The notes below are for the students who attended the consultation session in Galois Theory run by Damian Rössler on W3 Thu 2-4pm in C5 (2019). They are not an extract **of the model solution of the 2018 exam in Galois Theory.**

Notes on the 2018 exam in B3.1 Galois Theory.

Q1 (e)

Recall that in (d) it was shown that F is Galois over K . Recall also that by assumption (in (d)) L_1 and L_2 are Galois over K. Under the further assumption that $L_1 \cap L_2 = K$, we have to show that there is a bijective homomorphism of groups

$$
\phi: G \to \Gamma(L_1:K) \times \Gamma(L_2:K).
$$

As explained during the session, we define ϕ by the formula $\phi(\gamma) = \gamma|_{L_1} \times \gamma|_{L_2}$. The kernel of ϕ is by construction $\Gamma(F : L_1) \cap \Gamma(F : L_2)$. By the Galois correspondence, the group $\Gamma(F: L_1) \cap \Gamma(F: L_2)$ corresponds to the smallest field containing L_1 and L_2 , which is F by assumption. Hence $\Gamma(F : L_1) \cap \Gamma(F : L_2) = {\{\text{Id}_F\}}$, which shows that ϕ is injective. Alternatively, one may consider that $F = L_1L_2$ consists of products of elements of L_1 and L_2 (prove this - if you don't see why, ask me in the next consultation sessions) and therefore any element in the kernel of ϕ must fix all of L_1L_2 and therefore be equal to $\{\mathrm{Id}_F\}.$

We now turn to the surjectivity of ϕ . Note that by the Galois correspondence the group generated by $\Gamma(F : L_1)$ and $\Gamma(F : L_2)$ corresponds to the biggest field contained in L_1 and L_2 , ie $L_1 \cap L_2$. Now $L_1 \cap L_2 = K$ by assumption and the group corresponding to K is $\Gamma(F: K)$ so the group generated by $\Gamma(F: L_1)$ and $\Gamma(F: L_2)$ is $\Gamma(F: K)$.

Lemma 0.1 (suggested by a student). *Every element of the group generated by* $\Gamma(F: L_1)$ *and* $\Gamma(F : L_2)$ *is of the form* $\gamma_1 \cdot \gamma_2$ *, where* $\gamma_1 \in \Gamma(F : L_1)$ *and* $\gamma_2 \in \Gamma(F : L_2)$ *.*

Proof. It is sufficient to show that the set

$$
H := \{ \gamma_1 \cdot \gamma_2 \, | \, \gamma_1 \in \Gamma(F : L_1), \, \gamma_2 \in \Gamma(F : L_2) \}
$$

is a subgroup. For any $\gamma \in \Gamma(F:K)$, denote by

$$
\lambda_{\gamma} : \Gamma(F : K) \to \Gamma(F : K)
$$

the group homomorphism st $\lambda_{\gamma}(\alpha) = \gamma^{-1} \cdot \alpha \cdot \gamma$ (ie λ_{γ} is "conjugation by γ "). Remember that

$$
\lambda_{\gamma}(\Gamma(F:L_1)) \subseteq \Gamma(F:L_1)
$$

and

$$
\lambda_{\gamma}(\Gamma(F:L_2)) \subseteq \Gamma(F:L_2)
$$

for all $\gamma \in \Gamma(F : K)$. This follows from the fact the the subgroups $\Gamma(F : L_1)$ and $\Gamma(F : L_2)$ are normal in $\Gamma(F: K)$ (recall that the extensions $L_1|K$ and $L_2|K$ are Galois). This implies in particular that $\lambda_{\gamma}(H) \subseteq H$ for all $\gamma \in \Gamma(F:K)$.

Note finally that we have $\lambda_{\gamma} \circ \lambda_{\gamma^{-1}} = \mathrm{Id}_{\Gamma(F:K)}$ for all $\gamma \in \Gamma(F:K)$.

Since $Id_F \in H$, we now only have to show that if $\gamma_1, \gamma_1' \in \Gamma(F : L_1)$ and $\gamma_2, \gamma_2' \in \Gamma(F : L_2)$ then

$$
(\gamma_1 \cdot \gamma_2)^{-1} \in H \quad (*)
$$

and

$$
\gamma_1 \cdot \gamma_2 \cdot \gamma'_1 \cdot \gamma'_2 \in H \quad (**)
$$

We compute

$$
(\gamma_1 \cdot \gamma_2)^{-1} = \lambda_{\gamma_2} \circ \lambda_{\gamma_2^{-1}}((\gamma_1 \cdot \gamma_2)^{-1}) = \lambda_{\gamma_2} \circ \lambda_{\gamma_2^{-1}}(\gamma_2^{-1} \cdot \gamma_1^{-1}) = \lambda_{\gamma_2}(\gamma_1^{-1} \gamma_2^{-1})
$$

which lies in H . So $(*)$ is proven.

For (∗∗), compute

$$
\gamma_1 \cdot \gamma_2 \cdot \gamma_1' \cdot \gamma_2' = \lambda_{\gamma_2^{-1}} \circ \lambda_{\gamma_2} (\gamma_1 \cdot \gamma_2 \cdot \gamma_1' \cdot \gamma_2') = \lambda_{\gamma_2^{-1}} (\lambda_{\gamma_2} (\gamma_1) \cdot \gamma_1' \cdot \gamma_2' \cdot \gamma_2)
$$

which also lies in H , since $\lambda_{\gamma_2}(\gamma_1)\in\Gamma(F:L_1)$ by assumption. So the lemma is proven. \Box We can now complete the proof of the surjectivity of ϕ . Let $n := \# \Gamma(F : K)$. From the lemma and the fact that $\Gamma(F: L_1)$ and $\Gamma(F: L_2)$ generate $\Gamma(F: K)$, we see that

$$
n \leq \#\Gamma(F:L_1) \cdot \#\Gamma(F:L_2).
$$

We know from the fundamental theorem of Galois theory that

$$
#\Gamma(L_1:K) = n/# \Gamma(F:L_1) \text{ and } #\Gamma(L_2:K) = n/# \Gamma(F:L_2).
$$

So the injectivity of ϕ implies that

$$
n \le (n/\#\Gamma(F:L_1)) \cdot (n/\#\Gamma(F:L_2))
$$

or equivalently

$$
n \geq \#\Gamma(F : L_1) \cdot \#\Gamma(F : L_2).
$$

Combining the inequalities we see that

$$
n = \# \Gamma(F : L_1) \cdot \# \Gamma(F : L_2).
$$

In particular,

$$
n = (n/\#\Gamma(F:L_1)) \cdot (n/\#\Gamma(F:L_2)) = \#\Gamma(L_1 : K) \cdot \#\Gamma(L_2 : K).
$$

Thus the source and target of the map ϕ has the same number of elements. Since ϕ is injective, this implies that ϕ is a bijection.

Q3 (iii) Let $G := \text{Aut}_F(F')$. According to the theorem in section 5.2 of the notes, we have $[F'\,:\, (F')^G] \,=\, \#G.$ By assumption we have $\#G \,=\, [F'\,:\, F]$ so that we have $[F'\,:\,$ $(F')^G$ = $[F' : F]$. Since $F \subseteq (F')^G$ by assumption, the tower law implies that $(F')^G = F$, ie $F = (F')^{\text{Aut}_F(F')}$. This means that $F'|F$ is a Galois extension in the sense of the definition in section 5.1.

(iv) This was proven in the lectures, as a consequence of Artin's lemma. Here is a way to derive this from the lecture notes. According to the theorem in section 5.1, the extension $L|L^G$ is finite. It is also separable, because L has characteristic 0 by assumption (see theorem in section 4.3). Hence by the theorem in section 5.3, we only have to show that the extension $L|L^G$ is normal. Let $\alpha \in L$ and let $P(x) \in L^G[x]$ be the minimal polynomial of α . We have

$$
Q(x) = \prod_{\beta \in \text{orbit of } \alpha \text{ under Aut}_{L^G}(L)} (x - \beta) | P(x)
$$

since $P(\sigma(\alpha)) = \sigma(P(\alpha)) = 0$ for all $\sigma \in \text{Aut}_{L^G}(L)$. Furthermore, the coefficients of $Q(x)$ are symmetric functions in the roots of $Q(x)$ and are thus invariant under $Aut_{LG}(L)$, ie they lie in L^G . In other words, $Q(x) \in L^G[x]$. Since $P(x)$ is irreducible, we thus see that $Q(x) = P(x)$. Hence $P(x)$ splits in L. This shows that $L|L^G$ is normal and completes the proof.

The hint about the primitive element theorem can be exploited as follows. According to the theorem in section 4.2, the extension $L|L^G$ is normal and finite iff L is the splitting field of a polynomial in L^G . By the primitive element theorem and the fact that $L|L^G$ is finite and separable, there is an $\alpha \in L$ such that $L = L^G(\alpha)$. According to the preceding paragraph, the minimal polynomial $P(x)$ of α splits in L and hence L is a splitting field of $P(x)$. In particular, L is a normal extension of L^G .

The last part of (iv) follows from the first part and the fact that any finite group is a subgroup of some S_n (Cayley's theorem).