B3.1 Galois Theory Sheet 1 (MT 2018)

In these problems K denotes an arbitrary field and $K[x]$ denotes the ring of polynomials in one variable x over K. If p is a prime number, then \mathbb{F}_{p} denotes the field of integers modulo p.

1. Let E / K is a finite extension of fields and let $\alpha \in E / K$. Prove that there is a unique monic irreducible polynomial $p \in K[x]$ such that the homomorphism

$$
K[x] \rightarrow K(\alpha)
$$

which maps $x \mapsto \alpha$, induces an isomorphism

$$
K(\alpha) \cong K[x] /\langle p\rangle
$$

2. Prove the Tower Law.
3. Find the minimal polynomial for

$$
\frac{\sqrt{3}}{1+2^{1 / 3}}
$$

over \mathbb{Q}; that is, the monic polynomial $m(x)$ of smallest possible degree with rational coefficients satisfying

$$
m\left(\frac{\sqrt{3}}{1+2^{1 / 3}}\right)=0
$$

4. The formal derivative $D: K[x] \rightarrow K[x]$ is defined by

$$
D\left(a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right)=a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}
$$

Prove that if $a, b \in K$ and $f, g \in K[x]$ then
(a) $D(a f+b g)=a D f+b D g$;
(b) $D(f g)=f D g+g D f$;
(c) $D h(x)=D g(x) D f(g(x))$ when $h(x)=f(g(x))$.

If $a \in K$ show that
(d) $(x-a)$ divides $f(x)$ in $K[x]$ if and only if $f(a)=0$;
(e) $(x-a)^{2}$ divides $f(x)$ in $K[x]$ if and only if $f(a)=0=D f(a)$.

Deduce that if the polynomials f and $D f$ are relatively prime in $K[x]$, then f has no multiple root.
5. Show that if $a \in \mathbb{Z}$ is divisible by a prime p but not by p^{2}, then $x^{n}-a$ is irreducible over \mathbb{Q} for all $n \geq 1$. Show also that it has no repeated roots in any extension of \mathbb{Q}.
6. Show that if m is any positive integer, then the polynomial $x^{p^{m}}-x$ has no multiple root in any extension of fields $L: \mathbb{F}_{p}$.

Let

$$
K=\left\{\alpha \in L: \alpha^{p^{m}}=\alpha\right\}
$$

be the set of roots of $x^{p^{m}}-x$ in the extension L. Show that K is a subfield of L.
Let n be a positive integer. Show that if m divides n then $p^{m}-1$ divides $p^{n}-1$ in \mathbb{Z} and $x^{p^{m}}-x$ divides $x^{p^{p^{n}}}-x$ in $\mathbb{F}_{p}[x]$.
7. (a) Let $f(x)=x^{3}-s_{1} x^{2}+s_{2} x-s_{3}=(x-\alpha)(x-\beta)(x-\gamma) \in \mathbb{Q}[x]$ where $\alpha, \beta, \gamma \in \mathbb{C}$.

Denoting $\sigma_{i}=\alpha^{i}+\beta^{i}+\gamma^{i}$ for $i \geq 0$, show that $\sigma_{0}=3, \sigma_{1}=s_{1}$ and $\sigma_{2}=s_{1}^{2}-2 s_{2}$. Show further that

$$
\sigma_{r}=s_{1} \sigma_{r-1}-s_{2} \sigma_{r-2}+s_{3} \sigma_{r-3}
$$

for all $r \geq 3$.
(b) Let $\delta=(\alpha-\beta)(\alpha-\gamma)(\beta-\gamma)$ and $\Delta=\delta^{2}$. Show that

$$
\Delta=-4 s_{1}^{3} s_{3}+s_{1}^{2} s_{2}^{2}+18 s_{1} s_{2} s_{3}-4 s_{2}^{3}-27 s_{3}^{2}
$$

[Hint: You may find it useful to consider the Van der Monde determinant

$$
\operatorname{det}\left(\begin{array}{ccc}
1 & 1 & 1 \\
\alpha & \beta & \gamma \\
\alpha^{2} & \beta^{2} & \gamma^{2}
\end{array}\right)
$$

and the determinant of this matrix multiplied by its transpose to deduce first that

$$
\left.\Delta=\operatorname{det}\left(\begin{array}{ccc}
\sigma_{0} & \sigma_{1} & \sigma_{2} \\
\sigma_{1} & \sigma_{2} & \sigma_{3} \\
\sigma_{2} & \sigma_{3} & \sigma_{4}
\end{array}\right) \cdot\right]
$$

8. Let E / F be an extension field of prime degree ℓ and let $\alpha \in E \backslash F$. Let M_{α} be F-linear map induced by the multiplication by α :

$$
\begin{gathered}
M_{\alpha}: E \longrightarrow E \\
u \mapsto \alpha \cdot u
\end{gathered}
$$

Show that the characteristic polynomial of M_{α} is equal to the minimal polynomial of α. Hint: Cayley-Hamilton.

