
The notes below are for the students who attended the consultation session in Galois
Theory run by Damian Rössler on W3 Thu 2-4pm in C5 (2019). They are not an extract
of the model solution of the 2018 exam in Galois Theory.

Notes on the 2018 exam in B3.1 Galois Theory.

Q1 (e)

Recall that in (d) it was shown that F is Galois over K. Recall also that by assumption
(in (d)) L1 and L2 are Galois over K. Under the further assumption that L1 ∩ L2 = K, we
have to show that there is a bijective homomorphism of groups

φ : G→ Γ(L1 : K)× Γ(L2 : K).

As explained during the session, we define φ by the formula φ(γ) = γ|L1 × γ|L2 . The
kernel of φ is by construction Γ(F : L1) ∩ Γ(F : L2). By the Galois correspondence, the
group Γ(F : L1)∩Γ(F : L2) corresponds to the smallest field containing L1 and L2, which
is F by assumption. Hence Γ(F : L1)∩Γ(F : L2) = {IdF}, which shows that φ is injective.
Alternatively, one may consider that F = L1L2 consists of products of elements of L1

and L2 (prove this - if you don’t see why, ask me in the next consultation sessions) and
therefore any element in the kernel of φ must fix all of L1L2 and therefore be equal to
{IdF}.

We now turn to the surjectivity of φ. Note that by the Galois correspondence the group
generated by Γ(F : L1) and Γ(F : L2) corresponds to the biggest field contained in L1

and L2, ie L1 ∩ L2. Now L1 ∩ L2 = K by assumption and the group corresponding to K
is Γ(F : K) so the group generated by Γ(F : L1) and Γ(F : L2) is Γ(F : K).

Lemma 0.1 (suggested by a student). Every element of the group generated by Γ(F : L1) and
Γ(F : L2) is of the form γ1 · γ2, where γ1 ∈ Γ(F : L1) and γ2 ∈ Γ(F : L2).

Proof. It is sufficient to show that the set

H := {γ1 · γ2 | γ1 ∈ Γ(F : L1), γ2 ∈ Γ(F : L2)}

is a subgroup. For any γ ∈ Γ(F : K), denote by

λγ : Γ(F : K)→ Γ(F : K)

the group homomorphism st λγ(α) = γ−1 · α · γ (ie λγ is ”conjugation by γ”). Remember
that

λγ(Γ(F : L1)) ⊆ Γ(F : L1)
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and
λγ(Γ(F : L2)) ⊆ Γ(F : L2)

for all γ ∈ Γ(F : K). This follows from the fact the the subgroups Γ(F : L1) and Γ(F : L2)

are normal in Γ(F : K) (recall that the extensions L1|K and L2|K are Galois). This implies
in particular that λγ(H) ⊆ H for all γ ∈ Γ(F : K).

Note finally that we have λγ ◦ λγ−1 = IdΓ(F :K) for all γ ∈ Γ(F : K).

Since IdF ∈ H , we now only have to show that if γ1, γ
′
1 ∈ Γ(F : L1) and γ2, γ

′
2 ∈ Γ(F : L2)

then
(γ1 · γ2)−1 ∈ H (∗)

and
γ1 · γ2 · γ′1 · γ′2 ∈ H (∗∗)

We compute

(γ1 · γ2)−1 = λγ2 ◦ λγ−1
2

((γ1 · γ2)−1) = λγ2 ◦ λγ−1
2

(γ−1
2 · γ−1

1 ) = λγ2(γ
−1
1 γ−1

2 )

which lies in H . So (∗) is proven.

For (∗∗), compute

γ1 · γ2 · γ′1 · γ′2 = λγ−1
2
◦ λγ2(γ1 · γ2 · γ′1 · γ′2) = λγ−1

2
(λγ2(γ1) · γ′1 · γ′2 · γ2)

which also lies inH , since λγ2(γ1) ∈ Γ(F : L1) by assumption. So the lemma is proven.

We can now complete the proof of the surjectivity of φ. Let n := #Γ(F : K). From the
lemma and the fact that Γ(F : L1) and Γ(F : L2) generate Γ(F : K), we see that

n ≤ #Γ(F : L1) ·#Γ(F : L2).

We know from the fundamental theorem of Galois theory that

#Γ(L1 : K) = n/#Γ(F : L1) and #Γ(L2 : K) = n/#Γ(F : L2).

So the injectivity of φ implies that

n ≤ (n/#Γ(F : L1)) · (n/#Γ(F : L2))

or equivalently
n ≥ #Γ(F : L1) ·#Γ(F : L2).

Combining the inequalities we see that

n = #Γ(F : L1) ·#Γ(F : L2).
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In particular,

n = (n/#Γ(F : L1)) · (n/#Γ(F : L2)) = #Γ(L1 : K) ·#Γ(L2 : K).

Thus the source and target of the map φ has the same number of elements. Since φ is
injective, this implies that φ is a bijection.

Q3 (iii) Let G := AutF (F ′). According to the theorem in section 5.2 of the notes, we
have [F ′ : (F ′)G] = #G. By assumption we have #G = [F ′ : F ] so that we have [F ′ :

(F ′)G] = [F ′ : F ]. Since F ⊆ (F ′)G by assumption, the tower law implies that (F ′)G = F ,
ie F = (F ′)AutF (F ′). This means that F ′|F is a Galois extension in the sense of the definition
in section 5.1.

(iv) This was proven in the lectures, as a consequence of Artin’s lemma. Here is a way to
derive this from the lecture notes. According to the theorem in section 5.1, the extension
L|LG is finite. It is also separable, because L has characteristic 0 by assumption (see theo-
rem in section 4.3). Hence by the theorem in section 5.3, we only have to show that the
extension L|LG is normal. Let α ∈ L and let P (x) ∈ LG[x] be the minimal polynomial of
α. We have

Q(x) =
∏

β∈orbit of α under AutLG (L)

(x− β) |P (x)

since P (σ(α)) = σ(P (α)) = 0 for all σ ∈ AutLG(L). Furthermore, the coefficients of Q(x)

are symmetric functions in the roots of Q(x) and are thus invariant under AutLG(L), ie
they lie in LG. In other words, Q(x) ∈ LG[x]. Since P (x) is irreducible, we thus see that
Q(x) = P (x). Hence P (x) splits in L. This shows that L|LG is normal and completes the
proof.

The hint about the primitive element theorem can be exploited as follows. According to
the theorem in section 4.2, the extension L|LG is normal and finite iff L is the splitting
field of a polynomial in LG. By the primitive element theorem and the fact that L|LG is
finite and separable, there is an α ∈ L such that L = LG(α). According to the preceding
paragraph, the minimal polynomial P (x) of α splits in L and hence L is a splitting field
of P (x). In particular, L is a normal extension of LG.

The last part of (iv) follows from the first part and the fact that any finite group is a
subgroup of some Sn (Cayley’s theorem).
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