the following expression:

(∇x∇y −∇y∇x)v = ∂x∂yv − (∂yv ·n)∂xn− ∂y∂xv + (∂xv ·n)∂yn
= −(∂yv ·n)∂xn+ (∂xv ·n)∂yn

where we dropped all the terms that were multiples of n since we know the result must be in
TS, we used that v is smooth so partial derivatives commute, and we used that ∂in = ∇in ∈
TS (recall this is because differentiating n ·n = 1 shows that ∂in is orthogonal to n and
hence is in TS). Recall that v · ∂in = −∂iv ·n (by differentiating the orthogonality relation
v ·n = 0), so the above becomes:

(∇x∇y −∇y∇x)v = (v · ∂yn)∂xn− (v · ∂xn)∂yn
= −(∂xn× ∂yn)× v Cross-product tricks1

= ∓K
√

det IF n× v Lemma 12.13

where the sign is − precisely if ∂xF, ∂yF is right-handed.
Now notice that: by Lemma 13.1 the function (∇x∇y −∇y∇x)v only depends on the first

fundamental form. Of course
√

det IF only depends on the first fundamental form, but so
does ∓n× v because that is just a rotation by ∓90 degrees of the vector v inside TS and we
know by 10.7 that the first fundamental form can be used to measure angles. It follows by

1(a× b)× c = (a · c)b− (b · c)a. For example, (e1 × e2)× e1 = e3 × e1 = e2 = (e1 · e1)e2 − (e2 · e1)e1.
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the above formula that also K only depends on I (using that ∓
√

det IF n× v 6= 0 for v 6= 0).
Technical Remark. The sign ambiguity above is not an issue: the choice of normal ±n affects
the choice of orientation for the surface, and thus the notion of clockwise/anti-clockwise rota-
tion by 90 degrees, but the vector ∓n× v is independent of this choice (the signs cancel). �

Remark. The Theorema Egregium implies that the Gaussian curvature is an intrinsic in-
variant, i.e. it is an isometry invariant, because it depends only on the choice of Riemannian
metric on the surface (whereas other curvature invariants, such as principal curvatures, are
extrinsic: they depend heavily on the choice of embedding of the surface into R3).

Lemma 13.3. We record for later, the useful formula from the above proof:

(∇x∇y −∇y∇x)v = ∓K
√

det IF n× v

with − sign precisely if ∂xF , ∂yF is right-handed (det(∂xF |∂yF |n) > 0).

13.3 Riemann curvature tensor

This Section is non-examinable.

Motivation. A natural way to think of curvature is to ask: how much do the tangential
derivatives ∇x,∇y fail to commute? For a small local vector field v, if you think intuitively
of ∇xv,∇yv as being small arrows in an infinitesimal parallelogram, the failure of this paral-
lelogram to close up is measured by ∇x∇yv −∇y∇xv. This encodes how curved the space is.

The Riemann curvature tensor Rmijk is defined by:

R(Xi, Xj)Xk = ∇i∇jXk −∇j∇iXk

=
∑
RmijkXm

Cultural Remark. We have only defined R on the basis Xi = ∂iF , but the Riemann
curvature tensor R(X,Y )Z can be defined for general vector fields X,Y, Z. The meaning of
tensor is that it must be linear with respect to smooth functions (not just linear with respect
to constants): R(fX, gY )hZ = fghR(X,Y )Z for any smooth functions f, g, h. For sake of
comparison: ∇XY is tensorial only in X, whereas in Y it satisfies the Leibniz rule. You
can now check by calculation, using the Leibniz rule for ∇, that the tensorial condition on R
implies the general formula for R has an additional term:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

where the Lie bracket [X,Y ] is defined by: [
∑
viXi,

∑
wjXj ] =

∑
vi∂i(w

j)Xj−
∑
wj∂j(v

i)Xi.
The Lie bracket measures how much the flow of two vector fields fails to commute: you will
encounter this again in C3.5 Lie Groups and secretly in C2.1 Lie Algebras. In our case:
[Xi, Xj ] = ∂i(1)Xj − ∂j(1)Xi = 0 since 1 is a constant coefficient.

In Exercise Sheet 3, you will show that Rmijk is completely determined by the Christoffel

symbols Γkij and their derivatives, and by Exercise Sheet 2 the Christoffel symbols only depend
on the Riemannian metric I (first fundamental form). Hence:

Theorem 13.4. The Riemann curvature tensor R only depends on the Riemannian metric
(first fundamental form), so it is an invariant of the surface up to isometries.1

1i.e. it does not change even if you pick a different embedding into R3, provided the two embedded surfaces

are isometric.
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It’s often useful to dot the above with another basis vector X`, which defines

Rijk` = R(Xi, Xj)Xk ·X`

= I(R(Xi, Xj)Xk, X`)

The two Riemann curvature tensors are related by the lowering/raising of indices using the
Riemannian metric gij = Iij = Xi ·Xj , explicitly

Rijk` =
∑

Rmijkgm` Rmijk =
∑

Rijk`g
`m

where gij is the inverse matrix of gij , thus:
∑
gijgjk = δik.

At first, it seems that Rijk` is a lot of information (24 = 16 choices of values for the four
indices), but in fact by definition it is antisymmetric in i, j, so

Rijk` = −Rjik`
so we might as well choose i = 1, j = 2. Then, by Exercise Sheet 2 you know that tangential
derivatives are compatible with the Riemannian metric:

∂iI(v, w) = I(∇iv, w) + I(v,∇iw)

so using the symmetry ∂j∂iI(v, w) = ∂i∂jI(v, w) (since I(v, w) is a smooth function), you will
deduce in Exercise Sheet 3 that:

Rijk` = −Rij`k
so Rijk` is anti-symmetric also in k, ` so we might as well take k = 1, ` = 2. Thus, only one
value is interesting up to symmetries,1 and you will show in Exercise Sheet 3 that:2

R1212 = −K det IF .

Theorem 13.5 (Theorema Egregium). The Gaussian curvature only depends on the first
fundamental form, not on the second (so it depends on the Riemannian metric but not on the
particular choice of embedding into R3). Indeed:

K = − I(R(v, w)v, w)

|v × w|2
= − I(R(v, w)v, w)

I(v, v)I(w,w)− I(v, w)2

for any two linearly independent vectors v, w.

Proof. The first part follows from R1212 = −K det IF since Rijk` only depends on IF and
derivatives of IF . In the second part, the second equality is just the expansion of the cross-
product (v × w) · (v × w) = (v · v)(w ·w) − (v ·w)2. We only need to check the second part

1Cultural remark. In addition to the above symmetries, there is one last symmetry that holds in general

for manifolds. From the Jacobi identity for Lie brackets,

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

one obtains the first Bianchi identity:

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0.

From this one deduces the cyclic symmetry Rijk` +Rjki` +Rkij` = 0. By adding the four equations you get

from this, if you reorder ijk` cyclically, and using anti-symmetries, you can deduce that Rj`ik = Rikj`, or

relabelling: Rijk` = Rk`ij so you can interchange the first and last pair of indices.
2From this it follows, using Rmijk =

∑
Rijk`g

`m, that

R2
121 = −Ke, R2

122 = −Kf, R1
121 = Kf, R1

122 = Kg

where K is the Gaussian curvature, e, f, f, g are the entries of the first fundamental form IF .
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for specific v = X1, w = X2 (by linear algebra it then holds for any basis v, w: indeed just
change F by the change of basis which sends X1, X2 to v, w). By the above:

I(R(X1, X2)X1, X2)

I(X1, X1)I(X2, X2)− I(X1, X2)2
=

R1212

eg − f2
= −K det IF

det IF
= −K. �

Remark 13.6 (Why is that proof conceptually different?). The calculation in the above proof
is the same as in Section 13.2 which calculated the Riemann curvature

R(∂xF, ∂yF )v = ∓K
√

det IF n× v.

However, the proof in Section 13.2 made explicit reference to the normal n and the fact that S
is embedded in R3 (even though at the end we conclude that K only depends on the embedding
up to isometry), so it appears to only apply to surfaces S whose Riemannian metric arises
from the first fundamental form of an embedding of S into R3. However, not all Riemannian
metrics arise in this way, for example: the flat torus T 2 = R2/Z2, that is with Riemannian
metric locally induced by the standard dot product in R2, is locally isometric to R2 so II = 0
(in particular K = 0), so it cannot isometrically embed into R3 because by Theorem 12.11
it would have to lie in a plane (more intuitively: obviously a torus embedded in R3 is going
to be curved!). The approach of Section 13.3 is more general, since it works for any abstract
smooth surface with any choice of Riemannian metric gij. Indeed, in Exercise Sheet 2 you
found a formula for Γkij in terms of gij, this in turn defines ∇Xi

Xj, which in turn defines
R(Xi, Xj)Xk and thus K. For example, this applies to the hyperbolic plane H without ever
worrying about whether or not H embeds isometrically into R3.

The are two more famous curvatures, called Ricci curvature tensor Ricij and scalar
curvature R, they are obtained from the Riemann curavature by taking traces.

The Ricci curvature is the trace

Ric(X,Z) = trace(Y 7→ R(X,Y )Z)

So, defining Rik = Ric(Xi, Xk), we have to put X = Xi, Y = Xj , Z = Xk above, then take
the j-th entry of the result, and sum over j (and also over ` on the right):

Rik =
∑

Rjijk =
∑

Rijk`g
`j

The lowering of two indices using the inverse metric gij is called a metric trace. Similarly,
the scalar curvature is defined as the metric trace of Ric:

R =
∑

gikRik

summing over both i, k. For surfaces,

Rij = −Kgij R = −2K.

The course C3.3: Differentiable Manifolds develops these ideas further.

14. Geodesic curvature and the Gauss-Bonnet theorem

14.1 Geodesic curvature and normal curvature

Recall that for a curve γ : [0, b]→ R3 parametrized by arc-length, we defined the curvature
of γ as the norm of the acceleration:

κ(t) = ‖γ′′(t)‖.
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However, we saw that on a surface the correct notion of differentiation (i.e. the one which
only depends on the Riemannian metric, and not on the particular choice of embedding into
R3), is the tangential derivative:

∇tγ′ = ∂t(γ
′)− (∂tγ

′ ·n)n
= γ′′(t)− II(γ′, γ′)n

where recall in Sec.12.3 we already met the normal curvature γ′′ ·n = −Dn(γ′) · γ′ = II(γ′, γ′).
So the acceleration breaks up into two parts, the tangential and the normal part:

γ′′ = ∇tγ′ + II(γ′, γ′)n.

Correspondingly the curvature breaks up into two parts (using that n is normal to∇tγ′ ∈ TS),

κ2 = ‖γ′′‖2
= ‖∇tγ′‖2 + II(γ′, γ′)2

= κ2
geodesic + κ2

normal.

Definition 14.1 (Geodesic curvature). The geodesic curvature of a curve γ in S parametrized
by arc-length is:

κgeodesic = ‖∇tγ′‖
A curve γ in S is a geodesic if κgeodesic = 0.

Example. For the plane R2, II = 0 so κgeodesic = κ. Therefore κgeodesic = 0 implies γ′′ = 0
and hence, integrating, γ(t) = p + tv is a straight line. So geodesics in the plane are straight
lines.

Example. For a sphere S of radius r in R3, we saw that the normal curvatures are −1/r in all
directions (as II = − 1

r id). A great circle (a circle in S of maximal radius, r) has curvature 1/r
and normal curvature −1/r, so κgeodesic = 0. So great circles are geodesics: they look “straight”
from the viewpoint of the surface. A circle of smaller radius s < r in S has curvature 1/s, but

normal curvature −1/r, so κgeodesic =
√
s−2 − r−2 6= 0 So smaller circles are not geodesics.

Lemma 14.2. For γ parametrized by arc-length,

±κgeodesic = γ′′ · (n× γ′)
= det(n|γ′|γ′′)
= ∇tγ′ · (n× γ′)

Proof. γ is parametrized by arc-length, so γ′ · γ′ = 1, so differentiating:1

∇tγ′ · γ′ = 0

(the tangential acceleration is perpendicular to the velocity). So ∇tγ′ is orthogonal to γ′ and
it is also orthogonal to n as it lies in TS. So n× γ′ is parallel to ∇tγ′. Moreover, n× γ′ has
unit length since n, γ′ have unit length and they are perpendicular (since γ′ ∈ TS). Therefore

∇tγ′ = ±κgeodesicn× γ′.
Since n is orthogonal to n× γ′, we also know that γ′′ · (n× γ′) = ∇tγ′ · (n× γ′). �

Corollary 14.3. For a curve γ in S which is parametrized by arc-length, γ is a geodesic
⇔ γ′′ is normal to S. For a curve γ not parametrized by arc length, with γ′(t) 6= 0,

After arc-length reparametrization γ becomes a geodesic ⇔ γ′, γ′′, n are linearly dependent

1For smooth vector fields v(t), w(t) ∈ Tγ(t)S, the analogue of the compatibility equation ∂iI(v, w) =

I(∇iv, w) + I(v,∇iw) from Section 13.3 holds: d
dt

(v ·w) = ∇tv ·w+ v ·∇tw. Indeed d
dt

(v ·w) = v′ ·w+ v ·w′,
and v′ = ∇tv + (n · v′)n has v′ · w = ∇tv · w since w ∈ TS is perpendicular to n (and similarly for v · w′).
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Proof. If γ is parametrized by arc-length this follows by the lemma since det(n|γ′|γ′′) = 0
precisely if n, γ′, γ′′ are linearly dependent. If γ̃(t) = γ(s(t)) is a reparametrization of γ so
that γ̃ is parametrized by arc-length, then γ̃′ = s′γ′(s) and γ̃′′ = s′′γ′(s) + (s′)2γ′′(s). Since
s′ > 0, linear dependence of n, γ̃′, γ̃′′ is equivalent to linear dependence of n, γ′, γ′′. �

Example. Consider the torus T 2 ⊂ R3 parametrized by

F (θ, ψ) = ((a+ b cosψ) cos θ, (a+ b cosψ) sin θ, b sinψ).

Consider the quotient map:

R2 → S1 × S1 ∼= T 2, (θ, ψ) 7→ (eiθ, eiψ) 7→ F (θ, ψ)

Consider the straight line (t, 0) in R2, which gives rise to the first circle S1 factor γ(t) = F (t, 0) =
((a+ b) cos t, (a+ b) sin t, 0) in T 2. Along γ, putting ψ = 0,

n =

 cos t
sin t

0

 γ′ = ∂θF = (a+ b)

 − sin t
cos t

0

 γ′′ = ∂θθF = (a+ b)

 − cos t
− sin t

0


so γ′′ is normal so γ is a geodesic. Similarly for the other circle factor γ(t) = F (0, t) we get γ′′

is a multiple of n, so γ is a geodesic. However, it is not true that any straight line in R2 will give
rise to a geodesic in this torus: draw a picture for the circle γ(t) = F (π2 , t), check that n, γ′, γ′′

are clearly linearly independent. This is not surprising because the Riemannian metric is

I = (a+ b cosψ)2dθ2 + b2dψ2,

so rotation in θ is an isometry (since I will be invariant), but rotation in ψ is not: indeed it cannot
be because you show in Exercise Sheet 3 that the Gaussian curvature K varies in the ψ direction.
This torus is therefore not “flat”, in the sense that the quotient map R2 → T 2 is not locally an
isometry.

Example. An example of a flat torus T 2 is

F (θ, ψ) = (eiθ, eiψ) ∈ S1 × S1 ⊂ C× C = R4

using the dot product from R4 to define the Riemannian metric, then R2 → T 2 will be a local
isometry, and geodesics in T 2 correspond to quotients of straight lines in R2.

14.2 The local Gauss-Bonnet theorem

Definition 14.4 (Signed geodesic curvature). Following Lemma 14.2, we define the signed
geodesic curvature κg = ±κgeodesic of a smooth curve γ in S parametrized by arc-length by

κg = ∇tγ′ · (n× γ′) = γ′′ · (n× γ′) = det(n|γ′|γ′′)

Remark. If γ is not parametrised by arc-length, we define the geodesic curvature as that
obtained for the unit-speed reparametrised curve γ̃. This yields:

κg =
det(n|γ′|γ′′)
‖γ′‖3

.

Proof: in the notation of the proof of Corollary 14.3, det(n|γ̃′|γ̃′′) = (s′)3 det(n|γ′|γ′′) (using
that the determinant is linear in each column, and the fact that det(n|γ′|γ′) = 0 as the
columns are linearly dependent). Finally the speed ‖γ̃′‖ = 1, so s′ = 1/‖γ′‖.
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Theorem 14.5 (Local Gauss-Bonnet Theorem). Let γ be a smooth simple1 closed curve,
which bounds a region R that lies entirely inside a parametrisation patch. Assume that γ
travels anti-clockwise around R. Then∫

R

K dA = 2π −
∫
γ

κg ds

where ds is the element2 of arc-length of γ, and dA is the element3 of area of S.
If γ travels clockwise around R, then the − sign in the last term is +. If γ is piecewise

smooth, so γ′(t) is discontinuous at finitely many times t = tj, then 2π becomes

2π −
∑

αj

where αj is the anti-clockwise angle (measured using I) that γ′ jumps by at t = tj.

We’ll prove this after the examples.

Examples.

(1) For S the plane R2, notice that γ′(s) ∈ S1 ⊂ R2 since it is a unit length vector. So
γ′(s) = (cos θ(s), sin θ(s)) for a certain smooth angle θ(s). Choosing n = (0, 0, 1), with
R2 as the plane Z = 0 in R3, then n × γ′ = (− sin θ(s), cos θ(s)) is γ′ rotated by 90
degrees. Finally γ′′(s) = θ′(s)(− sin θ(s), cos θ(s)), so κg = γ′′ · (n × γ′) = θ′(s). This
confirms the theorem:∫

γ

κg ds =

∫
θ′(s) ds = θ(end)− θ(start) = 2π = 2π −

∫
0 dA.

(2) For S the sphere of radius r, recall K = 1
r2 . Take γ = the equator: this is a great circle,

so a geodesic, so κg = 0. Thus:∫
upper hemisphere

KdA =
1

r2
(Area of the hemisphere) = 2π −

∫
0 ds = 2π.

Hence the area of the hemisphere is 2πr2, so the area of the sphere is 4πr2.
(3) Take any curve γ in the unit sphere S2. This divides the sphere into two regions R1, R2

with areas A1, A2. The curve travels anti-clockwise around one region, say R1, and
clockwise around R2. Thus:

Area(S2) =

∫
R1

K dA+

∫
R2

K dA = (2π −
∫
γ

κg ds) + (2π +

∫
γ

κg ds) = 4π.

(4) The deep reason why the 2π appears, is because the vector field γ′ does not extend to a
non-vanishing vector field v = v(x, y) on all of the region R. Indeed, in local coordinates
γ′loc ∈ R2 = TV swings around by an angle 2π, and the number of times the vector
field swings around (which is an integer) depends continuously on the curve, hence this
integer is constant. Shrinking the curve γloc to a point, then along one of the shrinking
curves the vector field v should also swing around once. But once you’ve shrunk the
curve to a point, v is constant along the constant curve, so it swings around zero times.
Contradiction.

1simple means it does not intersect itself, i.e. γ : [a, b]→ S is injective.
2ds =

√
I(γ′(t), γ′(t) dt, recall we used this to define lengths L(γ) =

∫
γ ds. If γ is parametrized by

arc-length then I(γ′, γ′) = 1, so we just get ds = dt.
3dA =

√
det IF dx dy, recall we used this to define areas: Area(R) =

∫
R dA.
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Non-examinable Proof of The Local Gauss-Bonnet Theorem.
Step 0. We may assume γ is parametrized by arc-length, so ds = dt, and that for the

parametrization F (x, y), the basis ∂xF, ∂yF is right-handed (otherwise switch the sign of y).
Step 1. We first build an orthonormal basis of vector fields for TS over the region R.

Take v = ∂xF/norm, where norm =
√
I(∂xF, ∂xF ). Then take

w = n× v = (v rotated by 90 degrees inside TS).

So v, w is an orthonormal basis for TS over R with v × w = n. Differentiating the relation
w · w = 1, we get that ∇xw, ∇yw ∈ TS are orthogonal to w, so they are proportional to v:

∇xw = Pv ∇yw = Qv

for some smooth functions P = P (x, y), Q = Q(x, y) of the local coordinates (x, y).

Step 2. Compute the Riemann curvature of w in two ways. First by Lemma 13.3,

(∇x∇y −∇y∇x)w = −K
√

det IF n× w = K
√

det IF v.

Then explicitly in terms of P,Q,

(∇x∇y −∇y∇x)w = ∇x(Qv)−∇y(Pv)
= (∂xQ− ∂yP )v +Q∇xv − P∇yv
= (∂xQ− ∂yP )v

where in the second equality we knew the last two terms had to cancel because the result
should be a multiple of v, namely K

√
det IF v, whereas ∇xv,∇yv are orthogonal to v (by

differentiating the relation v · v = 1).
Step 3. Now we can compute the integral of the Gaussian curvature:∫
R
K dA =

∫
R
K
√

det IF dx dy
=

∫
R

(∇x∇y −∇y∇x)w · v dxdy Using v · v = 1
=

∫
R

(∂xQ− ∂yP ) dx dy
=

∫
R
d(Pdx+Qdy)

=
∫
γ
Pdx+Qdy Green’s theorem in R2

=
∫

(x′P + y′Q) dt Meaning of
∫
γ

, locally γ(t) = (x(t), y(t))

=
∫

(x′∇xw + y′∇yw) · v dt Using v · v = 1
=

∫
∇tw · v dt Chain rule ∇t = x′∇x + y′∇y

Step 4. Now we compute κg in terms of v, w.
Since γ′(t) is a unit vector in TS, we can write it as follows in the basis v, w

γ′(t) = cos θ(t) v + sin θ(t)w
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where v, w are evaluated at γ(t) of course. Then

∇tγ′ = θ′(t)(− sin θ(t) v + cos θ(t)w) + cos θ(t)∇tv + sin θ(t)∇tw.

The signed geodesic curvature becomes:

κg = ∇tγ′ · (n× γ′)
= ∇tγ′ · (cos θ n× v + sin θ n× w)
= ∇tγ′ · (cos θ w − sin θ v)
= θ′ cos2 θ + θ′ sin2 θ + cos2 θ∇tv ·w − sin2 θ∇tw · v

using orthonormality of v, w, and using that ∇tv is orthogonal to v (from differentiating
v · v = 1), similarly ∇tw ·w = 0. Differentiating v ·w = 0 we get ∇tv ·w = −v · ∇tw. Thus:

κg = θ′ −∇tw · v

Step 5. Combine Step 3 and Step 4:∫
R

K dA =

∫
θ′(t) dt−

∫
κg(t) dt

Now θ(t) is the angle between v and γ′. Passing to local coordinates, v = ∂xF/norm =
DF (e1)/norm where e1 is the standard basis vector (1, 0) (so the x-direction) and γ′ =
DF (γ′loc), so locally v, γ′ are represented by e1, γ

′
loc. So θ(t) is the angle (measured using

I, not the usual Euclidean angle) that the local tangent vector γ′loc(t) ∈ R2 makes with the
positive x-direction. Since θ(t) makes one full circle in the anti-clockwise direction when γ
travels anti-clockwise around the simple curve, we must have θ(end) − θ(start) = 2π (even
though θ is not the angle we may expect with Euclidean eyes). If there are discontinuities,
then the integral

∫
θ′(t) dt does not notice the jumps by αj so it equals 2π −

∑
αj . When γ

travels clockwise around R, simply consider the reversed path γ̃(t) = γ(−t) and notice that
κg switches sign since γ̃′(t) = −γ′(−t) and γ̃′′(t) = +γ′′(−t). �

Cultural Remark. Notice the key step in the proof is a way to pass from an integral
around the boundary ∂R of R to an integral over the region R. This was Green’s theorem:∫

R

dω =

∫
∂R

ω

where ω = Pdx+Qdy is a differential form. Observe that Green’s theorem is the 2-dimensional
analogue of the Fundamental Theorem of Calculus:∫ b

a

f ′(x) dx =

∫
[a,b]

df =

∫
∂[a,b]

f = f(b)− f(a).

The above Green’s formula holds in great generality: R can be any smooth n-dimensional
manifold with boundary, and ω can be any differential n− 1 form (meaning ω is a sum where
each term looks like

f dx ∧ dy ∧ · · · ∧ dz

where f is a smooth function, and x, y, . . . , z are any n−1 of the local coordinates, the symbol
∧ reminds us that 1-forms anti-commute: dx ∧ dy = −dy ∧ dx, just like for cross-products).
This generalization of Green’s formula is called Stokes’s theorem, it is arguably the most
important result in geometry. More of this in C3.3 Differentiable Manifolds.
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14.3 The sum of the angles in a geodesic triangle

A geodesic triangle consists of a region R and a piecewise smooth geodesic γ moving anti-
clockwise around the boundary of R having exactly three discontinuities at points p, q, r ∈ S,
called the vertices of the triangle. So the boundary of R consists of three geodesic arcs
joining the points p, q, r.

Call αp, αq, αr the internal angles between the two geodesic arcs which meet at the points
p, q, r (internal angle means the one swept out inside R).

Corollary 14.6. The sum of the angles of a geodesic triangle that lies entirely in a parametriza-
tion patch is

αp + αq + αr = π +

∫
R

K dA.

For example if K > 0 in R then the sum is strictly larger than π, if K = 0 in R then the sum
is π just like in Euclidean geometry, and if K < 0 in R then the sum is strictly less than π.

Proof. The angles by which γ′ jumps are the external angles: α1 = π − αp, α2 = π − αq,
α3 = π − αr, so by Theorem 14.5 without using the geodesic assumption:

αp + αq + αr = π + [2π − (α1 + α2 + α3)]
= π +

∫
R
K dA+

∫
γ
κg ds.

When the triangle is geodesic then the last integral vanishes since κg = 0. �

Examples. Consider a geodesic triangle with angles α, β, γ and vertices A,B,C:

(1) Spherical geometry. On the unit sphere, K = 1, so the sum of the angles in a geodesic
triangle is:

α+ β + γ = π + Area(ABC) ≥ π.

(2) Euclidean geometry. In the plane, K = 0, so the sum of the angles is

α+ β + γ = π.

(3) Hyperbolic geometry. In the hyperbolic plane, so H = {z ∈ C : Imz > 0} with

I = dx2+dy2

y2 = 1
y2 IEuclidean, we will see later that K = −1, so

α+ β + γ = π −Area(ABC) ≤ π.
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14.4 The Gauss-Bonnet theorem

Theorem 14.7. For any smooth compact orientable surface S with a Riemannian metric,

χ(S) =
1

2π

∫
S

K dA.

Example. For the unit sphere, K = 1 so
∫
S
K dA = Area(S2) = 4π, so

1

2π

∫
S

K dA = 2 = χ(S2).

Proof. Apply the Local Gauss-Bonnet theorem to each triangle of a triangulation of S (where
we subdivide the triangulation if necessary so that each triangle is small enough to lie in a
parametrization patch, so that Theorem 14.5 applies). The integrals of κg all cancel because
we integrate κg twice along each edge but in opposite directions (see the comments in Theorem
14.5 about anti-clockwise/clockwise curves). Thus, as in the proof of Corollary 14.6,∫

R

K dA =
∑

triangles

(
∑

(internal angles)− π).

Let V,E, F denote the total number of vertices, edges, triangles. Then the above equals:

2πV − πF.
Since each edge belongs to exactly two faces, and each face has exactly three edges, 3F = 2E.
So 2πV − πF = 2πV − 3πF + 2πF = 2π(V − E + F ) = 2πχ(S). �

15. Morse functions, Poincaré-Hopf and Hairy Ball Theorem

15.1 Critical points of functions, Morse functions, gradient vector field

A function f(x, y) in two variables has a critical point at p if its first derivatives there are
zero, equivalently the differential vanishes:

df = (∂xf) dx+ (∂yf) dy = 0 (evaluated at p).

At critical points, you want to know whether f has a minimum, maximum or a saddle. Recall,
from calculus, that when the Hessian (evaluated at p)

Hess f =
(
∂xxf ∂yxf
∂yxf ∂yyf

)
is non-singular (determinant is non-zero) then you know the answer by looking at the signs1

of the eigenvalues λ1, λ2 (see Section 12.5).
A critical point p is non-degenerate if the Hessian at p is non-singular.

Definition 15.1. A function is Morse if all critical points are non-degenerate.

It turns out that generically a function is Morse, in the sense that given any function (even
the zero function!) if you wiggle it randomly then it will become Morse. The word “generic”
has a very precise and rigorous meaning in mathematics2

1You can bypass finding the eigenvalues by first finding det Hess = λ1λ2: if it is negative you have a saddle,

otherwise it is a max/min. In the max/min case: if ∂xxf > 0 it must be a min, if ∂xxf < 0 it must be a max.
2Non-examinable: A Baire set is a set which contains a countable intersection of dense open sets. The

Baire category theorem says that in a complete metric space every Baire set is dense. Intuitively you can
think of Baire set as roughly meaning “everything outside of a measure zero set”, so you have “probability 1”

that a point lies in the Baire set. It turns out that one can put a topology on all smooth functions so that the

Morse functions form a Baire subset.
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It turns out that after a change of coordinates (namely a diagonalization argument for the
Hessian), a Morse function near a critical point p always has the form:

f(x, y) = f(p) + λ1x
2 + λ2y

2,

and in fact by rescaling x, y you can assume the λj are ±1 (but you cannot get rid of the
signs by coordinate changes, those are invariants). So there are no other critical points near
p (locally p corresponds to (x, y) = 0). Therefore the critical points of a Morse function f are
isolated, so on a compact surface there are only finitely many critical points.

Definition 15.2 (Gradient vector field). For a smooth function f : S → R, the gradient
vector field ∇f ∈ TS is defined1 by the equation

I(·,∇f) = df,

where I is the Riemannian metric (first fundamental form).2

Lemma 15.3.

(1) ∇f is orthogonal to the level sets f = constant (the contour lines),
(2) the points where ∇f = 0 are precisely the critical points of f ,
(3) f increases3 in the direction of ∇f .

Proof. (1): for a vector v tangent to the level set the function f does not vary, so df(v) = 0.
Then by definition I(v,∇f) = df(v) = 0, so v is orthogonal to ∇f . (2) holds by definition.
For (3): df(∇f) = I(∇f,∇f) = ‖∇f‖2 ≥ 0 so f increases in the direction of ∇f . �

For a surface S ⊂ R3, it turns out that a linear functional f : R3 → R, say f(p) = p · v
(for some fixed v ∈ R3) is a Morse function when restricted to S for almost all choices of
v (but not all choices: v = 0 is bad). Notice that after rotating R3 to make v = (0, 0, 1),
you can think of these functions as just measuring the height function Z for the surface. So
generically (that is, after a small generic rotation of the surface if necessary), the function
f(X,Y, Z) = Z becomes a Morse function.

Example. For our usual torus T 2 in R3, the function f(X,Y, Z) = Z has a circle of maxima
and a circle of minima. Since these critical points are not isolated, f : T 2 → R is not Morse. But
slightly rotating T 2 makes it Morse:

1Remark. Explicitly, locally A∇f =
(
∂xf
∂yf

)
= ∇Euclf where f = f(x, y) in local coordinates, A = the

local matrix for I, and ∇Euclf = the Euclidean gradient you are used to (the first partial derivatives). So
(∇f)local = A−1∇Euclf ∈ R2 = TV. Mapping by DF we get the resulting vector field in TS, so ∇f =

DF (∇f)local = DF A−1∇Euclf ∈ TS.
2For example: evaluating on the basis vector X1 = ∂xF , we get I(X1,∇f) = df(X1) = ∂xf locally.
3Indeed, ∇f/‖∇f‖ is the direction of maximal increase for f since |df(v)| = |I(v,∇f)| ≤ ‖∇f‖ for unit

vectors v, by Cauchy-Schwarz, and df(∇f/‖∇f‖) = ‖∇f‖ achieves equality.
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Notice above that #(minima)−#(saddles) + #(maxima) = 0 = χ(T 2). Is this a coincidence?
Let’s check for the sphere: no matter how much you deform the sphere, a generic height
function seems to always have #(minima)−#(saddles) + #(maxima) = 2 = χ(S2):

15.2 Critical points of a Morse function recover the Euler characteristic

Theorem 15.4. For any Morse function on a compact oriented surface S,

χ(S) = #(minima)−#(saddles) + #(maxima).

Non-examinable Proof 1: Sketch. The high-tech proof of this, is to show that a Morse func-
tion gives rise to a cellular decomposition of S (up to homotopy1), with 0-cells, 1-cells, 2-cells
corresponding bijectively to minima, saddles and maxima. Indeed, each critical point corre-
sponds to the attachment of a new cell:

f r

attach a handle

1-cell 1-handle
Mr+ε

Mr−ε

where Mr = {p ∈ S : f(p) ≤ r} is the sublevel set. �

Proof 2. By Theorem 14.7, we need to show
∫
S
K dA = 2π(#(min and max)−#(saddles)).

Since f is Morse, the critical points are isolated. Let’s call mi, sj ,Mk ∈ S the minima,
saddles, and maxima. Pick small disjoint “discs” (in a parametrization patch) around each
critical point, call these discs Di, Dj , Dk and call the anti-clockwise boundary curves γi, γj , γk.
So by the proof of Theorem 14.5, letting ` run over all indices i, j, k,∑

`

∫
D`

K dA =
∑
`

∫
θ′`(t) dt−

∫
γ`

κg ds

where θ` is the angle between v` and γ′`, and v` is corresponds to the normalized first standard
basis vector in the local coordinates.

1You can ignore this technical issue. Otherwise see the footnote to Theorem 4.2.
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On the complement C = S \ (those discs) we cannot use Theorem 14.5 directly as it may
not lie within a parametrization patch. However, we know how to build a unit vector field:

vc = ∇f/‖∇f‖
(note ∇f 6= 0 on C as the critical points lie outside C). Then, as usual, define wc = n× vc to
make vc, wc an orthonormal basis. The calculation in the proof of Theorem 14.5 still holds:1∫

C

K dA = −
∑
`

∫
θ′c,`(t) dt+

∫
γ`

κg ds

using that the γ` are clockwise boundary curves for C, and where θc,` is the angle between vc
and γ′`. Summing up:∫

S

K dA =
∑
`

∫
D`

K dA+

∫
C

K dA =
∑
`

∫
(θ` − θc,`)′(t) dt.

Observe that the angle difference θ` − θc,` equals the angle between v` and vc. The total
change in this angle, as you travel around γ`, is an integer multiple of 2π.

However, because we don’t know the Riemannian metric (first fundamental form) we don’t
know what ∇f is (hence we don’t know vc), so it’s hard to calculate this angle. So we use
a deformation trick. If we deform γ`, then this integer must vary continuously, but being an
integer it must be constant. By the same argument, we may also deform the metric: again this
integer must be constant. Notice in general that if we linearly interpolate two inner products,
so t〈·, ·〉1 + (1 − t)〈·, ·〉2 for 0 ≤ t ≤ 1, then it still satisfies bilinearity, symmetry, positive
definiteness, so it is still an inner product. So we may deform the metric to the standard
Euclidean metric in local coordinates. Then (∇f)local just becomes the usual Euclidean
∇Euclf . Since we can choose local coordinates so that

f(x, y) = f(p) + λ1x
2 + λ2y

2,

we get (∇f)local = (2λ1x, 2λ2y) and we know v` = (1, 0) is the first standard basis vector
locally. So we just need to understand how many total rotations vc undergoes locally (using

1Both signs on the right hand side are the opposite signs of those found in Step 5 of the proof of Theorem

14.5. This is because γ` is a clockwise curve bounding C, but Green’s theorem requires an anti-clockwise

curve. So in Step 3 of that proof, we get
∫
C K dA = −

∫
∇tw · v dt with a minus sign.
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Euclidean eyes) as we move along γ`. This integer is called the index of the vector field
∇f around the zero of ∇f (the critical point of f).

We may assume that the curve γ` is locally (x, y) = (cos t, sin t) and so along γ`:

vc =
1√

λ2
1 + λ2

2

(
λ1 cos t
λ2 sin t

)
If λ1, λ2 are both positive or both negative, then the vector vc will swing around once anti-
clockwise (notice that a global minus sign in front of the vector vc would be the same as
changing t to t + π, so it still rotates anti-clockwise). If λ1, λ2 have opposite signs, then
changing t to −t would switch the sign of sin t above and bring us back into the situation
where λ1, λ2 have equal signs, so in this case vc swings clockwise around once. So minima and
maxima each contribute +1 times 2π, whereas saddles contribute −1 times 2π to

∫
S
K dA. �

15.3 Indices of vector fields, Poincaré-Hopf and hairy ball theorems

This Section is non-examinable.

Within the previous proof, we defined the index of the vector field ∇f , but the definition
works for any vector field v on S. Given an isolated zero p of v, pick (right-handed) local
coordinates near p, pick a small circular anti-clockwise path γ around p in the local coordi-
nates, and count how many times the vector field v swings anti-clockwise around as you travel
around γ (it counts as −1 times if it swings clockwise).

Remark. Let’s check that the index does not depend on the observer. In another parametriza-
tion, the vector field becomes Dτ(v) (with detDτ > 0 since we use right-handed parametriza-
tions). Counting the swings in this parametrization is the same as measuring the angle in
the original parametrization between v and Dτ−1(e1) (rather than e1 = (1, 0)). But the
(non-vanishing) vector field Dτ−1(e1) is defined on the whole parametrization, and we can1

continuously deform it into the vector field e1. Since the index is an integer which depends
continuously on the curve, the index will not change under deformations.

Theorem 15.5 (Poincaré-Hopf theorem). Given any compact oriented surface S, and any
vector field v with isolated zeros,

χ(S) =
∑

p∈S with v(p)=0

Indexv(p).

Proof. The same proof as for Theorem 15.4 applies, using the vector field v on C. �

Remark. This theorem holds for any compact oriented manifold, it even holds if the manifold
has a boundary provided the vector field points orthogonally outwards along the boundary.

Example. For the torus T 2 ∼= S1 × S1, there is a non-vanishing vector field which points along
the direction of one of the two circle factors (e.g. pointing in the latitudinal direction). So it has
no zeros, so χ(T 2) = 0.

Corollary 15.6 (hairy ball theorem). There is no nonvanishing continuous vector field on
the sphere S2. More informally: if you attempt to comb a hairy ball to make the hair flat
(tangent to the surface), there will always be at least one tuft of hair somewhere.

Proof. If the vector field had no zero, then by Poincaré-Hopf: χ(S2) = 0 which is false. �

1Fix a reference point, and from there move outwards radially and slowly undo the twist in Dτ−1e1, this

will deform Dτ−1e1 into a constant vector field.
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16. Geodesics

16.1 Differentiating vector fields defined along a curve

Let w = w(t) be a vector field on S defined only along a curve γ(t) ∈ S, so w(t) ∈ Tγ(t)S.
Recall that we defined ∇tw to be the orthogonal projection onto TS:

∇tw = ∂tw − (n · ∂tw)n.

We would expect that the operator ∇t satisfies the chain rule

∇t = x′∇x + y′∇y
where γ′ = x′∂xF + y′∂yF , using a local parametrization F (x, y) (locally γ′loc = (x′, y′) and
γ′ = DF (γ′loc)). Then we can think of ∇t as the tangential directional derivative in the
direction γ′, in fact one often also writes1 ∇γ′ to mean ∇t. However, strictly speaking ∇xw
is not defined, since w is a vector field only defined along the curve γ, so we cannot “see” how
w varies in the x-direction, we only “see” how w varies in the γ′ direction. The next Lemma
clarifies this is not a problem (and puts it on a rigorous footing even for abstract surfaces).

Lemma 16.1 (Chain rule). Let v be any vector field on S defined in a neighbourhood of the
curve γ ⊂ S, which extends2 w(t), i.e. satisfies v(γ(t)) = w(t). Then1

∇tw = ∇γ′v =
∑

cj∇jv

where γ′(t) =
∑
cjXj in the basis Xj = ∂jF .

Proof. γ′(t) =
∑
cj(t)Xj |γ(t) in the basis Xj = ∂jF evaluated at γ(t). By the chain rule,

∂tw = ∂t(v(γ(t)) = Dv(γ′(t)) =
(
∂1v ∂2v

)( c1

c2

)
=
∑

cj∂j(v).

So ∇tw = ∂tw−(∂tw ·n)n =
∑
cj∂jv−

∑
cj(∂jv ·n)n =

∑
cj∇Xjv = ∇∑

cjXj
v = ∇γ′v. �

Remark 16.2. This Lemma allows us to define ∇γ′ also for abstract smooth surfaces by
turning the Lemma into a Definition. So ∇tw or ∇γ′w means ∇γ′v for an extension v as
above, and one checks that the choice of extension v does not matter.3 Indeed, if w(t) =∑
hk(t)Xk|γ(t) then the Leibniz rule holds: ∇tw =

∑
∂t(h

k)Xk|γ(t) +
∑
hk∇tXk|γ(t) where

∇tXk|γ(t) =
∑
cj∇jXk|γ(t) (and the latter in turn is known since ∇jXk =

∑
ΓijkXi).

16.2 Equivalent definitions of a geodesic

Definition 16.3 (Geodesic). A smooth curve γ in S is a geodesic if

∇γ′γ′ = 0

Recall by Section 14.1, a geodesic is a smooth curve γ in S which looks “straight” from
the point of view of S, and that any of the following conditions are equivalent:

1Notice that γ′ is not a local vector field since it is only defined along the curve γ(t), so we haven’t actually

defined ∇γ′ . However, since ∇XY is tensorial in X, this is not an issue. Indeed, let Z be any vector field

defined near the curve which restricts to Z|γ(t) = γ′(t). Then we can define ∇γ′Y = (∇ZY )|γ(t) evaluating

at γ(t), and then we check that this equals
∑
cj(t) (∇Xj

Y )|γ(t) independently of the choice of Z. Indeed

(∇ZY )|γ(t) = ∇∑
Zj(γ(t))Xj

Y =
∑
Zj(γ(t)) (∇Xj

Y )|γ(t) =
∑
cj(t) (∇Xj

Y )|γ(t).
2Note, by this Lemma, the tangential derivative ∇γ′v does not depend on the choice of extension v for w.
3Using Christoffel symbols, recall ∇iXj =

∑
ΓkijXk, where Xk is a basis for the tangent space. Write

v =
∑
fkXk in that basis, where fk are functions. By construction, w(t) =

∑
(fk ◦ γ(t))Xk|γ(t). By the

Leibniz rule, ∇j(fkXk) = fk∇jXk + ∂j(f
k)Xk. By the usual chain rule,

∑
cj∂j(f

k) = ∂t(fk ◦ γ). Thus∑
cj∇jv =

∑
∂t(fk ◦ γ)Xk +

∑∑
fkcjΓijkXi which does not depend on v.
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(1) κg = 0: the geodesic curvature vanishes (recall κg = ±‖∇tγ′‖),
(2) ∇tγ′ = 0: the tangential acceleration vanishes,
(3) ∇γ′γ′ = 0 (using Lemma 16.1),
(4) γ′′ ·TS = 0: the acceleration γ′′ is normal to S (for γ parametrized by arc-length),
(5) γ′′ = II(γ′, γ′)n when γ is parametrized by arc-length,
(6) γ = reparametrization of a curve γ̃ with γ̃′, γ̃′′, n linearly dependent (Corollary 14.3).

Remark. Definitions (2) and (3) do not require the surface S to be embedded in R3: it suffices
that a Riemannian metric gij is defined on S. Indeed, in Exercise Sheet 2 you found a formula
for Γkij in terms of gij, this in turn defines ∇XY , which in turn defines ∇γ′ and ∇t.

Lemma 16.4. Geodesics always have constant speed: ‖γ′(t)‖ is constant.

Proof. ∂t‖γ′(t)‖2 = ∂tI(γ′, γ′) = I(∇tγ′, γ′) + I(γ′,∇tγ′) = 2I(∇tγ′, γ′) = 0. �

16.3 The geodesic equation in local coordinates

As in Lemma 16.1,

γ′(t) =
∑

cj(t)Xj |γ(t)

in the basis Xj = ∂jF of TS evaluated at γ(t). By the Leibniz rule,

∇t(
∑

cjXj) =
∑

∂t(c
j)Xj +

∑
cj∇tXj .

By the chain rule (Lemma 16.1), summing over repeated indices,1

∇tXj =
∑

ci∇iXj =
∑

ciΓkijXk.

Hence the geodesic equation ∇tγ′ = 0 becomes

∂tc
k +

∑
Γkijc

icj = 0.

Abbreviating cj = ẋj , using one “dot” for each time derivative, we obtain:

Corollary 16.5. In local coordinates γ(t) = (x1(t), x2(t)) ∈ V ⊂ R2 the geodesic equation is:

ẍk +
∑

Γkij ẋ
iẋj = 0 (16.1)

Exercise In local coordinates, let A =
(
e f
f g

)
be the matrix for the first fundamental form

and γloc = (x(t), y(t)) a curve parametrized by arc-length, so the equation ( x
′

y′ )
TA ( x

′

y′ ) = 1

holds, so explicitly ex′2 + 2fx′y′ + gy′2 = 1 . The geodesic equation is:

d

dt

(
A
(
x′

y′

))
=

1

2


(
x′

y′

)T
(∂xA)

(
x′

y′

)
(
x′

y′

)T
(∂yA)

(
x′

y′

)


or more explicitly:

d
dt (ex

′ + fy′) = 1
2 (x′2∂xe+ 2x′y′∂xf + y′2∂xg)

d
dt (fx

′ + gy′) = 1
2 (x′2∂ye+ 2x′y′∂yf + y′2∂yg)

1recall that since ∇iXj ∈ TS, we can write ∇iXj in the basis Xj and we call the coefficient functions the

Christoffel symbols: ∇iXj =
∑

ΓkijXk.
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Proof:1 γ is a geodesic precisely if γ′′ is normal, i.e. perpendicular to X1, X2. The first of the
two orthogonality equations (the other is similar) is

0 = γ′′ ·X1 = d
dt (γ

′ ·X1)− γ′ · ddt (X1).

Since γ′ = x′X1 + y′X2, the first term is d
dt (γ

′ ·X1) = d
dt (ex

′ + fy′) (the left hand side of the
first equation in the above box). The second term, by the chain rule, is

γ′ · ddt (X1) = (x′X1 + y′X2) · (x′∂xX1 + y′∂yX1) = (x′∂xF + y′∂yF ) · (x′∂xxF + y′∂yxF ).

Now ∂xF · ∂xxF = 1
2∂xe, ∂xF · ∂yxF + ∂yF · ∂xxF = ∂xf , ∂yF · ∂yxF = 1

2∂xg. �

Example 16.6. When I = (G 0
0 1 ), the formulas give: d

dt (Gx
′) = Gx′′ + ∂xGx

′2 + ∂yGx
′y′ =

1
2x
′2∂xG and d

dt (y
′) = y′′ = 1

2x
′2∂yG. So for x(t) = constant we can find a solution: y(t) =

p+ ct for constants p, c.

Exercise. (Harder) Using the above formulas, find the geodesics in the upper-half plane H.

16.4 Existence and uniqueness of geodesics

Theorem 16.7. Given a point p ∈ S and a tangent direction v ∈ TpS, there is a unique
geodesic γp,v : (−ε, ε)→ S, defined for some ε > 0, through p with tangent vector v at p:

γp,v(0) = p and γ′p,v(0) = v.

Moreover, γp,v depends smoothly on the initial conditions p, v.

Proof. ẍk +
∑

Γkij ẋ
iẋj = 0 are a system of ODE’s, therefore (see Analysis Handout): a

solution exists, it is unique, and it depends smoothly on the initial conditions. �

Example. For S = R2 ⊂ R3, using F (x, y) = (x, y, 0), we have X1 = (1, 0, 0) and X2 =
(0, 1, 0), so ∇iXj = 0, so all Γkij = 0, so the geodesic equation is

ẍj = 0 for j = 1, 2.

So (x1, x2) = (p1 + v1t, p2 + v2t) = p+ tv is a straight line through p along v.

Example. Recall great circles in the unit sphere are geodesics. Conversely, given a point p ∈ S2

and a direction v ∈ TpS
2, there is a great circle through p in the direction v (namely, the

intersection of the plane span(p, v) with S2, or more explicitly: rotate R3 so that p, v become
p = (1, 0, 0) and v = (0, 1, 0), then the geodesic is the equator). So, by uniqueness, all geodesics
are great circles.

Remark. One can show that on a compact surface, the geodesic is defined for all time:
γp,v : R→ S. In the non-compact case, this may fail.2

1Exercise: Fill in the details in the following equivalent proof. For γ parametrized by arc-length, γ is a
geodesic if and only if γ′′ is normal, i.e. γ′′ is orthogonal to TS = span(∂xF, ∂yF ). This is equivalent to:

DFT γ′′ = 0.

Since γ′ = DFγ′loc and A = DFTDF , show that this equation can be rewritten as:

d
dt

(Aγ′loc) = ( d
dt
DFT )DFγ′loc.

Now just dot with (1, 0) and (0, 1) to obtain the above equations, using the chain rule ∂t = x′∂x + y′∂y and

tricks like ∂xyF · ∂xF = ∂yxF · ∂xF = 1
2
∂y(∂xF · ∂xF ) = 1

2
∂ye.

2For example, for the non-compact surface R2 \{0} the straight line γ(−1,0),(1,0)(t) = (−1 + t, 0) is defined

for t ∈ (−∞, 1) but not at t = 1 since (0, 0) does not officially belong to R2 \ {0}.
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Theorem 16.8 (See C3.3: Differentiable Manifolds).

Geodesics locally minimize lengths of curves

Conversely, given a point p ∈ S, for any point q sufficiently close to p there is a unique curve
γ from p to q which achieves the minimum inf L(γ) (taking the infimum over smooth curves
γ from p to q), and this minimizer is a geodesic.

Example. The shortest path between two points on a sphere is the (short) arc of the great circle
through those two points. Geodesics may not be global length minimizers: the full great circle,
from the North Pole to the South Pole and then further to the North Pole, is a geodesic but of
course the constant geodesic at the North Pole is the shortest path from the North Pole to the
North Pole!

Cultural remark. In physics, you declare that light rays move along shortest paths (locally).
So light rays move along geodesics. Thus, it is no surprise that a geodesic is determined by
initial position and velocity: think of pointing a flashlight from a position p in a direction v.

16.5 Examples of geodesics via symmetries and isometries

Lemma 16.9. Any plane of symmetry locally intersects a surface S ⊂ R3 in a geodesic.

Proof. The surface is symmetric about the plane P , so also the normal vector must be, so
n ∈ P . Let γ be a local curve where P intersects S, and parametrize γ by arc-length.1 Then
γ′ ∈ P and γ′′ is orthogonal to γ′ (differentiate γ′ · γ′ = 1). As γ is invariant under the
symmetry, so are γ′, γ′′, so γ′′ ∈ P . So n, γ′′ ∈ P are both orthogonal to γ′, so they are
proportional. �

Example. For a surface of revolution S, any plane P through the axis of revolution is a plane of
symmetry. So if the axis of revolution is the Z-axis, the curves running “vertically” are geodesics.
For the sphere the curves heading “vertically” towards the North Pole are geodesics: indeed they
are meridian great circles.

Theorem 16.10. If two surfaces are locally isometric, then they have locally the same
geodesics. In particular, isometries ϕ : S1 → S2 map geodesics to geodesics:2

ϕ ◦ γp,v = γϕ(p),Dϕ(v).

Proof. The geodesic equation only depends on the tangential derivative, which only depends
on the first fundamental form. �

Example. For the cylinder X2 + Y 2 = a2, F (x, y) = (a cos y, a sin y, x) gives first fundamental
form I = dx2 + a2dy2 which is the same as the first fundamental form for the plane R2 with
F (x, y) = (x, ay). So the cylinder is locally isometric to the plane. The geodesics for the plane
are straight lines (x(t), y(t)) = p+ tv, so each non-constant geodesic on the cylinder is a helix:

F (p+ tv) = (a cos(p2 + tv2), a sin(p2 + tv2), p1 + tv1).

A very useful generalization of Lemma 16.9, but essentially based on the same idea, is:

1Technical Remark. You may worry that γ is not a regular curve, i.e. that there may be points with

γ′ = 0, in which case we cannot reparametrize by arc-length. Suppose γ′(t0) = 0. Let T = Tγ(t0)S be the

tangent plane at that stationary point. As S is symmetric about P , also T must be. The intersection P ∩ T
of those two planes is a straight line. By Theorem 9.1, we can use T to build a local parametrization F for

S near γ(t0). By picking a regular parametrization of the straight line P ∩ T ⊂ T , the image via F will be a
regular curve in S and we just use this curve instead of γ in the proof. (To clarify: this curve and γ have the

same geometric image in S but they are parametrized differently, as we got rid of the stationary points).
2using the notation from Theorem 16.7.
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Theorem 16.11 (Symmetry implies geodesic). If ϕ is a local isometry of an abstract smooth
surface, such that locally the fixed points1 of ϕ form a curve γ(t) with γ′ 6= 0 then γ becomes
a geodesic after arc-length reparametrization.

Proof. γ is fixed by ϕ, so span(γ′) ⊂ TS is fixed2 by Dϕ. Since locally ϕ is not the identity
map, the fixed locus of Dγ(t)ϕ is precisely span (γ′(t)). Since the isometry ϕ fixes γ it follows3

that Dϕ(∇tγ′) = ∇tγ′. Hence ∇tγ′ ∈ span(γ′) ⊂ TS. But after reparametrizing γ by arc-
length, we have ∇tγ′ · γ′ = 0 (from differentiating γ′ · γ′ = 1). So ∇tγ′ is both proportional
and perpendicular to γ′ in the two-dimensional space TS, so ∇tγ′ = 0. So γ is a geodesic. �

Example. For the Euclidean plane R2, the reflection in a straight line preserves the dot product,
so it preserves the Riemannian metric. So straight lines are geodesics.

Example. For the hyperbolic plane H, we use the hyperbolic metric dx2+dy2

y2 from Section 10.9.

Notice that the straight vertical line x = 0 (which is orthogonal to the real axis) is fixed by the
reflection isometry ϕ : H→ H, ϕ(x, y) = (−x, y) (indeed, put x̃ = −x, ỹ = y, then dx̃2 = dx2,
etc.). Similarly, for a straight line x = c, using the reflection ϕ(x, y) = (2c − x, y). So vertical
straight lines in H are hyperbolic geodesics. For straight lines which are not vertical, this does not
work, since the corresponding reflections will change y and the metric will notice such changes.

17. Geodesic normal coordinates

17.1 Geodesic normal coordinates

Theorem 17.1. Given p ∈ S, we can build a right-handed local parametrization F (x, y) near
p, such that c(x) = F (x, 0) is a geodesic and y 7→ F (x, y) is a geodesic orthogonal to it.

1so ϕ ◦ γ(t) = γ(t), and ϕ(p) 6= p for p close to the local curve γ unless p = γ(t) for some t. Of course,

we don’t want to allow the identity map ϕ = id which would tell us nothing interesting. Notice that you can
think of ϕ as the reflection in γ, locally.

2γ′ = ∂t(γ) = ∂t(ϕ ◦ γ) = Dϕ ◦ γ′.
3Note that via an isometry, two surfaces with Riemannian metrics are to all intents and purposes identical.

More pedantically: if two patches of surfaces are isometric via ϕ : S1 → S2, then if F : V → S1 is a local

parametrization, then ϕ◦F is a local parametrization for S2, such that ϕ in local coordinates just becomes the
identity map (indeed we use the same local coordinates x, y) and the Riemannian metric gij written locally is

the same. So the curves γ in S1 and ϕ ◦ γ in S2 are the same curve γloc(t) = (x(t), y(t)) in local coordinates.

Hence ∇t is defined in the same way for both surfaces, and so ∇tγ′ is the same, using Lemma 13.1 that ∇t
only depends on the Riemannian metric (In Exercise Sheet 2 you found an explicit formula for Γkij in terms

of the metric gij , which determines ∇Xi
Xj , which determines ∇t by Section 16.1).
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Proof. Pick any non-zero vector v0 ∈ TpS at p. Let c(t) = γp,v0(t) as in Theorem 16.7. Let

w(x) = n× c′(x) = (c′(x) rotated by 90 degrees).

We define F (x, y) to be the geodesic through c(x) with initial velocity w(x):

F (x, y) = γc(x),w(x)(y)

By definition, the velocity vectors of the respective geodesics are:

∂xF |y=0 = c′(x) ∂yF |y=0 = w(x).

So ∂xF, ∂yF are linearly independent at y = 0 (indeed orthogonal) so they must be linearly
independent also for small y close to 0. Hence F is a local parametrization for small x, y. �

Corollary 17.2. If we pick v0 = c′(0) to have unit length, then for the above F (x, y),

I = G(x, y)dx2 + dy2

for the smooth function G(x, y) = ‖∂xF‖2 > 0.

Proof. If we pick v0 to be a unit vector, then by Lemma 16.4,

‖c′(x)‖ = ‖v0‖ = 1.

By construction w(x) = n× c′(x) has unit length (as n, c′ are orthogonal), so by Lemma 16.4,

‖∂yF (x, y)‖ = ‖∂yF (x, 0)‖ = ‖w(x)‖ = 1.

We now show ∂xF , ∂yF are orthogonal, i.e. that I(∂xF, ∂yF ) = 0. First we compute

∂yI(∂xF, ∂yF ) = I(∇y∂xF, ∂yF ) + I(∂xF,∇y∂yF ).

Now ∇y∂yF = 0 since F is a geodesic in y. For the other term:

∇y∂xF = ∂y∂xF − (n · ∂y∂xF )n
= ∂x∂yF − (n · ∂x∂yF )n
= ∇x∂yF.

So I(∇y∂xF, ∂yF ) = I(∇x∂yF, ∂yF ) = 1
2∂xI(∂yF, ∂yF ) = 1

2∂x‖∂yF‖
2 = 1

2∂x(1) = 0. Com-
bining the above, ∂yI(∂xF, ∂yF ) = 0, thus I(∂xF, ∂yF ) is constant in y and hence equal to
zero (since ∂xF, ∂yF are orthogonal at y = 0, by our choice of c′, w). �

Warning. F (x, y) is typically not a geodesic in the x-coordinate (for y 6= 0), otherwise we
would have I = dx2 + dy2, so S would be isometric to a plane, so K = 0.

In the above proof, we showed that

∇y∂xF = ∇x∂yF

This is a general symmetry property that you proved in Exercise Sheet 2: Γkij = Γkji.

Definition 17.3 (Geodesic normal coordinates). We call the above coordinates x, y geodesic
normal coordinates (taking c′ of unit length, so I = Gdx2 + dy2).
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17.2 The Gaussian curvature revisited

Theorem 17.4. If I = Gdx2 + dy2 locally (for example in geodesic normal coordinates),

K = − ∂yy
√
G√

G
.

Proof. Claim 1. The curves (x = constant) are geodesics, so F (x, y) is a geodesic in y.
Proof. See Example 16.6. We may assume F (x, y) is a right-handed parametrization.
Claim 2. We can calculate the Riemann curvature in two ways.
Proof. First, by Lemma 13.3,

(∇x∇y −∇y∇x)∂yF = −K
√

det IF n× ∂yF = −K
√
G n× ∂yF.

Since ∂xF, ∂yF, n are orthogonal, n × ∂yF is parallel to ∂xF , and taking into account orien-
tations and lengths (‖∂xF‖2 = G, ‖∂yF‖2 = 1):

n× ∂yF = −∂xF/‖∂xF‖ = − 1√
G
∂xF.

Secondly, ∇y∂yF = 0 since F is a geodesic in y, and using ∇x∂yF = ∇y∂xF :

(∇x∇y −∇y∇x)∂yF = −∇y∇y∂xF.
Write ∇y∂xF = a∂xF + b∂yF in the basis ∂xF, ∂yF for TS. Using that I = Gdx2 + dy2, and
that the ∂jF are orthogonal to n:

Ga = ∂xF · ∇y∂xF = ∂xF · ∂y∂xF = 1
2∂y(∂xF · ∂xF ) = 1

2∂yG,
b = ∂yF · ∇y∂xF = ∂yF · ∂y∂xF = ∂yF · ∂x∂yF = 1

2∂x(∂yF · ∂yF ) = 1
2∂x(1) = 0.

Thus ∇y∂xF =
∂yG
2G ∂xF =

∂y
√
G√
G
∂xF . Combining and using the Leibniz rule:

K∂xF = −K
√
G(− 1√

G
∂xF ) = −∇y∇y∂xF

= −∇y((
∂y
√
G√
G

)∂xF )

= −∂y(
∂y
√
G√
G

)∂xF − (
∂y
√
G√
G

)∇y∂xF

= [−∂y(
∂y
√
G√
G

)− (
∂y
√
G√
G

)2] ∂xF

= [−∂y∂y
√
G√

G
+

(∂y
√
G)2

G − (
∂y
√
G√
G

)2] ∂xF

= −∂y∂y
√
G√

G
∂xF. �

Example. For the unit sphere, with F (x, y) = (cosx sin y, sinx sin y, cos y) we saw in Section
10.5 that I = sin2 y dx2 + dy2. Then, as expected:

K = − ∂yy
√

sin2 y√
sin2 y

= − ∂yy sin y

sin y
=

sin y

sin y
= 1.

17.3 The Gaussian curvature of the hyperbolic plane

Recall from Section 10.9 that for the hyperbolic plane H = {z ∈ C : Im z > 0}, parametriz-
ing by F (x, y) = x+ iy, we use the Riemannian metric

I =
1

y2
dx2 +

1

y2
dy2 = y−2dx2 + d(log y)2,

using the trick d log y = (∂y log y)dy = 1
ydy.

Corollary 17.5. For the hyperbolic plane, K = −1.
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Proof. In the new coordinates x̃ = x, ỹ = log y the metric becomes Gdx̃2 + dỹ2 for

G(x̃, ỹ) = y−2 = e−2ỹ.

By Theorem 17.4, K = − ∂ỹỹ

√
e−2ỹ

√
e−2ỹ

= − ∂ỹỹe
−ỹ

e−ỹ = − e−ỹ

e−ỹ = −1. �

18. Surfaces of constant curvature

Lemma 18.1. If x, y are geodesic normal coordinates, so I = Gdx2 + dy2, then

G(x, 0) = 1 and ∂yG(x, 0) = 0.

Proof. The curve F (x, 0) is a geodesic of unit speed, so G(x, 0) = ‖∂xF‖2 = 1 for y = 0. Also

1

2
∂yG =

1

2
∂y(∂xF · ∂xF ) = ∂xF · ∂y∂xF = ∂xF · ∂x∂yF = ∂xF · ∇x∂yF = −∇x∂xF · ∂yF

where the last equality follows by differentiating the orthogonality condition ∂xF · ∂yF = 0.
Evaluating at y = 0, ∇x∂xF = 0 since F (x, 0) is a geodesic in x. So (∂yG)|y=0 = 0. �

Theorem 18.2.

(1) If K = 0, then the surface is locally isometric to the plane,
(2) If K = 1, then the surface is locally isometric to the unit sphere,
(3) If K = −1, then the surface is locally isometric to the hyperbolic plane.

Proof. Using geodesic normal coordinates, I = Gdx2 + dy2, by Theorem 17.4,

∂yy
√
G = −K

√
G

where K = 0, 1,−1 in the three respective cases.
For K = 0, integrating:

√
G(x, y) = a(x)y + b(x) for smooth functions a, b of the other

variable, so G = (a(x)y+b(x))2. By Lemma 18.1, G(x, 0) = 1 so b(x) = ±1, and ∂yG(x, 0) = 0
so 2(a(x)0± 1)a(x) = 0 so a(x) = 0. Thus G = 1, so we get the plane metric: I = dx2 + dy2.

For K = ±1 we need to solve the general equation z′′ ± z = 0. We know1 the solutions:
z = a cos t+ b sin t in the + case, and z = a cosh t+ b sinh t in the − case.2

So for K = +1, G(x, y) = (a(x) cos y + b(x) sin y)2. By Lemma 18.1, G(x, 0) = 1 so
a(x) = ±1, and ∂yG(x, 0) = 0 so 2(a(x)1+ b(x)0)(−a(x)0+ b(x)1) = ±2b(x) = 0, so b(x) = 0.
Thus G = cos2 y, so we get the metric of a sphere: I = cos2 ydx2 + dy2 (by taking x̃ = x,
ỹ = π

2 − y we get sin2 ỹdx̃2 + dỹ2 as in Section 10.5).

And for K = −1, G(x, y) = (a(x) cosh y + b(x) sinh y)2. By Lemma 18.1, G(x, 0) = 1 so
a(x) = ±1, and ∂yG(x, 0) = 0 so 2(a(x)1 + b(x)0)(a(x)0 + b(x)1) = ±2b(x) = 0 so b(x) = 0.

Thus G = cosh2 y, so we get the metric

I = cosh2 y dx2 + dy2.

We need a clever change of variables to turn this into the hyperbolic plane metric

Ĩ =
1

ỹ2
(dx̃2 + dỹ2).

1Since those are solutions, and for appropriate a, b they satisfy any initial conditions z(0), z′(0), then by
uniqueness of ODE solutions there are no other solutions.

2Refresher on hyperbolic functions: cosh(t) = 1
2

(et+e−t), sinh(t) = 1
2

(et−e−t). They satisfy the equality

cosh2(t)− sinh2(t) = 1 and have derivatives cosh′ = sinh and sinh′ = cosh.
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We try:1

x̃ = ex tanh y ỹ = exsech y

Then:

dx̃ = ex tanh y dx+ exsech 2y dy dỹ = exsech y dx− ex tanh y sech y dy

Squaring and adding will make the double products cancel, leaving squares:

dx̃2 + dỹ2 = e2x(tanh2 y + sech 2y) dx2 + e2x(sech 4y + tanh2 y sech 2y) dy2

= e2x dx2 + e2x sech 2y dy2

= e2x sech 2y (cosh2 y dx2 + dy2)

where the coefficient e2xsech 2y = ỹ2 as required. �

19. Riemann surfaces: holomorphic maps and Riemann-Hurwitz

19.1 The local form of a holomorphic map between Riemann surfaces

Theorem 19.1 (Local form of a holomorphic map). For any holomorphic map f : S → R
between Riemann surfaces, with f(s) = r, we can choose local complex coordinates around
s ∈ S, r ∈ R, so that in local coordinates f is the map2

f : D → D, f(z) = zn.

Proof. We can assume (by translating) that the local coordinates are chosen so that s, r
correspond to 0 ∈ C, so in local coordinates f(0) = 0. The Taylor series for f is

f(z) = anz
n + an+1z

n+1 + · · · = anz
n(1 + higher order terms)

where an 6= 0 is the first non-zero coefficient. This n ≥ 1 is called the order of the vanishing

f(0) = 0. A holomorphic n-th root of f is then defined3 near 0, with f(z)1/n = a
1/n
n z +

higher terms. The derivative of this n-th root at z = 0 is a
1/n
n 6= 0. By the inverse function

theorem, there is a local holomorphic inverse G : C→ C defined near 0, so G(0) = 0 and

f(G(z))1/n = z.

Now we can change coordinates on the domain using the local biholomorphism G, explicitly:
if F : C→ S (defined near 0 ∈ C) was the original local parametrization near s ∈ S, then the
new one is F ◦G : C→ C→ S (defined near 0 ∈ C). The new local expression for f becomes

z 7→ f(G(z)) = zn. �

In Exercise Sheet 4, you will deduce the following from Theorem 19.1:

1Second refresher on hyperbolic functions: tanh t = sinh t
cosh t

and sech t = 1
cosh t

have derivatives tanh′(t) =

sech 2(t) and sech ′(t) = − sinh t
cosh2 t

= − tanh t sech t. We will use the useful identity

tanh2 y + sech 2y = 1

(which follows from cosh2 y − sinh2 y = 1). E.g. this shows we can invert the above change of variables:

x̃2 + ỹ2 = e2x so we recover x, then we recover y.
2Explicitly and pedantically: there are local parametrizations F : V → S, 0 ∈ V ⊂ R2, G : W → R,

0 ∈W ⊂ R2, F (0) = s, G(0) = r and f local(z) = G−1 ◦f ◦F (z) = zn. We abusively just say “locally f = . . .”.
3For a ∈ C, w ∈ C with |w| < 1, (1 + w)a has a series expansion (Newton’s generalised binomial series)

(1 + w)a = 1 + aw +
a(a− 1)

2!
w2 +

a(a− 1)(a− 2)

3!
w3 + · · ·

for any a ∈ C, and the series converges absolutely.
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Corollary 19.2 (Open mapping theorem). A non-constant holomorphic map f : R → S
between Riemann surfaces, with R connected, is an open map: f(any open set) is open.

In Exercise 4, you’ll deduce the following, for f : R→ S holomorphic, R,S Riemann surfaces:

(1) If f is non-constant, R compact connected, then f(R) ⊂ S is a connected component.
(2) If f is non-constant, R,S both compact connected, then f is surjective: f(R) = S.
(3) If R is compact connected, S non-compact connected, then f is constant.
(4) A holomorphic map S → C on a compact connected Riemann surface is constant.
(5) Fundamental theorem of algebra: non-constant complex polynomials have a root.

So you should view the above as a powerful generalization of the fundamental theorem of
algebra. The fundamental theorem of algebra in fact says that the number of roots (counting
multiplicity) equals the degree of the polynomial. We now generalize this to Riemann surfaces.

19.2 Branch points and ramification points

Recall the local form Theorem 19.1: f : R→ S has the local form z 7→ zn near p ∈ R, where
p corresponds to z = 0 locally. We call vf (p) = n the valency of f at p. Geometrically, it
tells you how many solutions there are to the equation

f(z) = w

for small w 6= 0. This shows n does not depend on the choice of local coordinates near p, f(p).
The point w = 0 is bad because there are missing solutions: only z = 0 is a solution for small
z. We call z = 0 a ramification point and w = 0 a branch point. Intuitively, a ramification
point in R is where the local number of solutions of f(z) = w has suddenly dropped. The
value of w, when solutions are missing, is a branch point.

Definition 19.3 (Ramification point and branch point). For a point p where vf (p) 6= 1:

(1) p ∈ R is called ramification point
(2) the image f(p) ∈ S is called branch point
(3) vf (p) is called ramification index

Equivalently:
� r ∈ R is a ramification point ⇐⇒ the derivative f ′(r) = 0 in local coordinates,
� s ∈ S is a branch point ⇐⇒ the preimage f−1(s) ⊂ R contains a ramification point,
� the ramification index = 1 + number of derivatives of f vanishing at r in local coordinates.

Lemma 19.4. For compact R, vf (p) = 1 for all except finitely many p ∈ R.
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Proof. Locally f(z) = zn, so f ′(z) = nzn−1 6= 0 for z 6= 0 near z = 0. So the subset in R of
points where vf (p) > 1 is discrete. So it is finite when R is compact. �

19.3 The degree of a holomorphic map of compact Riemann surfaces

Definition 19.5 (Degree). The degree of a non-constant holomorphic map f : R → S
between compact connected Riemann surfaces is

deg(f) =
∑

r∈f−1(s)

vf (r)

where we fix a point s ∈ S.

Theorem 19.6. deg(f) does not depend on the choice of point s ∈ S.

Proof. Since R is compact, f−1(s) ⊂ R is finite (f is not1 constantly r). Pick small disjoint
discs Dp ⊂ R, one around each point p ∈ f−1(s), so that on each disc f has the local form

z 7→ zvf (p). By shrinking the radii of the discs Dp, we can assume all Dp map surjectively
onto the same open neighbourhood V of s. By construction, f−1(V ) contains all the discs
Dp, but may contain also other points of R. However, by further shrinking the radii of the
Dp we can ensure that f−1(V ) = ∪Dp contains nothing else.2

By the local model, it follows that d =
∑
p∈f−1(s) vf (p) is the number of solutions to the

equation f(q) = w for w 6= s ∈ V (in each disc Dp we find vf (p) solutions). Thus

|f−1(w)| =
∑

q∈f−1(w)

vf (q) = d,

independently of the choice of w 6= 0 ∈ V . Since S is connected, the locally constant function
w 7→

∑
q∈f−1(w) vf (q) on S must be constant. �

Corollary 19.7. For all points s ∈ S except branch points, there are precisely deg(f) =
|f−1(s)| points in R mapping to s.

Example. For a complex polynomial f(z) of degree d, we have d = deg(f). So there are
precisely d solutions to f(z) = 0 unless 0 is a branch point of f . When 0 is a branch point, there
are repeated roots, but if we count the roots with the correct multiplicity vf (p) then there are still
d solutions.

19.4 The Riemann-Hurwitz formula

The total number of “missing solutions” that we expected for f(r) = s, over all s ∈ S, is:

b(f) =
∑
s∈S

(deg(f)− |f−1(s)|) =
∑
s∈S

∑
r∈f−1(s)

(vf (r)− 1)

which we call the branching index b(f), where recall f : R → S is a holomorphic map
between compact connected Riemann surfaces R,S.

1If f−1(s) had infinitely many points, then it would have a limit point r. At this limit point r you could

not have a local form of type z 7→ zN , as s has infinitely many preimages near r (in particular more than N).
2otherwise, by contradiction, there would be a sequence of points in R bounded away from ∪{p} = f−1(s)

for which the f -values converge to s. By compactness of R a subsequence would converge to a point p′ with

f(p′) = s which we had not included in ∪{p} = f−1(s), contradiction.
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Theorem 19.8 (Riemann-Hurwitz formula). For any non-constant holomorphic map f :
R→ S between compact connected Riemann surfaces, the Euler characteristics of R,S satisfy

χ(R) = deg(f)χ(S)− b(f),

which determines the genus g(R) since χ(R) = 2− 2g(R).

z 7→ z3

R

S
T

z 7→ z3

R

S
T

Proof. Pick a triangulation for S so that the branch points belong to the vertices of the
triangulation. We want the preimage to yield a triangulation of R. So we subdivide the
triangles into smaller triangles if necessary, so that each triangle T ⊂ S lies inside an open
set V ⊂ S small enough so that f−1(V )→ V can be written in the usual local form on each
connected component U ⊂ R of f−1(V ) (just as in the proof of Theorem 19.6). If the local
form of f : U → V is z 7→ z, so vf = 1, then the preimage of T is an exact copy of that
triangle, but if the local form is z 7→ zn, so vf = n, then f−1(T ) consists of n triangles (they
share a vertex if a vertex of T is a branch point). The same holds for edges. However, for
the vertices which are branch points we have fewer preimage vertices than expected (we lose
vf − 1 vertices at each branch point). So

V (R) = deg(f)V (S)− b(f) E(R) = deg(f)E(S) F (R) = deg(f)F (S). �

Remark. The formula also holds when R is disconnected (apply the formula on each con-
nected component of R). Of course S needs to be connected (can you see why?)

Example. Recall from Exercise sheet 1 that

R = {(z, w) ∈ C2 : w2 = (z − 1)(z − 2)(z − 3)} ∪ {∞}
is secretly a torus (where we compactify with a point at infinity, (X,Y ) = (0, 0) using X = 1/z,
Y = w/z2 at infinity, and we declare that Y is a local holomorphic coordinate - see Section 8.3).
Claim: the map f : R → CP 1, f(z, w) = z is holomorphic (in equivalent notation: the map is
f(z, w) = [1 : z] and f(∞) = [0 : 1]).
Proof: z is a local coordinate on R when ∂wf 6= 0, so when w 6= 0, so when z 6= 1, 2, 3. In
that case f is locally the map floc(z) = f(z, w) = z, so holomorphic! When z = 1, 2, 3, we have
∂zf 6= 0, so w is a local coordinate, so R is locally (g(w), w) for a holomorphic function g, and
so floc(w) = f(g(w), w) = g(w) is holomorphic. Finally, at infinity, f is locally the function1

floc(Y ) = 1/f(X,Y ) = X so holomorphic because again R is locally a graph X = g(Y ) for g
holomorphic, since ∂Xf 6= 0 at (X,Y ) = (0, 0). �
For almost any choice of z, the number of preimages f−1(z) is 2 since there will be two choices
of square root w. So deg(f) = 2. The only times when the number of preimages drops, is if
(z − 1)(z − 2)(z − 3) = 0, so z = 1, 2, 3, and possibly at infinity. Since we only add one point

1More precisely: f = [1 : f(z, w)] = [1 : z] ∈ CP 1 so near z =∞ we must write f = [ 1
f(z,w)

: 1] ∈ CP 1 so

floc(Y ) is the first entry, since that is the local coordinate that we use near the North Pole [0 : 1] ∈ CP 1.
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at infinity, f−1(∞) only contains one point instead of two.1 Thus z = 1, 2, 3,∞ are the branch
points, (1, 0), (2, 0), (3, 0), ∞ are the ramification points, the ramification indices are all vf = 2,
and the branching index is b(f) = 4 · (2− 1) = 4. By Riemann-Hurwitz,

χ(R) = deg(f) · χ(CP 1)− b(f) = 2 · 2− 4 = 0,

so the genus is g(R) = 1 so R is a torus.

Cultural Remark: Why is the Riemann-Hurwitz theorem spectacular? A lot of
mathematics you have seen so far, at least in geometry, has involved checking things that are
obviously true, or at least intuitively obvious (e.g. the Jordan curve theorem). But Riemann-
Hurwitz is different: you are not verifying something that you already “know” is true. You
are proving a global result, namely computing the genus of the surface, by simply doing some
basic local calculations (order of vanishing of local derivatives). This is geometry at its best:
when you prove something geometrical that you cannot “see”.

20. Riemann surfaces: Meromorphic functions

20.1 Definition and examples

We can study Riemann surfaces S by investigating holomorphic maps from S into some
test Riemann surface. Using C as test space is essentially useless:

Theorem 20.1 (See Section 19.1). If S is a compact Riemann surface, then holomorphic
maps S → C are constant on each connected component.

You can also prove this via the maximum modulus principle,2 and notice it generalizes3

Liouville’s theorem that a bounded holomorphic function C→ C is constant.
So the simplest interesting example of maps from a Riemann surface S into a test space,

is to consider the test space CP 1:

Definition 20.2. A meromorphic function is a holomorphic map S → CP 1, which is not
identically equal to infinity on any connected component of S.4

Let’s unpack the definition, in local coordinates. Recall you can view

CP 1 = C ∪ {∞}

where you use the local coordinate Z for C (corresponding to [Z0 : Z1] = [1 : Z] ∈ CP 1), and
you use the local coordinate W = 1/Z near ∞ (corresponding to [Z0 : Z1] = [W : 1] ∈ CP 1).

Consider a point p ∈ S, and pick a local holomorphic coordinate z near p. Then

(1) If f(p) 6=∞, then by continuity f 6=∞ for points of S close to p, so locally

Z = f(z) is a holomorphic function in z.

(2) If f(p) =∞, then near f(p) =∞ ∈ CP 1 we must use W = 1/Z, so

W =
1

f(z)
is a holomorphic function in z.

1You could also check the local model explicitly: At infinity, R is locally Y 2 = X(1−X)(1− 2X)(1− 3X),

so for X = 0 there is also a drop.
2The continuous function |f | : S → R attains a maximum at some point p ∈ S, but then in local coordinates

|f | would have a maximum at p so it would need to be constant near p.
3If f : C→ C is bounded and holomorphic, then∞ is a removable singularity, so f extends to f : CP 1 → C.
4We exclude the constant function ∞ because we want meromorphic functions on a connected Riemann

surface to form a field, so that function would be problematic. When S is disconnected, we require that

meromorphic functions are not identically equal to ∞ on any connected component.
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Example. Meromorphic functions on C are functions f : C→ C ∪ {∞} such that

(1) f(z) is holomorphic in z near points where f(z) 6=∞,
(2) 1/f(z) is holomorphic in z near points where f(z) =∞,

and f is not constantly ∞. The following are meromorphic:

f(z) =
z2 − 3z + 1

z3 + z2 − z − 1
f(z) =

az + b

cz + d
f(z) = ez f(z) =

1

sin z
f(z) =

holo function of z

holo function of z

On the other hand f(z) = e1/z, with f(0) = ∞, is not meromorphic1 near z = 0 because
1/f(z) = e−1/z = 1 − 1

z + 1
2! (

1
z )2 + (higher order in 1

z ) is not holomorphic in z. Notice that
z = 0 is an essential singularity.

Intuitively, you can think of a meromorphic function as being locally always a quotient of
two holomorphic functions (see Exercise sheet 4).

Theorem 20.3. Meromorphic functions on a Riemann surface S are precisely holomorphic
functions S \ P → C, for some discrete set P ⊂ S, such that f has poles at the points in P .

Proof. Suppose f is meromorphic. In local coordinates, suppose f(z) =∞ at z = 0. Expand
the holomorphic function 1/f(z) near z = 0 in a Taylor series:

1

f(z)
= anz

n + an+1z
n+1 + · · · = anz

n · (1 + higher order z terms)

Taking the reciprocal,2 we obtain a Laurent series:

f(z) = a−1
n

1

zn
· (1− higher order z terms).

So f(z) has a pole at z = 0 of the same order as the vanishing of 1/f(z). The claim follows
since poles are isolated (this follows from the above local expression: f(z) 6= ∞ except at
z = 0). Conversely, given f : S \ P → C as in the claim, extend by f : S → CP 1, f(p) = ∞
for all p ∈ P , then f is meromorphic since 1/f is holomorphic at points of P . �

Corollary 20.4. The set of meromorphic functions on a connected3 Riemann surface S is
a field, under pointwise addition and multiplication of functions, called the function field
K(S).

Proof. This follows by expanding f +λg, f · g, 1/f as Laurent series in local coordinates near
any given point, and using Theorem 20.3. �

Cultural remark. (For those of you who like algebra and Galois theory) Studying compact
connected Riemann surfaces is in fact equivalent to studying function fields K(S) which are
algebraic extensions of C of transcendence degree 1 (a purely algebraic problem). This K(S)
arises as the field of functions of the smooth projective curve corresponding to S (see B3.3).

Corollary 20.5. For any meromorphic function on a compact Riemann surface, the number
of zeros equals the number of poles (counted with multiplicity).

Proof. deg(f) = #poles = #zeros, counted with multiplicities vf . �

Example. The example at the end of Sec.2.5 shows that 1/z is a meromorphic function on CP 1.
Meromorphic functions on CP 1 are functions f : C→ C∪{∞} satisfying (1) and (2) above, and

(3) if f(∞) 6=∞, f( 1
w ) is holomorphic in w near w = 0,

1in fact, it is not even continuous: consider z = ir for reals r → 0.
2Recall 1

1+w
= 1− w + w2 − w3 + · · · is holomorphic in w ∈ C, for |w| < 1.

3In the disconnected case, we cannot get a field as there are zero divisors: if S = S1 t S2, take fj = 1 on

Sj and 0 otherwise, then f1 · f2 = 0.
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(4) if f(∞) =∞, 1/f( 1
w ) is holomorphic in w near w = 0.

where w = 1/z is the local coordinate near ∞ ∈ CP 1. The following are meromorphic:

f(z) =
z2 − 3z + 1

z3 + z2 − z − 1
f(z) =

az + b

cz + d
f(z) = (rational function in z) =

polynomial in z

polynomial in z

However f(z) = 1
sin z and f(z) = ez are not meromorphic at infinity. More generally if f(z) = a0+

a1z+a2z
2+· · · for large z, then in the local coordinate w = 1/z: f( 1

w ) = a0+a1
1
w+a2( 1

w )2+· · ·
so w = 0 is a pole (or removable) ⇐⇒ only finitely many aj are non-zero (otherwise w = 0 is an
essential singularity).

Theorem 20.6. All meromorphic functions on CP 1 are rational functions.

Proof. Recall that for a holomorphic function, zeros are isolated unless the function is identi-
cally zero (this is the Identity theorem – see the Analysis handout). Since CP 1 is compact,
it follows that a meromorphic function f : CP 1 → CP 1 can have only finitely many zeros
z1, . . . , zn ∈ C (unless f is identically zero) and only finitely many poles p1, . . . , pm ∈ C (since
those are isolated zeros of 1/f). Let a1, . . . , an and b1, . . . , bm be the orders of the zeros and
of the poles. Let

g(z) =
∏

(z − zj)aj/
∏

(z − pk)bk .

Then f/g is meromorphic, and it no longer has zeros or poles in C (they are removable
singularities). If at infinity it also does not have a pole, then it is a holomorphic map f/g :
CP 1 → C and hence is constant by Theorem 20.1. If it has a pole at infinity, then consider
the reciprocal g/f : CP 1 → C, which again must be constant (here we used that f/g has no
zeros in C so g/f has no poles in C), so actually there was no pole. Thus f = constant · g, so
f is a quotient of polynomials. �

Notice above it is easy to verify Corollary 20.5, since g(z) and its reciprocal have no pole
at infinity, so

∑
aj ≤

∑
bk and

∑
aj ≥

∑
bk, hence equality.

Corollary 20.7. The biholomorphisms CP 1 → CP 1 are precisely the Möbius maps z 7→ az+b
cz+d

for a, b, c, d ∈ C, ad− bc 6= 0. So the group of automorphisms of CP 1 is

PSL(2,C) = {
(
a b
c d

)
: a, b, c, d ∈ C, ad− bc = 1}/± I

Proof. By the previous Theorem, it has to be a rational function. Having cancelled common
factors, the polynomial at the numerator and that at the denominator are each allowed to
have at most one root (a bijective map CP 1 → CP 1 has precisely one zero and one pole). �

20.2 Elliptic functions: meromorphic functions on the tori C/lattice

Recall we mentioned that smooth functions f : S1 × S1 = R2/Z2 → R on the torus are
precisely smooth functions R2 → R which are 1-periodic in each entry: f(x + n, y + m) =
f(x, y). Analogously, given a meromorphic function on an elliptic curve C/(Zω1 + Zω2), we
patch together the local expressions for f to obtain a function

f : C→ CP 1

respecting the equivalence relation, so f(z + lattice point) = f(z). Thus

f(z + ω) = f(z) for all ω = nω1 +mω2 where n,m ∈ Z.

Definition 20.8 (Elliptic functions). An elliptic function is a meromorphic function on C
which is doubly periodic, that is periodic in two R-linearly independent directions ω1, ω2 ∈ C.

For this reason, Λ = Zω1 + Zω2 is often called the lattice of periods of f .
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Example. The series

f(z) =
∑
ω∈Λ

1

(z − ω)3

is an absolutely convergent series1 at z /∈ Λ. By some basic complex analysis which we recall
below, the series converges absolutely and uniformly to a holomorphic function on any given com-
pact set avoiding the poles ω ∈ Λ, the series can be differentiated term by term, and the order of
summation does not matter. In fact, given any compact set K ⊂ C, if we omit the finitely many
terms of the above series that involve poles ω that lie in K, we deduce that the rest of the series
converges holomorphically, therefore the whole series has precisely the poles determined by those
finitely many terms. To prove periodicity, we just need to reorder the series via ω 7→ ω − ω′ to
deduce that f(z) = f(z + ω′) for any ω′ ∈ Λ. At points z = α ∈ Λ the same argument holds if
you omit 1

(z−α)3 from the sum, so f has a pole of order 3 at α. So f is an elliptic function.

Some Complex Analysis Background. Suppose fn : U → C are continuous functions
defined on an open set U ⊂ C. Weierstrass’s M-test says that if |fn| ≤ Mn on U with∑
Mn < ∞, then

∑
fn converges absolutely and uniformly. So the limit is continuous (uni-

form limits of continuous functions are continuous). Suppose that fn is also holomorphic, so
the partial sums Sn(z) =

∑n
j=1 fj(z) are holomorphic. We claim that f = limSn is holo-

morphic. Morera’s theorem says that a function f : U → C is holomorphic if and only if∫
∂T
f(z) dz = 0 for all boundaries ∂T of solid triangles T ⊂ U . Applying this to our setup:∫

∂T

f(z) dz =

∫
∂T

limSn(z) dz = lim

∫
∂T

Sn(z) dz = 0

where we use a basic fact about integration: for a sequence of uniformly convergent functions,
the limit commutes with the integral.2 Finally we claim that we can differentiate the series
term by term. Cauchy’s integral formula says if f is holomorphic, and w lies in the

interior of a closed disc3 entirely contained in U , then f(w) = 1
2πi

∫
γ
f(z)
z−w dz where γ is the

anti-clockwise curve bounding the disc. It is relatively straightforward to show that one can
keep differentiating in w to obtain formulas for the derivatives as well, in particular:

f ′(w) =
1

2πi

∫
γ

f(z)

(z − w)2
dz.

Applied to our setup, S′n(w) = 1
2πi

∫ Sn(z)
(z−w)2 dz, and using again the above theorem about

commuting limits and integrals, limS′n(w) = 1
2πi

∫
γ

limSn(z)
(z−w)2 dz = 1

2πi

∫
γ

f(z)
(z−w)2 dz = f ′(w).

As an exercise,4 show that the derivatives of the partial sums converge uniformly to f ′.

20.3 The Weierstrass ℘-function

The Weierstrass P-function (or Weierstrass’s elliptic function) is

℘(z) =
1

z2
+

∑
06=ω∈Λ

(
1

(z − ω)2
− 1

ω2

)

1Try checking this by hand, comparing with the convergent series
∑∞
n=1

1
n2 (not 1

n3 ). Alternatively, you

can do this by an integral test, comparing with
∫

(x2 + y2)−3/2 dx dy (pass to polar coordinates).
2provided we integrate over a set of finite volume, in our case that is the length of ∂T which is finite.
3It doesn’t have to be a disc, it can be any simply connected domain contained in U whose boundary is a

piecewise smooth curve.
4Hint. Consider |f ′(w)− S′n(w)| by estimating the integral, using the trick |

∫
g| ≤

∫
|g|.
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Motivation: you cannot find a meromorphic function on C/Λ with only one simple pole
since otherwise C/Λ would be biholomorphic to CP 1 by Exercise Sheet 4, but we know that
the torus and the sphere are not homeomorphic. So you need at least a pole of order 2. So you
look at 1/z2. To make that doubly periodic, you would consider

∑
ω∈Λ 1/(z−ω)2, but that is

unfortunately divergent.1 Intuitively,
∑

06=ω∈Λ 1/ω2 ought to have a lot of cancellations (for

the lattice Z · 1 +Z · i we expect zero due to cancellations in pairs via the symmetry ω 7→ iω),
but sadly that series diverges for most choices of ordering of the sum. The function ℘ is the
difference of these two divergent series: miraculously it solves all convergence issues! This
difference is also a natural choice because then near z = 0 we have ℘(z) = 1

z2 + g(z) with g
holomorphic and g(0) = 0.

Lemma 20.9. ℘(z) converges to an elliptic function, in the sense that it absolutely converges
on any compact set K ⊂ C once we omit the finitely many terms with poles in K.

Proof. Let’s first prove the interesting bit, which is periodicity, assuming convergence.

Remark. The brute force approach to proving ℘(z + ω′) = ℘(z) requires a clever reordering
argument, because you cannot break up the series into two divergent series.

The better approach is as follows. By absolute convergence, you may differentiate the series
term by term. Thus:

℘′(z) = −2
∑
ω∈Λ

1

(z − ω)3

which is elliptic by the previous example, with order 3 poles at lattice points. Now the trick:

d

dz
(℘(z + ω′)− ℘(z)) = ℘′(z + ω′)− ℘′(z) = 0

by periodicity. So ℘(z+ω′)−℘(z) is constant. To determine that the constant is zero, plug in
z = −ω′/2 and use that ℘ is an even function: ℘(−z) = ℘(z) (reorder the sum via ω 7→ −ω).

We now prove convergence. Compute

1

(z − ω)2
− 1

ω2
=
ω2 − (z − ω)2

ω2(z − ω)2
=
−z2 + 2zω

ω2(z − ω)2
=

z(2ω − z)
ω2(z − ω)2

For |ω| > 2|z|, the absolute value of the above is bounded by
|z| 52 |ω|
|ω|2 1

4 |ω|2
= 10
|ω|3 |z|. Now z is

fixed, and the condition |ω| > 2|z| just omits finitely many terms from the sum. Moreover∑
06=ω∈Λ

1
|ω|3 converges (as in the previous example, by comparing with

∑∞
n=1

1
n2 ). So, apart

from finitely many terms in the sum, we deduce absolute convergence. The finitely many
terms we omitted are holomorphic except for finitely many poles, so the claim follows. �

Lemma 20.10. ℘(z) has the following properties

(1) ℘(z) is an even function: ℘(−z) = ℘(z),
(2) within the fundamental parallelogram {sω1 + tω2 : s, t ∈ [0, 1]} ⊂ C modulo edge-

identifications, ℘ has one pole at 0 of order 2 (it is harder to describe the two zeros),
(3) deg(℘) = 2, viewing ℘ as a map C/Λ→ CP 1,
(4) ℘′(z) = 0 at half-lattice points ω

2 , where2 ω ∈ Λ.
(5) ℘ has ramification points at half-lattice points and at lattice points, so ℘ has precisely

four distinct ramification points within the fundamental parallelogram (modulo Λ):

0, 1
2ω1,

1
2ω2,

1
2 (ω1 + ω2).

1Near a circle of radius r, centre 0, you have roughly 2πr terms, each of size roughly 1
r2

, so the sum grows

roughly like 2π
∑ 1

r
, which grows like a logarithm and thus diverges.

2Stricly speaking ℘′(ω) is not defined, as there is a pole, but using the local coordinate 1/(z − w) one

would also find ℘′ = 0 (indeed those poles are ramification points).
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(6) The valencies at ramification points are v℘ = 2, the branching index b(℘) = 4.

Proof. (1) follows by replacing z 7→ −z and reordering the sum via ω 7→ −ω. (2) follows by
the proof of Lemma 20.9: for z close to 0, the sum in ℘(z) is holomorphic once 1

z2 is omitted.
Note that the other poles ω1, ω2, ω1 + ω2 in the parallelogram are all identified with 0 under
the translation group Λ. (3) follows by (2) since ℘−1(∞) = 0 ∈ C/Λ with valency v℘(0) = 2.
For (4), differentiate the equation ℘(−z) = ℘(z) from (1):

℘′(z) = −℘′(−z)

(so ℘′ is an odd function). But ℘′ is also doubly periodic, so if z satisfies z = −z + ω in the
quotient C/Λ then ℘′ must vanish at z. Solving that equation we get z = 1

2ω. So half-lattice
points satisfy ℘′(z) = 0 and are therefore ramification points, and since the poles have order
2 they are also ramification points (1/℘ has a zero of order 2). Since valencies at ramification
points satisfy 1 < v℘ ≤ deg(℘) = 2, they must all be 2.

How do we know that we have found all ramification points? We use Riemann-Hurwitz:

0 = χ(torus) = χ(C/Λ) = 2χ(CP 1)− b(℘) = 4− b(℘),

so the branching index b(℘) = 4, so all ramification points are already accounted for. �

The branch points of ℘ are denoted:

e1 = ℘( 1
2ω1), e2 = ℘( 1

2ω2), e3 = ℘( 1
2 (ω1 + ω2)), ∞ = ℘(0).

In Exercise sheet 4 you will prove:

Theorem 20.11. The following is a biholomorphism:

C/Λ → {(Z,W ) ∈ C2 : W 2 = 4(Z − e1)(Z − e2)(Z − e3)} ∪ {∞}
z 7→ (℘(z), ℘′(z))

where on the right we compactify as shown in Section 8.3 (compare Exercise Sheets 1 & 2).

Cultural Remark. The function field of all meromorphic functions on an elliptic curve
turns out to be C(℘, ℘′) = (rational functions1 in the variables ℘, ℘′). The key trick in the
proof is the fact that if you kill all the poles of a meromorpic function (e.g. by rescaling with
polys in ℘, ℘′), then the result has degree 0 so it is a constant function. The B3.3 Algebraic
Curves course studies more generally the function field of any algebraic curve.

21. Hyperbolic Geometry: an introduction

21.1 Refresher about Möbius maps

Möbius maps for hyperbolic geometry are as important as rotations and translations are
in Euclidean geometry. Indeed, for the hyperbolic plane H = {z ∈ C : Im z > 0} and the
hyperbolic disc D = {z ∈ C : |z| < 1}, a subgroup of the Möbius maps will turn out to be the
group of all isometries. Recall that we found isometries in Section 10.9, between D and H:

D → H, z 7→ τ(z) =
iz + i

−z + 1
H→ D, z 7→ τ−1(z) =

z − i
z + i

.

Recall Corollary 20.7:

1i.e. ratios of polynomials.
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Corollary 21.1. The biholomorphisms ϕ : CP 1 → CP 1 are precisely the Möbius maps

ϕ(z) =
az + b

cz + d

for a, b, c, d ∈ C with ad − bc 6= 0 (we often rescale numerator and denominator so that
ad− bc = 1). In particular, ϕ(∞) = a/c, ϕ(−d/c) =∞. These form a group isomorphic to

PSL(2,C) = {
(
a b
c d

)
: a, b, c, d ∈ C, ad− bc = 1}/± Identity.

We recall some useful properties about Möbius maps:

Lemma 21.2.

(1) Möbius maps preserve angles
(2) Möbius maps are generated by translations ϕ(z) = z + b, dilations ϕ(z) = az (for

a 6= 0), and inversions ϕ(z) = 1/z (which corresponds to inversion in the unit circle
followed by reflection in the real axis, since ϕ(reiθ) = 1

r e
−iθ).

(3) Möbius maps send circles to circles (where we allow straight lines, thought of as circles
of infinite radius).

(4) Given any three distinct points z0, z1, z2 ∈ CP 1, there is a Möbius map ϕ such that
ϕ(z0) = 0, ϕ(z1) = 1, ϕ(z2) =∞.

(5) A Möbius map is uniquely determined by where it sends three points, for example it
is determined by the values ϕ(0), ϕ(1), ϕ(∞).

(6) The Möbius maps with ϕ(H) = H, with ad− bc = 1, are those with a, b, c, d all real:

Möb (H) =

{
az + b

cz + d
: a, b, c, d ∈ R, ad− bc = 1

}
∼= {
(
a b
c d

)
: a, b, c, d ∈ R,det = 1}/± Id = PSL(2,R)

(7) Given z ∈ H there is a Möbius map ϕ with ϕ(H) = H and ϕ(i) = z.

Proof. For (1): Möbius maps ϕ are holomorphic, so the derivative Dzϕ is a composition of a
scaling and a rotation (see Analysis handout), so it preserves angles.

For (2), when c 6= 0,
az + b

cz + d
=
a

c
− ad− bc
c(cz + d)

so it is a composition of translations, dilations, inversions. The case c = 0 is even easier.
Conversely, translations, dilations and inversions are Möbius maps.

For (3): it is enough by (2) to check that translations, dilations and inversions send circles
to circles, and an easy check shows that they do.

For (4), we can even write an explicit formula:

ϕ(z) =
(z − z0)(z1 − z2)

(z − z2)(z1 − z0)

For (5): suppose a Möbius map ψ sends distinct points w0, w1, w2 to z0, z1, z2. Let ϕ be a
map as in (4). Then ϕ ◦ ψ is a Möbius map which sends w0, w1, w2 to 0, 1,∞. Let α be the
inverse of a map as in (4) for the points w0, w1, w2, so α sends 0, 1,∞ to w0, w1, w2. Then
ϕ ◦ψ ◦α is a Möbius map which fixes 0, 1,∞. By looking at the equations this implies for the
constants a, b, c, d which define the map, you easily deduce that: b = 0 (fixes 0), c = 0 (fixes
∞) and so a/d = 1 (fixes 1), so this map is the identity. So ψ = ϕ−1α−1 is determined.

For (6): since Möbius maps are biholomorphisms, if ϕ(H) = H then the restriction ϕ : H→
H is a biholomorphism as well. By continuity, the boundary R of H has to be mapped into
itself. As ϕ(0) = r0, ϕ(1) = r1, ϕ(∞) = r2 are real numbers, by the above formula we have

ϕ−1(z) = (z−r0)(r1−r2)
(z−r2)(r1−r0) . This is in PSL(2,R) so its inverse ϕ is also in PSL(2,R). Conversely,



96 B3.2 GEOMETRY OF SURFACES, PROF. ALEXANDER F. RITTER

if a, b, c, d are real, then ϕ(R) = R, hence ϕ permutes the two connected components of C \R
(since ϕ is a biholomorphism). So ϕ(H) = H precisely if ϕ(i) ∈ H. So we check the sign:
sign Imϕ(i) = sign (ad− bc). So ϕ(H) = H precisely if det > 0.

For (7): z = b+ ia in terms of real and imaginary parts b, a ∈ R, then ϕ(z) = az+ b works
(so take c = 0 and d = 1). �

Exercise. Recall the hyperbolic disc D = {z ∈ C : |z| < 1} is isometric to H (using the

hyperbolic metric 4|dz|2
(1−|z|2)2 on D). Show that the Möbius maps for which ϕ(D) = D are:1

ϕ(z) =
az + b

bz + a

with a, b ∈ C and |a|2 − |b|2 = 1. So:2

Möb (D) =

{
az + b

bz + a
: a, b ∈ C, |a|2 − |b|2 = 1

}
∼= {
(
a b
b a

)
: a, b ∈ C,det = 1}/{eiθId} = PSU(1, 1)

Notice that a 6= 0, so you can rescale numerator and denominator so that |a| = 1, so you can
replace a = eiθ/2. Then ϕ becomes:

ϕ(z) = eiθ
z + b

bz + 1
.

with b ∈ C and |b| < 1. In particular, then ϕ(0) = eiθb so picking b > 0 ∈ R shows that there
is a Möbius map with ϕ(D) = D and ϕ(0) = some chosen point in D.

21.2 Isometries of the hyperbolic disc D and the hyperbolic plane H
Theorem 21.3. The group of orientation-preserving isometries of H contains Möb(H). The
group of all isometries of H contains Möb(H) and the reflection z 7→ −z (so it contains the
orientation-reversing isometries ψ(z) = −az+b

−cz+d ).
Remark. Later we show that there are no other isometries.

Proof. We start by checking that Möb(H) are isometries. We run the same calculation as at
the end of Section 10.9: we need to show

|dz|2

(Im z)2
=
|d(ϕ(z))|2

(Imϕ(z))2
.

First, dϕ(z) = ϕ′(z) dz where, having normalized: ad− bc = 1,

ϕ′(z) =
a(cz + d)− (az + b)c

(cz + d)2
=

1

(cz + d)2
.

Secondly,

Imϕ(z) = Im
(az + b)(cz + d)

|cz + d|2
= Im

(ax+ iay + b)(cx− icy + d)

|cz + d|2
=

(ad− bc) y
|cz + d|2

=
Im z

|cz + d|2
.

The required equality above then follows.
For the last part, notice that |d(−z)|2 = (−dz)(−dz) = |dz|2, and Im(−z) = Im(z). �

1You could repeat the proof for H for D, so asking yourself which Möbius maps send ∂D to ∂D. The

shortcut is to observe that isometries D → D arise from D → H → H → D where H → H are the isometries

we found above, and the maps D → H (and back) are the isometries τ, τ−1 mentioned at the start of Section
21.1. You can calculate compositions of Möbius maps by multiplying the corresponding matrices.

2For SU(2) the (2, 1) entry of the matrix would need to be −b, so that det = |a|2 + |b|2. For SU(1, 1) the

signature of the quadratic form has one + and one − sign: det = +|a|2 − |b|2.
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Exercise. Show that Möb(D) are orientation-preserving isometries of D, and that the reflec-
tion z 7→ z is an orientation-reversing isometry of D. Notice in particular that the rotations
z 7→ eiθz are isometries of D, and that the reflection in the line with angle θ to the real axis

is z 7→ e2iθz = eiθe−iθz so also an (orientation-reversing) isometry.

Now the issue is: how can we show that the above are all isometries? How can we be sure
we have not omitted any? The easiest route to prove this, is to use geodesics, as follows.

21.3 Geodesics of H

Theorem 21.4. The geodesics of the hyperbolic disc D are circles (including straight lines)
which are orthogonal to the boundary S1 = ∂D. The geodesics of H are circles (including
straight lines) which are orthogonal to the boundary R = ∂H.

Proof. By Theorem 16.11, the straight line t 7→ tv through 0 with direction v ∈ R2 = T0D is
a geodesics in D because the (Euclidean) reflection in that straight line is an isometry of D.
So these are all the geodesics γ0,v for v ∈ T0D by Theorem 16.7. By Lemma 21.2 (and the
fact that H ∼= D are isometric), there is a Möbius isometry ϕ : D → D which sends 0 to any
chosen point p ∈ D. But Dϕ : T0D → TpD is bijective.1 So for any w ∈ TpD, γp,w = ϕ ◦ γ0,v

taking v = Dϕ−1w. So we have obtained all geodesics in D. By Lemma 21.2, ϕ ◦ γ0,v is a
circle since γ0,v is a circle (line), and ϕ ◦ γ0,v is orthogonal to ∂D because γ0,v is orthogonal
to ∂D (using that Möbius maps preserve angles, and that ϕ(∂D) = ∂D). Since H ∼= D are
isometric via a Möbius map, the claim for H follows by Theorem 16.10 (again using that
circles map to circles via Möbius maps). �

Exercise. Use the explicit geodesic equation, at the end of Section 16.3, to obtain explicit
solutions yielding the geodesics claimed above.

Hints. For H, one equation becomes d
dt (x

′/y2) = 0, and the condition of being parametrized

by arc-length becomes (x′2 + y′2)/y2 = 1. You want an equation involving only x, y (not t),
so calculate dy/dx = y′/x′ = · · · .

Corollary 21.5. There are no other isometries for D,H beyond those found in Section 21.2.

Proof. Suppose T is an isometry. Pick a ϕ ∈ Möb(D) with ϕ(0) = T (0). Then ϕ−1 ◦ T is an
isometry fixing 0. Isometries map geodesics to geodesics (Theorem 16.10), and the geodesics
in D through 0 are straight lines, so T permutes the straight lines through 0. Say it maps the
geodesic line segment [0, 1) to eiθ[0, 1). Then, since isometries fix lengths, e−iθϕ−1 ◦ T fixes
[0, 1). Finally, isometries also preserve angles up to sign,2 so e−iθϕ−1 ◦ T must either fix all
straight lines, or it must reflect z 7→ z. The two cases are distinguished by whether or not T
is orientation-preserving. This proves the statement for D. The statement for H follows3 by
using the Möbius isometry D → H. �

21.4 Hyperbolic lengths and hyperbolic angles

Theorem 21.6. Hyperbolic angles are equal to Euclidean angles.

Proof. Recall I = 1
y2 (dx2 + dy2) in the usual parametrization F (x, y) = x + iy for H, so

the matrix entries of I satisfy the conditions e = g and f = 0 required by Exercise Sheet 2

1By the chain rule the derivative of a diffeomorphism is bijective: (Dϕ)−1 = D(ϕ−1).
2they preserve the Riemannian metric, so they preserve cos(angles), but cosα = cos(−α).
3For the orientation-preserving ones, D → H→ H→ D is a composition of Möbius maps, but we already

found all Möbius isometries of D; for the orientation-reversing ones just compose with H → H, z 7→ −z to

reduce to the orientation-preserving case.
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to guarantee that the parametrization F is conformal (i.e. angle-preserving). So hyperbolic
angles equal Euclidean angles. �

Theorem 21.7. In the hyperbolic disc D, the distance distD(0, z) = 2 tanh−1 |z|. Indeed

distD(p, q) = 2 tanh−1

∣∣∣∣ q − p1− pq

∣∣∣∣ distH(p, q) = 2 tanh−1

∣∣∣∣q − pq − p

∣∣∣∣ .
Proof. Recall I = 4(dx2+dy2)

(1−x2−y2)2 for D and F (x, y) = x+ iy. The curve γ(t) = (t, 0) for 0 ≤ t ≤ x
has γ′(t) = (1, 0), so I(γ′(t), γ′(t)) = 4

(1−t2)2 . Thus1

L(γ) =

∫ x

0

√
I(γ′, γ′) dt =

∫ x

0

2

1− t2
dt = 2 tanh−1 x.

Since rotations are isometries, the formula for distD(0, z) is the same with x = |z| in place of
x. Given general points p, q ∈ D we simply apply an isometry ϕ to move p to 0 and then use
the above formula with z = ϕ(q). Now ϕ(z) = z−p

−pz+1 works (see Section 21.1). The formula

for H follows by using the isometry H→ D, z 7→ τ−1(z) = z−i
z+i :

distH(p, q) = 2 tanh−1

∣∣∣∣∣
q−i
q+i −

p−i
p+i

1− p+i
p−i

q−i
q+i

∣∣∣∣∣ = 2 tanh−1

∣∣∣∣p+ i

p+ i

p− q
q − p

∣∣∣∣ = 2 tanh−1

∣∣∣∣q − pq − p

∣∣∣∣ . �

Exercise. Show by direct calculation that the length in H of the segment (1, y)i on the
imaginary axis is log y. In principle you could now find a Möbius isometry sending general
points p, q ∈ H to i, iy to obtain distH(p, q), although this is not as easy as it was for D.

21.5 Areas of triangles, and limits

We call hyperbolic triangle a geodesic triangle in the hyperbolic metric. We will call
A,B,C the vertices, α, β, γ the internal angles, a, b, c the hyperbolic lenghts of the sides
opposite to the vertices A,B,C, so

a = dist(B,C) b = dist(A,C) c = dist(A,B).

Recall that geodesics in D passing through 0 are straight line segments, so geodesics passing
through points close to 0 are almost Euclidean-straight, so small geodesic triangles near 0 are
almost Euclidean. Recall that by Gauss-Bonnet (using that K = −1),

α+ β + γ = π −Area(ABC)

so if the triangle is small, then the area is small, so the sum of the angles is almost π as
expected in Euclidean geometry.

All formulas you write down in the hyperbolic world should, in
the small limit, resemble formulas for Euclidean geometry. In the
large limit, if we let the vertices A,B,C limit to the boundary ∂D,
then the angles α, β, γ converge to zero because the geodesics are
perpendicular to ∂D. Geodesic triangles with A,B,C ∈ ∂D are
called ideal triangles, and by Gauss-Bonnet they have area π.

1 d
dx

tanh−1(x) = 1/(tanh′(tanh−1 x)) = 1/(sech2(tanh−1 x)) = 1/(1− tanh2(tanh−1(x)) = 1/(1− x2).
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21.6 Hyperbolic geometry and Euclid’s axioms

Non-examinable. For the purposes of this course, the following is just a historical curiosity.

Recall the axioms (postulates) of Euclid are:

(1) There is a unique straight line through any two distinct points,
(2) Any straight line segment can be extended to a straight line,
(3) Given a straight line segment AB, there is a unique circle with centre A passing

through B,
(4) All right angles are congruent,
(5) Given a straight line ` and a point p outside of `, there is a unique straight line

through p which does not intersect `.

The parallel axiom (5) as above is called Playfair’s axiom. Euclid’s original axiom (5)
is: Given a straight line `, and two straight lines L1, L2 forming internal angles α1, α2 with
α1 + α2 < π = (two right angles), then L1 and L2 intersect. These two formulations of (5)
are equivalent. There are other interesting equivalent formulations of axiom (5):

• The sum of the angles in every triangle is π (Saccheri and Legendre).
• There exists a triangle whose angles add up to π (Saccheri and Legendre).
• The sum of the angles is the same for every triangle.
• There exist two triangles which are similar but not congruent (Saccheri).
• Given a triangle, one can construct a similar triangle of any size (Wallis).
• There exists a triangle of arbitrarily large area (Gauss).

Example. In spherical geometry, that is the unit sphere S2 with the chordal metric as in Exercise
Sheet 2, axioms (2), (3) and (4) hold. Axiom (1) fails: there are infinitely many geodesics joining
the North Pole to the South Pole, and axiom (5) fails: any two geodesics will intersect. We can
make axiom (1) work, by using RP 2 instead of S2: that is, we identify antipodal points. Then
only axiom (5) fails. This is called elliptic geometry, and is a non-Euclidean geometry. It should
be noted that the Saccheri-Legendre theorem (the sum of the angles in a triangle is at most π)
holds in hyperbolic geometry, but not in elliptic geometry, because parallel lines do not exist in
elliptic geometry. The construction of parallel lines in geometry uses the fact that a straight line
divides the plane into two connected components, but the geodesic from the North to the South
Pole in RP 2 does not disconnect RP 2. The proof of the existence of a parallel line in Euclidean
geometry tacitly assumes the axiom of order: given three points A,B,C on a straight line, one
and only one point is “in between” the other two points. This fails for RP 2: can you see why?

Theorem 21.8. The hyperbolic disc D satis-
fies all of Euclid’s axioms (including the axiom
of order) except for axiom (5).

The only thing we still need to prove is axiom
(3), which follows from the next Lemma.

Lemma 21.9. Given any two points A,B ∈ D, the hyperbolic circle1 with centre A passing
through B, is a Euclidean circle (whose Euclidean-centre is typically not A).

Proof. Möbius maps send Euclidean circles to Euclidean circles (allowing straight lines), and
hyperbolic isometries send hyperbolic circles to hyperbolic circles. So by applying a Möbius
isometry we may assume A = 0 ∈ D. Since rotations about 0 are hyperbolic isometries, the

1that is the set of points {q ∈ D : distD(A, q) = r} where r = distD(A,B).
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Euclidean circle with centre 0 passing through B coincides with the hyperbolic circle with
centre 0 passing through B.
Remark. The Möbius isometry will typically not map Euclidean centres to Euclidean centres,
indeed the hyperbolic centre will lie closer to ∂D than the Euclidean centre, because short
Euclidean distances near ∂D are actually very long hyperbolic distances. �

21.7 The cosine rule and the sine rule

Non-examinable. For the purposes of this course, the following is just a historical curiosity.

Recall that in Euclidean geometry, the cosine rule states: c2 = a2 + b2 − 2ab cos γ (which
is the generalization of Pythagoras’s theorem, which is the case γ = π/2).

Lemma 21.10 (Cosine Rule). For a hyperbolic triangle in D,

cosh c = cosh a cosh b− sinh a sinh b cos γ.

Remark. For small x, coshx = ex+e−x

2 ∼ 1+x+ 1
2x

2+1−x+ 1
2x

2

2 = 1 + 1
2x

2 and sinhx =
ex−e−x

2 ∼ 1+x−1+x
2 = x, so for small triangles the above cosine rule becomes 1 + c2

2 ∼
(1 + a2

2 )(1 + b2

2 )− ab cos γ, which is the Euclidean cosine rule when dropping order 4 terms.

Proof. Using isometries, we may assume C = 0 and then rotating we may assume A > 0 ∈ R.

Then b = dist(A,C) = 2 tanh−1(A) by Theorem 21.7. So A = tanh b
2 . Rotating by e−iγ would

make B real positive, so the same formula would apply, so B = eiγ tanh a
2 . By Theorem 21.7,

tanh
c

2
=

∣∣∣∣ B −A1−AB

∣∣∣∣ .
Therefore:1

cosh c =
1 + tanh2 c

2

1− tanh2 c
2

=
|1−AB|2 + |B −A|2

|1−AB|2 − |B −A|2
=

(1 + |A|2)(1 + |B|2)− 2(AB +AB)

(1− |A|2)(1− |B|2)

Similarly, cosh b =
1+tanh2 b

2

1−tanh2 b
2

= 1+|A|2
1−|A|2 and cosh a = 1+|B|2

1−|B|2 . The claim now follows from the

final calculation:

2(AB +AB)

(1− |A|2)(1− |B|2)
=

2 tanh b
2 tanh a

2 (eiγ + e−iγ)

sech2 b
2 sech2 a

2

= 2 sinh a
2 cosh a

2 sinh b
2 cosh a

2 2 cos γ

= sinh a sinh b cos γ.

�

1Refresher: sinh(ix) = i sin(x) and cosh(ix) = cos(x) so any formula involving sines and cosines gives a
corresponding formula for hyperbolic functions provided you replace sin by i sinh. So you replace cos2, sin2,

tan2 by cosh2, − sinh2, − tanh2. So the formula cos2 x = cos2 x− sin2 x = cos2 x−sin2 x
cos2 x+sin2 x

= 1−tan2 x
1+tan2 x

becomes

coshx =
1 + tanh2 x

1− tanh2 x
.
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Exercise. Show that also another cosine rule holds for D:

cos γ = − cosα cosβ + sinα sinβ cosh c.

Exercise. Show that in spherical geometry, so for the unit sphere with the chordal metric
(Exercise Sheet 2), the cosine rules become

cos c = cos a cos b+ sin a sin b cos γ
cos γ = − cosα cosβ + sinα sinβ cos c.

Lemma 21.11 (Sine Rule). For a hyperbolic triangle in D,

sinα

sinh a
=

sinβ

sinh b
=

sin γ

sinh c

Proof. By the Cosine rule,

sinh2 a sinh2 b cos2 γ = (cosh c− cosh a cosh b)2

= cosh2 c+ cosh2 a cosh2 b− 2 cosh a cosh b cosh c.

Expanding cos2 γ = 1− sin2 γ and sinh2 = cosh2−1, then rearranging terms:

sinh2 a sinh2 b sin2 γ = (cosh2 a− 1)(cosh2 b− 1)− cosh2 c− cosh2 a cosh2 b+ 2 cosh a cosh b cosh c

= 1− cosh2 a− cosh2 b− cosh2 c− 2 cosh a cosh b cosh c.

Since the right hand side is symmetric in a, b, c, we deduce symmetries for the left hand side:

sinh2 a sinh2 b sin2 γ = sinh2 c sinh2 a sin2 β = sinh2 b sinh2 c sin2 α. �

22. Appendix: Classification of Riemann surfaces

This Appendix is non-examinable.

22.1 Conformal structure of a Riemann surface

Recall that for a Riemann surface R the transition maps τ are holomorphic, so their
derivatives Dτ ≡ τ ′(z) are a composition of scaling and rotation, so Dτ preserves angles. So
Euclidean angles defined in local parametrizations are independent of the observer. This is
called the conformal structure of R.

It therefore makes sense to restrict one’s attention to only those Riemannian metrics on
R for which the angles measured using the metric1 agree with the above well-defined angles.
Since in a local holomorphic coordinate

z = x+ iy

the standard basis vectors e1 = ∂x and e2 = ∂y form a right angle, such metrics have no
diagonal terms dx dy, so:

I = f(x, y) (dx2 + dy2) = f(z) |dz|2,
where of course f(x, y) > 0 is a positive smooth function (positive definiteness of I).

Example. For H, f(x, y) = 1
y2 gives the standard hyperbolic metric.

The above is just a local expression, so for such I to yield a well-defined Riemannian metric,
you need the local functions f to be compatible with changes of coordinates.2

The equivalence class of all such metrics is called the conformal class of R. (Two metrics
are equivalent if they only differ by a positive scaling function).

Recall from Section 5.3:

1Recall cos θ =
I(v,w)√

I(v,v)
√
I(w,w)

for vectors v, w 6= 0 ∈ TpS defines an angle ±θ between v, w.

2So f̃(z̃) |dz̃|2 = f(z) |dz|2 for a holomorphic transition z̃ = τ(z), so f̃(τ(z)) |τ ′(z)|2 = f(z).
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Theorem 22.1 (Riemann mapping theorem).

Every simply-connected1Riemann surface is biholomorphic to either CP 1, C or H.

A special feature of complex analysis, is that a holomorphic homeomorphism is automatically
a biholomorphism (unlike in real analysis, where R→ R, x 7→ x3 is a smooth homeomorphism,
but its inverse x 7→ x1/3 is not smooth). Indeed, since it is a homeomorphism, the local form
of the map is z 7→ z, so the inverse function theorem guarantees a holomorphic inverse.

Theorem 22.2 (Uniformization theorem due to Poincaré and Koebe).
Every compact Riemann surface R has a metric of constant Gaussian curvature within its
conformal class. In particular, by Gauss-Bonnet, it follows that if K > 0 then χ(R) = 2 so R
is topologically a sphere, if K = 0 then χ(R) = 0 so R is topologically a torus, and if K < 0
then χ(R) < 0 so R is topologically a surface of genus g ≥ 2.

We will sketch the proof of Theorem 22.2. For this, we need a topological preliminary.

22.2 Universal covering space

As shown in the course B3.5: Topology and Groups, for a reasonable2 connected and
path-connected topological space R (for example, for any connected topological surface or

manifold) one can form a universal covering space R̃. Explicitly, R̃ can be constructed as
the space of equivalence classes of continuous paths γ : [0, 1]→ R in R starting from a fixed
base-point γ(0) = p0. Two paths γ1, γ2 are defined to be equivalent if the endpoints agree,
γ1(1) = γ2(1), and if γ1 can be continuously deformed into γ2 whilst keeping fixed both the
initial point p0 and the end-point.

The properties required for R̃ to be a universal cover are:

(1) R̃ is a simply-connected topological space (in particular connected)

(2) there is a continuous surjective map π : R̃ → R, called projection map, which is a
local homeomorphism,

(3) locally π looks like a “stack of pancakes”: namely, around any point p ∈ R we can
find a small open neighbourhood V such that π−1(V ) = tUj is a disjoint union of
open sets Uj , called sheets, each homeomorphic to V via π : Uj → V

In the explicit construction of R̃ mentioned above, the map π is π[γ] = γ(1): just map the path
to its endpoint. One can define a group G, called deck group, consisting of homeomorphisms

ϕ : R̃→ R̃ compatible with the projection: π ◦ϕ = π. So locally ϕ permutes the sheets. One
can easily check that if ϕ has a fixed point (ϕ(r̃) = r̃) then ϕ is the identity map. It turns out

that R can be identified with the quotient R = R̃/G that is, the points of R can be viewed

as the orbits of the G-action on R̃.

Example. The universal cover of the circle S1 is the real line R, with projection π(r) = e2πir.
The deck group G is all integer translations r 7→ r + n, n ∈ Z, so G as a group is isomorphic to
Z with addition. Notice that indeed S1 = R/Z.

The universal cover satisfies the following universality property: given any two universal

covers R̃1, R̃2 of R, there is a homeomorphism ψ : R̃1 → R̃2 compatible with the projection
maps: π2 ◦ ψ = π1. It follows that the deck groups are isomorphic: G1

∼= G2.

Example. Another universal cover for S1 is R, with projection π2(r) = eir. The deck group G2

1Simply-connected means: connected, and every continuous loop can be continuously shrunk to a point

(every continuous map S1 → S can be extended to a continuous map D→ S on the closed unit disc).
2One needs a technical condition: semi-locally simply-connected. This means every point p has some

neighbourhood V such that loops in V can be contracted within V to a point.
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is all translations r 7→ r + 2πn, n ∈ Z, so again G2
∼= (Z,+). The homeomorphic identification

with the previous example is R→ R, r 7→ 2πr.

22.3 Sketch proof of the uniformization theorem

Sketch proof of Theorem 22.2. Given a compact Riemann surface R, consider its universal

cover R̃. As R̃ is locally homeomorphic toR, we can use the same local holomorphic coordinate

on R̃ as on R via this local identification. This makes R̃ into a simply-connected Riemann

surface, and the projection map π : R̃ → R is automatically holomorphic. Since π is a
local homeomorphism (the local model is z 7→ z), π has no branch points. The deck group

automatically consists of holomorphic homeomorphisms R̃→ R̃, so they are biholomorphisms.

By the Riemann-mapping theorem 22.1, R̃ is biholomorphic to CP 1, C or H.

If R̃ ∼= CP 1, then R̃, R are both compact so there are only finitely many sheets namely
deg π sheets. Since π has no branch points, by Riemann-Hurwitz

χ(R̃) = deg(π)χ(R).

But χ(R̃) = χ(CP 1) = 2, and χ(R) = 2 − 2g ∈ {2, 0,−2,−4, . . .} (since Riemann surfaces
are orientable), which forces χ(R) = 2 and so deg π = 1, so π is a biholomorphism. So R is
biholomorphic to CP 1. So we can give R the usual metric on CP 1 ∼= S2 ⊂ R3 with K = 1.

If R̃ ∼= C, then the deck group G consists of a subgroup of the biholomorphisms f : C→ C.
But such biholomorphisms have1 the form f(z) = az + b for a 6= 0, b ∈ C. Since the non-
identity deck group transformations have no fixed points, az + b = z must not have any
solution, which forces a − 1 = 0 and b 6= 0. So f(z) = z + b are the translations. These

preserve the flat metric dx2 + dy2 = |dz|2 on R̃, so the quotient R = R̃/G can be given the
flat metric, so K = 0.

If R̃ ∼= H, we claim that the deck group preserves the hyperbolic metric, so we can give

R = R̃/G the hyperbolic metric, so K = −1. This claim follows by Lemma 22.4. �

Lemma 22.3 (Schwartz’s Lemma). Any holomorphic map f : D → D with f(0) = 0 satisfies

|f(z)| ≤ |z| for all z ∈ D.
Proof. f(0) = 0, so g(z) = f(z)/z is holomorphic with a removable singularity at 0, which
is removed by defining g(0) = f ′(0). The maximum modulus principle applied to the disc
of radius r implies that |g(z)| ≤ 1

r for |z| ≤ r (using that |f | ≤ 1, and that |z| = r on the
boundary of that disc). Let r → 1 from below, then |g(z)| ≤ 1 for all z ∈ D, so |f(z)| ≤ |z|. �

Lemma 22.4. Any biholomorphism f : D → D of the hyperbolic disc preserves the hyperbolic
metric.

Proof. Composing with a Möbius isometry, we may assume f(0) = 0. By Schwartz’s Lemma,
|f(z)| ≤ |z|. Since f is invertible, also |f−1(z)| ≤ |z| so (replacing z by f(z)) we get |z| ≤
|f(z)|. Hence equality holds: |f(z)| = |z|. Recall by the previous proof that g(z) = f(z)/z
is holomorphic. Since |g(z)| = 1, the maximum modulus is attained at an interior point,
therefore the maximum modulus principle implies that g is constant, say g(z) = eiθ. Thus
f(z) = eiθz. We know this is an isometry of D, so the claim follows. �

1Indeed, the holomorphic function g(z) = f(1/z) defined on the punctured unit discD\{0} has a singularity
at 0 which is either removable, a pole or an essential singularity. If it was an essential singularity then by the

Casorati-Weierstrass theorem2, g on D must attain values arbitrarily close to f(0) ∈ C. This contradicts that f

is injective, since g(w) = f(1/w) for |1/w| > 1 would attain a value that f(z) attains for |z| < 1 (close to f(0)).
So g(w) has a pole at 0, say with principal part bnw−n + · · ·+ b1w−1. Then f − bnzn − · · · − b1z : CP 1 → C
is a holomorphic function (we got rid of the pole at infinity) so it is constant. So f is a polynomial. By
injectivity of f , we deduce n = 1, so f(z) = az + b as required.
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