
INTRODUCTION TO REPRESENTATION THEORY AND CHARACTERS

DAN CIUBOTARU

1. Algebras and modules

1.1. Definitions. We begin by defining some basic notions in algebra: rings, algebras, modules. All of this
(with the possible exception of algebras) has been defined in the Part A “Ring and Modules” option.

Definition 1.1. A ring is a triple (A,+, ·), where A is a set, + and · are binary operations on A (addition
and multiplication, respectively), such that

(1) (A,+) is an abelian group;
(2) · is associative1;
(3) +, · satisfy the distributivity laws.

The ring A is called commutative if · is commutative. The rings in this course will all have identity 1 ∈ A
(with respect to multiplication)2.

A left ideal I of A is a subgroup of (A,+) such that a · i ∈ I for all a ∈ A and i ∈ I. We simarly have the
notion of right ideal and two-sided ideal (left and right). If I is a two-sided ideal, we may define the quotient
ring A/I, which is the set {a+ I | a ∈ A} with the operations

(a+ I) + (b+ I) = (a+ b) + I, (a+ I) · (b+ I) = a · b+ I.

Definition 1.2. Let k be a field. A k-algebra A is a ring A which is also a k-vector space such that

(λa) · b = a · (λb) = λ(a · b).

The dimension dimk A of A as a vector space is called the dimension of the algebra A.

Example 1.3. (1) If F is a field extension of k, then F is a k-algebra.
(2) The polynomial ring in n variables k[x1, . . . , xn] is a k-algebra.
(3) The ring of n× n matrices Mn(k) with entries in k is a k-algebra.
(4) Let V be a k-vector space. Consider the endomorphism ring

Endk(V ) = {T : V → V k-linear map},

under the addition and composition of linear maps. This is k-algebra. The identity is the identity
map. If V is finite dimensional, then it is isomorphic to kn, and Endk(V ) can be identified with
Mn(k).

1.2. The group algebra. An important example is the group algebra. If G is a group, we define kG to be
the vector space with basis {vg | g ∈ G}. Here vg are just some symbols indexed by g ∈ G. Then we define
the multiplication by

vg1 · vg2 = vg1g2 .

A typical element in x ∈ kG is x =
∑

g∈G agvg, where ag ∈ k and only finitely many ag are nonzero (so that

the sum is finite). If y =
∑

g∈G bgvg is another element in kG, then

x · y =
∑

g,h∈G

agbhvgh =
∑

s∈G

(
∑

t∈G

atbt−1s)vs (1.1)

It is immediate that kG is a k-algebra.

0Notes for Oxford’s Part B course B2.1, Michaelmas 2018.
1There exist interesting nonassociative rings, e.g., the Lie algebras, but we won’t consider them in this course.
2There exist important associative rings with no identity, e.g., most of the convolution rings that appear in analysis or in

infinite-dimensional representation theory.
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Example 1.4. Take C3 = 〈ξ | ξ3 = 1〉. If x, y ∈ kC3 are x = vξ + 2vξ2 and y = v1 + vξ, then x · y =
2v1 + vξ + 3vξ2 .

It is tedious to carry the notation vg in the group algebra. If we think of G as a multiplicative group, then
we can write x =

∑
g∈G agg in place of x =

∑
g∈G agvg, with no danger of confusion.

1.3. Homomorphisms. If A is a k-algebra, the ideals in A are the usual ideals with respect to the ring
structure. If I is a two-sided ideal of A, then A/I is the quotient k-algebra. A subalgebra of A is a k-subspace
which is also closed under the multiplication.

If B is another k-algebra, an algebra homomorphism is a map φ : A→ B such that

(1) φ is a homomorphism of rings with identity, and
(2) φ is a k-linear map.

We then have the three usual isomorphism theorems, whose proof is always the same, and therefore we skip.3

Theorem 1.5 (First isomorphism theorem). If φ : A → B is an algebra homomorphism, then kerφ is a
two-sided ideal of A, imφ is a subalgebra, and A/ kerφ ∼= imφ.

Theorem 1.6 (Second isomorphism theorem). Suppose B is a subalgebra of A and I is a two-sided ideal of
A. Then BI is a subalgebra of A, B ∩ I is an ideal of B and BI/I ∼= B/B ∩ I.

Theorem 1.7 (Third isomorphism theorem). Suppose I is a two-sided ideal of the algebra A and J is a
two-sided ideal of I. Then I/J is an ideal of A/J and (A/J)/(I/J) ∼= A/I.

In a k-algebra A, the field k can be identified with k · 1, where 1 is the identity in A. More precisely, we
consider the map τ : k→ A, λ 7→ λ · 1. This is a k-algebra homomorphism, and it is injective, because A is a
k-vector space and 1 6= 0, hence λ · 1 = 0 if and only if λ = 0. We will make this identification implicitly.

1.4. Modules.

Definition 1.8. Let A be a ring. A left A-module M is an abelian group with an action A ×M → M ,
(a,m) 7→ a ·m, satisfying

(1) a · (m1 +m2) = a ·m1 + a ·m2;
(2) a · (b ·m) = (ab) ·m;
(3) (a+ b) ·m = a ·m+ b ·m;
(4) 1 ·m = m.

Notice that if A is a k-algebra and M is an A-module, then M is also a k-vector space (thinking of k as a
subfield of A as mentioned before):

λm = (λ1) ·m, λ ∈ k, m ∈M.

If M and N are A-modules, a map f :M → N is called an A-module homomorphism (or A-linear) if

(1) f(m1 +m2) = f(m1) + f(m2), m1,m2 ∈M ;
(2) f(a ·m) = a · f(m), a ∈ A, m ∈M .

If f is a A-linear then, in particular, it is k-linear. We define submodules and direct sums of modules in the
usual way, just as for modules over rings.

If M and N are A-modules, define

HomA(M,N) = {f :M → N | f is an A-homomorphism}. (1.2)

Notice that HomA(M,N) is a k-vector space. If M = N , denote

EndA(M) = HomA(M,M). (1.3)

Then EndA(M) is an A-algebra with multiplication given by composition. If we regard A as a left A-module
under multiplication, then it is natural to ask what is EndA(A) as an algebra.

3When you take the Part C course “Category Theory”, you will see that these theorems and their proofs are general “abstract
nonsense” concepts.
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Definition 1.9. If A is a ring (or a k-algebra) define the opposite ring (or algebra) to be Aop = A as an
abelian group (or k-vector space), but with the multiplication in Aop given by

a ·op b = b · a,

where b · a is the multiplication in A.

For every a ∈ A, define the map ra : A→ A, ra(x) = xa. Since the multiplication by a is on the right, it
is clear that ra is an endomorphism of left A-modules, hence ra ∈ EndA(A).

Proposition 1.10. The map ψ : Aop → EndA(A), a 7→ ra is an algebra isomorphism.

Proof. Let 1A be the identity in A. Begin by noticing that if f ∈ EndA(A), then f(a) = f(a ·1A) = a ·f(1A),
so every endomorphism of A is uniquely determined by where it sends 1A. In particular, f = rf(1A). This
means that ψ is surjective. It is also injective since ra = rb implies that ra(1A) = rb(1A), hence a = b.

Next, it is immediate that ra + rb = ra+b. To check the multiplication, we see that (ra ◦ rb)(x) = ra(xb) =
xba = rba(x), so ra ◦ rb = ra·opb and the claim is proved. �

Example 1.11. If A =Mn(k) is the matrix algebra, then Aop ∼= A as algebras, with the isomorphism given
by the matrix transpose.

1.5. Representations. Let A be a k-algebra. A representation of A is a pair (ρ, V ), where V is a vector
space and ρ : A→ Endk(V ) is an algebra homomorphism.

Every A-representation (ρ, V ) gives rise to an A-module on V via

a · v = ρ(a)v.

Conversely, if V is an A-module, we define an A-representation by setting ρ(a)v = a · v. So the notions of A-
representations and A-modules are the “same thing”. (In categorical language, we say that the corresponding
categories are equivalent.)

A particularly important case is when G is a group and A = kG is the group algebra. A G-representation
is a pair (ρ, V ), where V is a vector space and ρ : G → GL(V ) is a group homomorphism. We claim that
G-representations and kG-modules are the “same thing”. In one direction, if (ρ, V ) is a G-representation,
define a kG-module structure on V by setting

(
∑

g

agg) · v =
∑

g

ag ρ(g)v.

Here
∑

g aag denotes an element of kG and v ∈ V . Conversely, if V is a kG-module, we define a G-
representation ρ on V by setting

ρ(g)v = g · v,

where in the right hand side we think of g as an element of kG.

Remark 1.12. The group algebra kG is isomorphic to its opposite algebra (kG)op with the isomorphism given
by

∑
g agg 7→

∑
g agg

−1.

We know what isomorphism for modules means. The analogous notion for representations is equivalence.

Definition 1.13. Let ρi : A→ Endk(Vi), i = 1, 2, be two representations of the k-algebra A. We say that ρ1
and ρ2 are equivalent is there exists a linear isomorphism ψ : V1 → V2 such that

ψ(ρ1(a)v) = ρ2(a)ψ(v), a ∈ A, v ∈ V.

Another way to write this relation is ρ1(a) = ψ−1 ◦ ρ2(a) ◦ ψ, for all a ∈ A.

After all of this “tautological mathematics”, let’s look at an example.

Example 1.14. Let G = D2n = 〈r, σ | rn = σ2 = 1, σrσ−1 = r−1〉 be the dihedral group. For every
1 ≤ m ≤ n− 1, we may define the representation ρm : G→ GL(R2) = GL(2,R):

ρm(r) =

(
cos(mθ) − sin(mθ)
sin(mθ) cos(mθ)

)
, ρm(σ) =

(
1 0
0 −1

)
,

where θ = 2π
n . It is easy to verify that ρm(r)n = Id = ρm(σ)2, and ρm(σrσ−1) = ρm(σ)ρm(r)ρm(σ)−1 =

ρm(r)−1 = ρm(r−1). Since the relations in G are satisfied, it follows that ρm are all representations. We will
return later to the question of whether or not they are equivalent.
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Example 1.15. Suppose the group G acts on a set Ω. We may define the permutation module M = kΩ as
follows. Let M be the k-vector space with basis {ω ∈ Ω}. Then the action of G on M is

g · (
∑

ω∈Ω

λωω) =
∑

ω∈Ω

λω(g · ω).

This is extended to an action of kG by linearity:

(
∑

g∈G

agg) · (
∑

ω∈Ω

λωω) =
∑

a∈G

∑

ω∈Ω

agλω(g · ω).

In this way, kΩ is a kG-module.

Example 1.16. If G is a group, the trivial representation of G is (ρ, V ), where V = k (i.e., a one-dimensional
vector space) and ρ(g)v = v for all g ∈ G, v ∈ V . The trivial module of kG is V = k with the action

(
∑

g∈G

agg) · v = (
∑

g∈G

ag)v, v ∈ V.

2. The Jordan-Hölder Theorem

If A is a k-algebra that we would like to decompose an A-module into “atoms”, namely into simple modules.

2.1. Simple modules. An A-module M 6= 0 is called simple if its only submodules are 0 and M . The first
example of a simple module is the trivial module from Example 1.16.

Exercise 2.1. Let A = kSn be the group algebra of the symmetric group Sn. Let M = {(x1, . . . , xn) ∈ kn |
x1+ · · ·+xn = 0} with the action of Sn given by permutation of indices. Show that M is a simple A-module.

An important example is the following.

Lemma 2.2. Let A =Mn(k) be the algebra of n×n matrices and M = kn (column vectors), which is viewed
as an A-module by matrix multiplication. Then M is simple.

Proof. We denote by Eij the matrix which has 1 on the (i, j) position and 0 everywhere else. Also ei denote
the standard basis vectors of M .

Suppose N is a nonzero submodule of M . Let 0 6= v = (x1, . . . , xn) be a vector of N . If xi 6= 0, then
Eii · v = xiei which must then be in N . So ei ∈ N . Then ej = Eji · ei ∈ N as well. Hence N =M . �

When A = kG, we have the equivalent notion of irreducible representation. We say that ρ : G → GL(V )
is reducible if there exists a proper subspace 0 6= W ⊂ V such that ρ(g)W ⊆ W for all g ∈ G. (We say that
W is a G-stable.) If (ρ, V ) is not reducible, we say that it is irreducible. It is immediate that irreducible
G-representations are the same notion as simple kG-modules.

If M is an A-module, a submodule N of M is called maximal if for every submodule L of M such that
N ⊆ L, either L = N or L =M .

IfN is a submodule ofM , we have a natural one-to-one correspondence between submodules of the quotient
module M/N and submodules of M containing N . This is just the obvious thing: if L is a submodule of M
containing N , then L/N is a submodule of M/N . But this implies that N ⊂ M is maximal if and only if
M/N is a simple module.

Now suppose M is a simple A-module. Fix m ∈M , m 6= 0. We may define a map

fm : A→M, a 7→ a ·m.

Since fm(1) = m 6= 0, this is a nonzero map. It is trivial to check that fm is A-linear:

fm(ax) = (ax) ·m = a · (x ·m) = a · f(x), a, x ∈ A.

By the first isomorphism theorem A/ ker fm ∼= imM =M since M is simple. But ker fm is a left ideal of A,
which means that every simple A-module can be realised as a quotient M = A/I for a (maximal) left ideal of
A. In particular, this means that if A is a finite-dimensional k-algebra, then every simple A-module is finite
dimensional over k.
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2.2. Composition series. Let M be an A-module.

Definition 2.3. A composition series for M is a sequence of A-submodules of M

0 =M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mℓ =M

such that Mi+1/Mi is a simple module for all i. The integer ℓ is called the length of the series, and the simple
modules Mi+1/Mi are called the composition factors.

Example 2.4. Let G = Cp = 〈ξ | ξp = 1〉, where p is a prime number. Set k = Fp, the field with p elements.
Consider the module M = k〈x1, . . . , xp〉 ∼= kp, where the action is given by

ξ · xi = xi + xi−1 (x0 := 0).

In other words, in the basis B = {x1, . . . , xp}, the matrix of ξ looks like [ξ]B =




1 1 0 . . . 0
0 1 1 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 . . . 1



. This

means that [ξ − 1]B is strictly upper triangular with 1’s immediately above the main diagonal. Therefore
[ξ − 1]pB = 0. But since we are in characteristic p, (ξ − 1)p = ξp − 1, so [ξ]pB = 1. This shows that the action
is well defined and M is indeed a kCp-module.

It is clear that Mi = k〈x1, . . . , xi〉 are all submodules of M . Moreover Mi/Mi−1 = k〈xi〉 is the trivial
Cp-module. This means that M has a composition series of length p given by the submodules Mi and all of
the composition factors are isomorphic to the trivial module. (It is easy to see in fact that the only simple
module of kCp is the trivial module!)

Lemma 2.5. Let M be a finite-dimensional A-module and N ⊂M a submodule. Then M has a composition
series containing N .

Proof. Suppose N 6= M . If N and M/N are both simple, then 0 ⊂ N ⊂ M is a composition series of M .
Otherwise, say for example that M/N is not simple. We may find N ′ such that N ( N ′ ⊆M , so we extend
the chain of submodules to 0 ⊂ N ⊂ N ′ ⊂M and continue. (Similarly with 0 ⊂ N if N is not simple.) Since
M is finite dimensional, this process has to stop. �

Theorem 2.6. [Jordan-Hölder Theorem for finite-dimensional modules] LetM be a nonzero finite-dimensional
A-module. Then M has a composition series and all composition series are equivalent: they have the same
length and the same composition factors (up to isomorphism) counted with multiplicity.

Proof. The proof is by induction on dimkM . The base case is when dimkM = 1. Then 0 ⊂M is the unique
composition series. Assume dimkM > 1 and suppose

(i) 0 ⊂M1 ⊂ · · · ⊂Mk−1 ⊂Mk =M ,
(ii) 0 ⊂ N1 ⊂ · · · ⊂ Nℓ−1 =M

are two composition series of M . If Mk−1 = Nℓ−1, then we are done by the induction step applied to
M ′ := Mk−1 = Nℓ−1. Otherwise, Mk−1 6= Nℓ−1, so Mk−1 +Nℓ−1 is a strictly larger submodule than Mk−1

and Nℓ−1, implying that Mk−1 +Nℓ−1 =M .
Set L =Mk−1 ∩Nℓ−1. By the second isomorphism theorem,

M/Mk−1
∼= (Mk−1 +Nℓ−1)/Mk−1

∼= Nℓ−1/(Mk−1 ∩Nℓ−1) = Nℓ−1/L, (2.1)

and similarly

M/Nℓ−1
∼=Mk−1/L.

Let 0 ⊂ L1 ⊂ · · · ⊂ Lt = L be a composition series of L. Then

(iii) 0 ⊂ L1 ⊂ · · · ⊂ Lt = L ⊂Mk−1 ⊂M ,
(iv) 0 ⊂ L1 ⊂ · · · ⊂ Lt = L ⊂ Nℓ−1 ⊂M

are composition series of M . They are equivalent, both of length t + 2, and composition factors given by
the composition factors of L plus M/Nℓ−1

∼= Mk−1/L and M/Mk−1
∼= Nℓ−1/L. On the other hand, by

induction, the composition series (i) and (iii) are equivalent, and so are (ii) and (iv). Since the equivalence
of composition series is obviously an equivalence relation, it implies that (i) and (ii) are equivalent too. �
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Example 2.7. Let A =Mn(k) viewed as a left A-module. Denote by Ni the subspace of matrices where the
last (n− i) columns are all zero. It is clear that Ni is a left A-submodule of A and Ni+1/Ni

∼= kn which we
have seen it is a simple Mn(k)-module. Hence

0 ⊂ N1 ⊂ · · · ⊂ Nn = A

is a composition series of A and all the composition factors are isomorphic to kn.

Corollary 2.8. Let A be a finite-dimensional k-algebra. Every simple A-module S appears as a composition
factor in every composition series of the A-module A.

Proof. By Theorem 2.6, it is sufficient to prove that S occurs in one composition series of A. We have seen
that S must be isomorphic (as a left A-module) to S ∼= A/I, where I is a left ideal of A. But left ideals
of A are the same as submodules of A. By Lemma 2.5, there exists a composition series of A containing I,
which, since A/I is simple, must be of the form ) = M0 ⊂ M1 ⊂ · · · ⊂ Mℓ−1 = I ⊂ A. This exhibits S as a
composition factor.

�

Example 2.9. The only simple module of Mn(k) is kn. This follows from Example 2.7 and Corollary 2.8.

Corollary 2.10. If A is a finite-dimensional k-algebra, there are only finitely many isomorphism classes of
simple A-modules.

Proof. This is immediate from Corollary 2.8 since in any given composition series, only finitely many simple
modules appear. �

3. Basic results: Schur’s Lemma, modules for commutative algebras

3.1. Schur’s Lemma. This is one of the first results in representation theory. Let A be a k-algebra. The
first part is a triviality.

Lemma 3.1 (Schur’s Lemma). (1) LetM,N be simple A-modules and f :M → N be an A-homomorphism.
Then f = 0 or f is an isomorphism.

(2) Suppose that k is algebraically closed and let M be a finite dimensional simple A-module. Every
A-homomorphism f :M →M is a scalar multiple of the identity, i.e., f = λ IdM for some λ ∈ k.

Proof. (1) Since ker f is a submodule ofM which is simple, either ker f = 0 (f injective) or f = 0. In the first
situation, we look at im f which is a nonzero (because f 6= 0) submodule of N . Since N is simple, im f = N
(f surjective).

(2) Since f :M →M is A-linear, it is k-linear. As k is algebraically closed, there exists λ ∈ k an eigenvalue
of f . Let 0 6= v ∈M be a λ-eigenvector. Consider g = f − λ IdM :M →M . This is A-linear, and v ∈ ker g.
Hence ker g 6= 0 and by part (1), g = 0, which implies f = λ IdM . �

The second part of Schur’s Lemma says that EndA(M) = k when M is simple finite dimensional and k is
algebraically closed.

Example 3.2. The second part of Schur’s Lemma is false when k is not algebraically closed. For example,
take G = C3 = 〈ξ | ξ3 = 1〉 acting on M = R2 by rotations: ξ acts by the rotation with angle of 2π

3 . Notice
that M is a simple RC3-module: if it were not, then it would have a one-dimensional submodule, which is
the same as a line stable under the action of ξ; but ξ does not have real eigenvalues. We may think of an
element of EndRC3

(M) as a 2 × 2 real matrix which commutes with the matrix given by the action of ξ:

R(2π/3) =

(
cos(2π/3) − sin(2π/3)
sin(2π/3) cos(2π/3)

)
. Then we see that EndRC3

(M) = R〈I2, R(2π/3), R(−2π/3)〉 ∼= RC3.

3.2. Central characters. Suppose that k is algebraically closed and let M be an A-module. Recall that
the centre of A is

Z(A) = {z ∈ A | za = az, for all a ∈ A}.

For every z ∈ Z(A), we can define a map

fz :M →M, fz(m) = z ·m.

Then fz(a ·m) = z · (a ·m) = (za) ·m = (az) ·m = a · (z ·m) = a · fz(m), which shows that fz is A-linear. If
M is simple finite dimensional, then by Schur’s Lemma, there exists λz ∈ k such that fz(m) = λzm, for all
m ∈M .
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Proposition 3.3. Suppose M is a finite-dimensional simple A-module, where A is an algebra over the
algebraically closed field k. There exists a algebra homomorphism, called the central character of M

cM : Z(A)→ k, z 7→ λz.

Proof. It is immediate from the definition of λz that cM is in fact an algebra homomorphism. �

Corollary 3.4. Let A be a commutative algebra over an algebraically closed field k. Then every simple finite
dimensional A-module is one dimensional.

Proof. Since A is commutative, then A = Z(A). Suppose S is a simple A-module. Then by Proposition 3.3,
every a ∈ A acts by a scalar cS(a) multiple of the identity. This means that every one dimensional subspace
of S is A-stable, which implies that S must be one dimensional. �

In particular, if A is a finite-dimensional commutative k-algebra (algebraically closed k), then all simple
A-modules are one dimensional.

Example 3.5. Let G be a finite abelian group. Then all irreducible representations of G over an algebraically
closed field are one dimensional. We saw in Example 3.2 that this is false if the field is not algebraically
closed.

3.3. The Pontrijagin dual. Suppose G is a finite abelian group. Then, as a consequence of the Schur
Lemma, we now know that every irreducible G-representation is one dimensional, i.e., it is a group homo-
morphism

ρ : G→ GL(C) = C×.

Since these are one-dimensional representations, any two different homomorphisms are in fact non-isomorphic.
Notice also that since G is finite, every g ∈ G has finite order, and so ρ(g) has finite order in C×. But then
ρ(g) ∈ S1, where

S1 = {z ∈ C× | |z| = 1} with multiplication

is the circle group. So we may think of these one-dimensional representations as group homomorphisms
ρ : G→ S1.

Definition 3.6. The Pontrijagin dual of G is Ĝ = {ρ : G → S1 group homomorphism} endowed with the
pointwise product, (ρ1 · ρ2)(g) = ρ1(g)ρ2(g), g ∈ G. This is group with identity element 1(g) = 1 for all g
(the trivial representation of G) and inverses ρ−1(g) = ρ(g−1) for all g ∈ G.

In other words, when G is an finite abelian group, the set of isomorphism classes of irreducible G-
representations over C has a natural structure of an abelian group.

Lemma 3.7. Let G1 and G2 be two finite abelian groups and G1 ×G2 their direct product. Then we have a

natural isomorphism ̂G1 ×G2
∼= Ĝ1 × Ĝ2.

Proof. Left as an exercise. �

By the fundamental theorem of finitely generated abelian groups, we know that every finite abelian group
is a direct product of finite cyclic groups. In light of the previous lemma, we need to understand the dual of
Cn, the cyclic group of order n.

Suppose Cn is generated by an element ξ such that ξn = 1. Fix a primitive n-th root ζn of 1 in S1. For
every m ∈ Z, define

ρm : Cn → S1, ξ 7→ ζmn . (3.1)

It is clear that ρm = ρk if and only if m ≡ k mod n. Hence we have a set of nonisomorphic one-dimensional
representations {ρm : Cn → S1 | m ∈ Z/nZ}.

On the other hand, if ρ : Cn → S1 is any group homomorphism, it must map ξ to an n-th root of 1, and
therefore ρ = ρm for some m. This means that

Ĉn
∼= Z/nZ (3.2)

as sets.

Lemma 3.8. Ĉn
∼= (Z/nZ,+) ∼= Cn as abelian groups.
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Proof. Of course, we only need to prove the first isomorphism. In other words, we need to check that the set

bijection Z/nZ → Ĉn given by m 7→ ρm is a group homomorphism, or in other words that ρm+k = ρm · ρk.
Since these homomorphims are uniquely determined by their value on ξ, we check:

ρm+k(ξ) = ζm+k
n = ζmn · ζ

k
n = ρm(ξ) · ρk(ξ) = (ρm · ρk)(ξ).

�

Proposition 3.9. There is a (non-canonical) isomorphism as abelian groups G ∼= Ĝ for any finite abelian

group G. In particular, |Ĝ| = |G|.

Proof. This is immediate from the previous lemmas and the classification of finite abelian groups. The fact
that this isomorphism is non-canonical has to do with the fact that we needed to choose primitive roots on
1 in S1 in order to construct the one-dimensional representations. �

One should compare the result above with the familiar situation of finite dimensional vector spaces and
their duals. Also, just as for finite dimensional vector spaces, we have the following result.

Proposition 3.10. There is a canonical isomorphism of abelian groups
̂̂
G ∼= G.

Proof. Left as exercise (mimic the proof from vector spaces). �

4. Semisimple modules and semisimple algebras

4.1. Semisimple modules. Let A be a k-algebra and let M be an A-module.

Definition 4.1. (1) The module M is called semisimple if there exists a family of simple submodules
{Si : i ∈ I} such that M =

⊕
i∈I Si.

(2) We say that M is completely reducible if whenever N is a submodule of M , there exists another
submodule N ′ (a complement) such that M = N ⊕N ′.

Proposition 4.2. Suppose M is a finite-dimensional A-module. Then M is semisimple if and only if it is
completely reducible.

Proof. Suppose first that M is completely reducible. If M is simple, then it is semisimple. If not, then let
U be a nonzero proper submodule of M . By complete reducibility, there exists a submodule V such that
M = U ⊕ V . Since U and V are both finite dimensional and of strictly smaller dimension than M , by
induction we may assume that U and V are both semisimple, and then so is M .

For the converse, let U be a submodule of M , U 6= M . We wish to construct a complement for U . Let
C = {W submodule of M | W ∩ U = 0}. Since 0 ∈ C, then C 6= ∅. Moreover, M is finite dimensional, and
so there must exist an element V of C of maximal dimension. If M = U + V , then M = U ⊕ V , so we
constructed the complement. Otherwise, write M = ⊕Si, where Si are simple submodules and there exists
a simple submodule S = Si of M such that S 6⊂ U + V . Since S is simple, this means that S ∩ (U + V ) = 0.
Set V ′ = V +S. We claim that V ′∩U = 0 and this leads to the contradiction with the maximality of V since
dimV ′ > dimV . Indeed, let u = s+ v ∈ V ′ ∩ U , then s = u− v ∈ U + V , so s = 0 and u ∈ V ∩ U = 0. �

Remark 4.3. Using Zorn’s Lemma, one can see that a semisimple module M is completely reducible even
when M is infinite dimensional (same proof as above). But we will see in the Appendix that it is possible
to have infinite dimensional completely reducible modules (e.g., unitary modules) which are not semisimple.
This has to do with the fact that simple submodules may not exist at all in an infinite dimensional reducible
module!

Example 4.4. (1) If A = k, then A-modules are the same as k-vector spaces. In this case every k-vector
space is semisimple (a direct sum of one-dimensional subspaces given by the existence of a basis) and
completely reducible (which is the linear algebra fact that every linearly independent subset can be
extended to a basis).

(2) If A =Mn(k), then A is a direct sum of its column left ideals, so it is a semisimple A-module.
(3) If G is a finite group acting transitively on a finite set Ω, then the permutation representation kΩ,

chark = p, is a semisimple kG-module if and only if p 6 | |Ω|. (Exercise.)
(4) A direct sum of semisimple modules is a semisimple module.

Here are the first easy properties.
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Lemma 4.5. If M is a completely reducible A-module, then every submodule and every quotient of M are
completely reducible modules.

Proof. Let N be a submodule of M and U a submodule of N . Then U is a submodule of M and there exists
a submodule V of M such that M = U ⊕ V . We claim that N = U ⊕ (V ∩ N). Firstly, U ∩ (V ∩ N) =
(U ∩ V ) ∩ N = 0 ∩ N = 0. Secondly, if n ∈ N , then n ∈ U ⊕ V , so we may write n = u + v. But then
v = n− u ∈ N since U ⊂ N .

For quotients, let N be a submodule of M . As M is completely reducible, there exists N ′ submodule of
M such that M = N ⊕N ′. But then M/N ∼= N ′ and this is completely reducible as we have just proved. �

4.2. Semisimple algebras. From now on, unless explicitly stated otherwise, the algebra A is

assumed to be finite dimensional. By the equivalence between complete reducibility and semisimplicity,
the same claims in Lemma 4.5 hold for semisimple A-modules.

Definition 4.6. An algebra A is called semisimple if it is semisimple as an A-module.

Example 4.7. If A =Mn(k), then A is semisimple.

A particular case is the following. If A is a semisimple algebra and I is a left ideal of A, then I is an
A-submodule, hence both A and A/I are semisimple A-modules.

Proposition 4.8. A is semisimple if and only if every finite-dimensional A-module is semisimple.

Proof. The ‘only if’ part is clear since A itself is a finite-dimensional A-module.
For the other implication, suppose M is a finite-dimensional A-module. Fix a k-basis of M , {m1, . . . ,mℓ}

of M . Define

f : A⊕ · · · ⊕A︸ ︷︷ ︸
ℓ copies

→M, (a1, . . . , aℓ) 7→
∑

ai ·mi.

This is an A-linear map: for every a ∈ A,

f(a((a1, . . . , aℓ)) = f((aa1, . . . , aaℓ)) =
∑

(aai) ·mi = a
∑

aimi = af((a1, . . . , aℓ)).

The map f is also clearly surjective since every element of M is a k-linear combination of the {mi}. The
direct sum of copies of A is a semisimple A-module. By the first isomorphism theorem, M is isomorphic to
a quotient of this direct sum, hence it is also semisimple. �

Lemma 4.9. (1) Let A be a semisimple algebra and I a two-sided ideal of A. Then the algebra B = A/I
is semisimple.

(2) Let A1, A2 be k-algebras. Then A1 ×A2 is semisimple if and only if A1 and A2 are semisimple.

Proof. (1) Let V be a finite dimensional B-module. Then we may regard V as a finite-dimensional A-module
such that I · V = 0. Let U be a B-submodule of V (which we can identify with an A-submodule of V such
that I · U = 0.) Since A is semisimple, there exists a complement W , an A-submodule of V , such that
V = U ⊕W as A-modules. But since W ⊂ V , we also have I ·W = 0, so W can be viewed as a B-module,
hence we found a B-complement of U .

(2) Exercise. �

4.3. Artin-Wedderburn Theorem. This is an important result which gives a description of finite dimen-
sional semisimple algebras. We are only concerned with the case when the field k is algebraically closed.

Theorem 4.10. Let A be a (finite dimensional) k-algebra, where k is algebraically closed. Then A is semisim-
ple if and only if

A ∼=Mn1
(k)× . . .Mns

(k),

for a unique set of integers n1, . . . , ns ∈ N.

Proof. The proof is non-examinable. We will not give a complete proof, but only explain the ideas. You can
find a complete proof in many texts, for example, in [1].

The starting point is to recall from Proposition 1.10 that A ∼= EndA(A)
op as k-algebras. If we show that

EndA(A) is a product of matrix algebras, then so is EndA(A)
op (since a matrix algebra is isomorphic to its

opposite), so the claim follows for A.
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To avoid potential confusion, let’s replace A by some arbitrary finite dimensional A-module M . Then M

is semisimple and write M =
∑ℓ

i=1 Si, where Si are simple A-modules. (At the end, we can can specialise
M = A.) Recall that EndA(M) is an algebra of A-homomorphisms with composition. By the easy part of
Schur’s Lemma, there are no nozero A-homomorphisms between Si and Sj unless Si

∼= Sj . So group together
the Si’s according to isomorphism classes and identify the isomorphic copies of the same simple module. So
we write

M = ⊕s
j=1(Sij ⊕ · · · ⊕ Sij︸ ︷︷ ︸

nj times

).

Then, using that there are no nonzero homomorphisms between nonisomorphic simple modules:

EndA(M) =
s∏

j=1

EndA(Sij ⊕ · · · ⊕ Sij︸ ︷︷ ︸
nj times

)

as algebras. This reduces the problem to describing the algebra

EndA(S ⊕ · · · ⊕ S︸ ︷︷ ︸
n times

) (4.1)

where S is a simple A-module. (Notice that so far we have not used that k is algebraically closed.) To
orient ourselves and see how matrix algebras will appear, think of the simplest case A = k and S = k, then
Endk(k

n) =Mn(k).
Now we assume that k is algebraically closed. We claim that

EndA(S ⊕ · · · ⊕ S︸ ︷︷ ︸
n times

) ∼=Mn(k). (4.2)

We use the second part of Schur’s Lemma, which says that EndA(S) ∼= k. To distinguish between the copies
of S, write Si for the i-th copy of S, 1 ≤ i ≤ n. Suppose φ : ⊕n

i=1S
i → ⊕n

i=1S
i is an A-linear map. Consider

the restriction
φSj : Sj → ⊕n

i=1S
i → Si

where the last map is the projection pi onto the Si term. The composition is then a map φi,j : Sj → Si.
Identifying both Si and Sj with S, we can think of ψi,j as an element of EndA(S). But this is a scalar
multiple of the identity, say the scalar is aij ∈ k. This defines an asisgnment

EndA(S ⊕ · · · ⊕ S︸ ︷︷ ︸
n times

)→Mn(k), φ→ (aij),

which is the desired isomorphism. (One needs to check that composition in the left hand side corresponds to
matrix multiplication in the right hand side, but this is not hard.) �

Example 4.11. The theorem as stated is false if one drops the assumption k algebraically closed. For
example, consider H the algebra of real quaternions

H = R〈i, j, k | i2 = j2 = k2 = −1, ij = k, jk = i, ki = j〉.

This is a division algebra and in particular, it has no left ideals, meaning that H is a simple (hence semisimple)
algebra. Clearly, dimR H = 4, so if the Artin-Wedderburn Theorem were to hold as stated, we would have
H ∼=M2(R) or H ∼=1 (R)4. But these are both false, the first because M2(R) is not a division algebra and the
second because H is not commutative.

Corollary 4.12. Let A be a finite dimensional semisimple k-algebra, A ∼=
∏s

i=1Mni
(k). Then

(1) A has exactly s simple modules (up to isomorphism) M1, . . . ,Ms such that dimkMi = ni.
(2) The integer s equals the dimension dimk Z(A).
(3) dimkA = n21 + . . . n2s =

∑s
i=1(dimkMi)

2.

Proof. All of these claims follow immediately from Theorem 4.10. For (1), we use the fact that eachMni
(k) has

a unique simple module Vi = kni . In fact, using the semisimplicity ofMni
(k), we may writeMni

(k) = ⊕ni

r=1V
r
i ,

where V r
i is the space of ni × ni matrices with 0 everywhere except on the r-th column. Clearly V r

i
∼= Vi for

all r. Then, as A-modules:
A ∼= ⊕s

i=1 ⊕
ni

r=1 V
r
i .
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This defines a composition series of A composition factors isomorphic to {V r
i | 1 ≤ i ≤ s, 1 ≤ r ≤ ni}. In

this set, for every fixed i, V r
i
∼= V r′

i
∼= kni . Moreover, if i 6= j, then V r

i 6
∼= V r′

j . To see this, consider the

element ai ∈ A corresponding to (0, . . . , 0, Idni
, 0, . . . , 0) ∈

∏s
i=1Mni

(k). Then ai acts by the identity on V r
i ,

but it acts by 0 on V r′

j . Since every simple A-module (up to isomorphism) must appear in every composition
series of A, we conclude that A has s nonisomorphic simple modules of dimensions ni.

(2) We have Z(A) ∼= Z(
∏s

i=1Mni
(k)) =

∏s
i=1 Z(Mni

(k)) =
∏s

i=1 k Idni
∼= ks. This means that dimk Z(A) =

s.
(3) The first equality is immediate since dimMni

(k) = n2i . The second one now follows from (1). �

4.4. Maschke’s Theorem. We would like to apply Theorem 4.10 to finite groups.

Theorem 4.13. Let G be a finite group and k a field. The algebra kG is semisimple if and only if chark 6 | |G|.
In particular, CG is semisimple.

Proof. Suppose that char k 6 | |G|. Then |G is invertible in k. Let U ⊂ kG be a submodule. We want to find
a complement V which is a kG-submodule. As k-vector spaces, there exists V ′ such that kG = U ⊕ V ′ as
k-vector spaces.

Let f : kG → U be the projection f(u) = u, f(v′) = v′. This is only k-linear! We want to define a
kG-linear projection. This is possible since we can average over G:

φ : kG→ U, φ(x) =
1

|G|

∑

g∈G

g · f(g−1 · x), x ∈ kG. (4.3)

For every h ∈ G,

φ(h · x) =
1

|G|

∑

g∈G

g · f(g−1h · x) =
1

|G|

∑

g1∈G

(hg1) · f(g
−1
1 · x) = h · φ(x),

where we made the change of variable g1 = h−1g. This means that φ is G-linear and hence kG-linear. Now
φ is also surjective because

φ(u) =
1

|G|

∑

g∈G

g · f(g−1 · u) =
1

|G|

∑

g∈G

g · g−1 · u = u, u ∈ U.

Define V = kerφ which is a kG-submodule. Because of the rank-nullity theorem (over k), dim k = dimU +
dimV . Moreover, if x ∈ U ∩ V , then φ(x) = x (because x ∈ U) and φ(x) = 0 (because x ∈ V ). Hence
U ∩ V = 0. This means that kG = U ⊕ V which shows that kG is completely reducible, hence semisimple.

For the converse, recall the exercise that when p | chark then kG has a one-dimensional submodule
U = k〈

∑
g∈G g〉 which does not have a complement. �

Corollary 4.14. Suppose that k is algebraically closed of characteristic p and p 6 ||G|. Then kG has exactly s
nonisomorphic simple modules, where s is the number of conjugacy classes. If n1, . . . , ns are the dimensions
of the simple modules, then

|G| = n21 + · · ·+ n2s.

Proof. Via Maschke’s Theorem, we may apply the Artin-Wedderburn Theorem, more precisely Corollary
4.12. Then the only remaining thing is to remark that the centre Z(kG) is spanned by δC =

∑
g∈C g, where

C ranges over the conjugacy classes of G. Hence dimk Z(kG) equals the number of conjugacy classes in G. �

Remark 4.15. In the appendix, we will give another proof of Maschke’s Theorem when k = C, using the
notion of unitary representations.

Example 4.16. If G = Cp and k has characteristic p, then Maschke’s Theorem says that kCp is not semisim-
ple. In this case, one can see directly that the only simple kCp module is the trivial (one-dimensional) module.
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5. More linear algebra: tensor products

5.1. Duals. Let k be a field. If V and W are k-vector spaces, we denote by

V ∗ = {f : V → k | f is k-linear} (5.1)

the dual k-vector space and by

Homk(V,W ) = {φ : V →W | φ is k-linear} (5.2)

the k-vector space of linear maps between V and W . Of course, Homk(V,W ) = V ∗. Moreover, we use the
notation Endk(V ) = Homk(V, V ) for the k-vector space of endomorphisms of V . You may recall that Endk(V )
is in fact a k-algebra under composition of linear maps.

If V is finite dimensional with basis {ei : 1 ≤ i ≤ n}, then a dual basis of V ∗ is defined by

{fi : 1 ≤ i ≤ n}, fi(ej) = δij , 1 ≤ i, j ≤ n.

It is easy to check that this is indeed a basis of V ∗.
In such a case, one may say that V and V ∗ are isomorphic, since any two vector spaces with the same

dimension are, but this isomorphism is not natural (or “canonical”), since it depends on the choice of basis
for V .

Exercise 5.1. Prove that there is always a natural injective linear map V → (V ∗)∗. Deduce that this is a
natural isomorphism when V is finite dimensional. (When V is infinite dimensional, the dimension of V ∗ is
strictly larger than that of V .)

5.2. Direct products and sums. If {Vi}i∈I is a family of k-vector spaces, define the direct product
∏

i∈I

Vi = {(vi), i ∈ I} (5.3)

and the direct sum ⊕

i∈I

Vi = {(vi), i ∈ I | vi = 0 except for finitely many i}. (5.4)

Both are k-vector spaces under the coordinate sum and scalar multiplication, i.e.,

(vi)i∈I + (v′i)i∈I = (vi + v′i)i∈I , λ(vi)i∈I = (λvi)i∈I , λ ∈ k.

In general,
⊕

i∈I Vi is a k-linear subspace of
∏

i∈I Vi. When I is a finite set, then
⊕

i∈I Vi =
∏

i∈I Vi. If V
has basis {ei} and Wi has basis {e

′
i}, then V ⊕W has basis {(ei, 0)} ∪ {(0, e

′
i)}. In particular,

dim(V ⊕W ) = dimV + dimW.

5.3. Tensor products. Suppose V and W are two k-vector spaces. We define the tensor product V ⊗W
as follows. Let M be the k-vector space with basis (v, w) for all v ∈ V , w ∈ W . Notice that this a huge
vector space, for example even when V and W are finite dimensional, M is infinite-dimensional as long as k
is infinite. Let N be the vector subspace of M spanned by all elements of the form

(v1 + v2, w)− (v1, w)− (v2, w), (v, w1 + w2)− (v, w1)− (v, w2),

λ(v, w)− (λv,w), λ(v, w)− (v, λw),

v, v1, v2 ∈ V , w,w1, w2 ∈W , and λ ∈ k.

Definition 5.2. The tensor product is the vector space V ⊗W =M/N . Denote by v⊗w the image of (v, w)
in V ⊗W .

Lemma 5.3. The tensor product space V ⊗W is spanned by the simple tensors v ⊗ w, meaning that every
element in V ⊗W is a finite sum of simple tensors. Moreover, the simple tensors satisfy the following bilinear
properties:

(i) (v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w;
(ii) v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2;
(iii) λ(v ⊗ w) = (λv)⊗ w = v ⊗ (λw).

Proof. Straightforward from the definition. �
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Another way to phrase the properties in the lemma above is to say that the natural map p : V×W → V⊗W ,
(v, w) 7→ v ⊗ w is bilinear. The tensor product satisfies the following universal property.

Lemma 5.4. Let U is a k-vector space with a bilinear map φ : V ×W → U . Then there exists a unique

k-linear map φ̃ : V ⊗W → U such that φ = φ̃ ◦ p.

In light of this lemma, we may think of V ⊗W as the “largest” vector space which has the bilinearity
properties from the definition. It is also easy to prove the following lemma.

Lemma 5.5. If {vi : i ∈ I} and {wj : j ∈ J} are bases for V and W , respectively, then {vi⊗wj : i ∈ I, j ∈ J}
is a basis of V ⊗W . In particular,

dim(V ⊗W ) = dimV · dimW.

Exercise 5.6. Prove Lemmas 5.4 and 5.5.

Proposition 5.7. Let V,W be k-vector spaces and suppose that V is finite dimensional. Then the map

τ : V ∗ ⊗W → Homk(V,W ), f ⊗ w 7→ (φ : V →W, φ(v) = f(v)w),

is a linear isomorphism.

Proof. To begin, notice that τ is well defined since the assignment (v, w) → f(v)w is bilinear. We also
emphasize that we have only defined τ on the simple tensors, but one extends the definition to a finite sum
of simple tensors in the obvious way, by summing up the corresponding images of simple tensors.

The inverse map is not constructed naturally, we need to fix a basis of V . Let {ei : 1 ≤ i ≤ n} be a basis
of V and let {fi : 1 ≤ i ≤ n} be the dual basis of V ∗. Define

η : Homk(V,W )→ V ∗ ⊗W, φ 7→
n∑

i=1

fi ⊗ φ(ei).

We verify directly that τ and η are inverses to each other:

(η ◦ τ)(f ⊗ w) = η(φ) =

n∑

i=1

fi ⊗ φ(ei), (where φ = τ(f ⊗ w))

=
n∑

i=1

fi ⊗ f(ei)w = (
n∑

i=1

f(ei)fi)⊗ w = f ⊗ w;

(τ ◦ η)(φ)(v) = τ(

n∑

i=1

fi ⊗ φ(ei))(v) =
n∑

i=1

fi(v)φ(ei)

= φ(
n∑

i=1

fi(v)ei) = φ(v).

�

6. Characters

If G is a group, recall that a representation of G over k is a pair (ρ, V ), where V is a k-vector space and
ρ : G→ GL(V ) is a group homomorphism.

6.1. Basics. We define characters.

Definition 6.1. Let (ρ, V ) be a finite dimensional representation of G. The character of the representation
is the function χρ : G→ k (or we may also denote it by χV ) defined by

χρ(g) = tr ρ(g).

Notice that we need V to be finite dimensional for the definition to make sense. (There are various notions
of characters for infinite dimensional representations, but there are more complicated.) From now on, we
assume that the representations are finite dimensional, unless stated otherwise. The following properties are
immediate.

Lemma 6.2. Let (ρ, V ) be a G-representation.
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(i) If (ρ1, V1) and (ρ2, V2) are equivalent representations, then χρ1
= χρ2

.
(ii) χρ(e) = dimV , where e is the identity element of G.
(iii) For every g, h ∈ G, χρ(hgh

−1) = χρ(g).
(iv) Suppose that k = C and g ∈ G has finite order. (This is automatic when G is finite.) Then

χρ(g
−1) = χρ(g), where denotes complex conjugation.

Proof. (i) By definition, ρ1 and ρ2 are equivalent if there exists a k-linear isomorphism T : V1 → V2 such that
ρ1(g) = T−1 ◦ ρ2(g) ◦ T for all g. Since tr(A−1BA) = tr(B) for any linear maps A,B, the claim follows.

(ii) This is clear since ρ(e) = IdV .
(iii) Since ρ(hgh−1) = ρ(h) ◦ ρ(g) ◦ ρ(h)−1, this follows again from the invariance of the trace under

conjugation.
(iv) Since C is algebraically closed, ρ(g) has n eigenvalues (counted with multiplicity), if n = dimV , say

λ1, . . . , λn. If g
m = e ∈ G, it follows that λmi = 1 for all i. This means that λi are roots of unity and therefore

λ−1
i = λi. On the other hand, the eigenvalues of ρ(g−1) are λ−1

1 , . . . , λ−1
n . So χρ(g

−1) =
∑
λ−1
i =

∑
λi =

χρ(g). �

It is often tedious and confusing to write the homomorphism ρ as part of the representation. We may
write

g · v in place of ρ(g)v, g ∈ G, v ∈ V,

in other words, using the same notation as for group actions.
Suppose that V and W are G-representations (not necessarily finite-dimensional). We may define repre-

sentations of G on:

(1) V ⊕W via g · (v, w) = (g · v, g · w);
(2) V ∗ via (g · f)(v) = f(g−1 · v), where f ∈ V ∗, v ∈ V , g ∈ G;
(3) V ⊗W via g · (v ⊗ w) = (g · v)⊗ (g · w).

It is straightforward to check that these are indeed representations. A little more subtle is to define a structure
of G-representation on Homk(V,W ). To emphasize the actions, let (ρ, V ) and (µ,W ) be the corresponding
representations. Then we define a representation ν on Homk(V,W ) by

(ν(g)φ)(v) = µ(g)φ(ρ(g−1)v), or, more simply, (g · φ)(v) = g · φ(g−1 · v). (6.1)

Proposition 6.3. The k-linear isomorphism τ : V ∗ ⊗W → Homk(V,W ) from Proposition 5.7 is G-linear,
and therefore V ∗ ⊗W ∼= Homk(V,W ) as G-representations.

Proof. This is a direct verification:

τ(g · (f ⊗ w))(v) = τ(g · f ⊗ g · w)(v) = (g · f)(v)(g · w) = f(g−1 · v)(g · w).

On the other hand, if φ = τ(f ⊗ w), then

(g · φ)(v) = g · φ(g−1 · v) = g · (f(g−1v)w) = f(g−1 · v)(g · w),

where in the last step, we used that f(g−1 · v) is a scalar. We see that the two results are the same. �

Lemma 6.4. Suppose that V and W are G-representations. Then for every g ∈ G:

(i) χV⊕W (g) = χV (g) + χW (g);
(ii) χV⊗W (g) = χV (g) · χW (g);
(iii) χV ∗(g) = χV (g

−1).

Proof. Left as exercise. �

6.2. A fixed point formula. We assume from now on that G is finite. Suppose that U is a G-representation.
We define subspace of G-fixed points

UG = {u ∈ U | g · u = u, for all g ∈ G}. (6.2)

This is a subrepresentation of U , and in fact it built out of copies of the trivial representation: clearly, for
every u ∈ UG, g · u = u for all g.
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Proposition 6.5 (Fixed point formula). Suppose that |G| is invertible in k. Then

dimUG =
1

|G|

∑

g∈G

χU (g).

Proof. Define ψ : U → U by

ψ(u) =
1

|G|

∑

g∈G

g · u.

Then imψ ⊆ UG because

h · ψ(u) =
1

|G|

∑

g∈G

hg · u =
1

|G|

∑

g′∈G

g′ · u = ψ(u),

where g′ = hg. On the other hand, if u ∈ UG, then

ψ(u) =
1

|G|

∑

g∈G

g · u =
1

|G|

∑

g∈G

u =
|G|

|G|
u = u.

We have seen this trick already in the proof of Maschke’s Theorem. This means that ψ is a projection of U
onto UG. But then

dimUG = tr(ψ) =
1

|G|

∑

g∈G

tr(g·) =
1

|G|

∑

g∈G

χU (g).

�

We denote by HomG(V,W ) the space of G-linear maps (G-homomorphisms) between the G-representations
V and W . This is a subrepresentation of Homk(V,W ), but in fact:

Lemma 6.6. Homk(V,W )G = HomG(V,W ).

Proof. This is simply a matter of unravelling the definitions. A k-linear map φ ∈ Homk(V,W ) belongs to
Homk(V,W )G if and only if for every g ∈ G, g · φ = φ. But this means (g · φ)(v) = φ(v), or equivalently
g · φ(g−1 · v) = φ(v), or φ(g−1 · v) = g−1 · φ(v). Since this condition holds for all g, we may change g for g−1,
and hence φ(g · v) = g · φ(v) for all g and v. But this is precisely the definition of G-linear maps. �

Corollary 6.7. Let V,W be G-representations. Then

dimHomG(V,W ) =
1

|G|

∑

g∈G

χV (g
−1)χW (g).

Proof. By Lemma 6.6, dimHomG(V,W ) = dimHomk(V,W )G. We apply the fixed point formula to U =
Homk(V,W ) and it follows that

dimHomG(V,W ) =
1

|G|

∑

g∈G

χHomk(V,W )(g).

Now, by Proposition 6.3, Homk(V,W ) ∼= V ∗ ⊗W as G-representations and so χHomk(V,W )(g) = χV ∗⊗W (g).

Finally, we have seen that χV ∗⊗W (g) = χV ∗(g)χW (g) = χV (g
−1)χW (g). The corollary is proved.

�

6.3. The character pairing. Let Cclass(G) denote the k-vector space of class functions, i.e., the functions
f : G → k that are constant on the conjugacy classes of G: f(hgh−1) = f(g) for all h, g ∈ G. As noted
before, χV ∈ Cclass(G) for all G-representations V .

Definition 6.8. Define the pairing 〈 , 〉 on Cclass(G):

〈f1, f2〉 =
1

|G|

∑

g∈G

f1(g
−1)f2(g).

Lemma 6.9. The pairing 〈 , 〉 is symmetric and bilinear.

Proof. The bilinearity in f1 and f2 is clear. The symmetry 〈f1, f2〉 = 〈f2, f1〉 follows by changing g to g−1

in the summation. �
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If C is a conjugacy class in G, we denote by δC the function which is 1 on each element of C, and 0
everywhere else. It is immediate that {δC : C conjugacy class in G} is a k-basis of Cclass(G).

If g1 and g2 are conjugate, then so are g−1
1 and g−1

2 . If C is the conjugacy class of g, denote by C−1 the
conjugacy class of g−1. Then |C| = |C−1|. Suppose C and C ′ are two conjugacy classes. We calculate

〈δC , δC′〉 =
1

|G|

∑

g∈G

δC(g
−1)δC′(g) =

1

|G|

∑

g∈C′∩C−1

1 =
|C ′ ∩ C−1|

|G|

=

{
|C|
|G| , if C ′ = C−1,

0, otherwise.

(6.3)

Finally, we have the first important result. Recall that we assume that G is finite, |G| is invertible in k

and the representations are finite dimensional.

Theorem 6.10. Let V,W be G-representations. Then

〈χV , χW 〉 = dimHomG(V,W ). (6.4)

Proof. This follows immediately now from Corollary 6.7 and the definition of 〈 , 〉. �

Corollary 6.11. Suppose V and W are irreducible G-representations.

(i) If V 6∼=W , then 〈χV , χW 〉 = 0.
(ii) If V =W and k is algebraically closed, then 〈χV , χV 〉 = 1.

Proof. By the first part of Schur’s Lemma, HomG(V,W ) = 0 when V 6∼= W . By the second part of Schur’s
Lemma, EndG(V ) is one-dimensional when k is algebraically closed. �

Corollary 6.12. Suppose that k is algebraically closed and that |G| is invertible in k. Then the set {χV }
where V ranges over the irreducible G-representations (up to isomorphism) is an orthonormal basis of Cclass(G)
with respect to 〈 , 〉.

Proof. By Corollary 6.11, we see that {χV }, where V ranges over the irreducible G-representations (up to iso-
morphism), is an orthonormal set in Cclass(G). In particular, it is a linearly independent set. From Maschke’s
Theorem, we know that under the assumptions on k, kG is a (finite-dimensional) semisimple algebra. Hence
by the Artin-Wedderburn Theorem, we know that there are as many irreducible G-representations as there
are conjugacy classes of G. This means that {χV } is a maximal linearly independent set, hence a basis. �

Remark 6.13. Suppose that k = C. Then χV (g
−1) = χV (g) as we have seen. Because of this, it is more

customary in this case to define the pairing 〈 , 〉 in Cclass(G) by:

〈f1, f2〉 =
1

|G|

∑

g∈G

f1(g)f2(g).

Notice that this doesn’t make any difference for 〈χV , χW 〉, hence the orthogonality results hold equally well
with this pairing. But it makes a difference for arbitrary class functions f1, f2. More precisely, this form is
not symmetric, but it is hermitian:

〈f1, f2〉 = 〈f2, f1〉,

as it can be seen immediately. It is not bilinear, but sesquilinear, i.e., conjugate-linear in the first variable,
and linear in the second. But it is positive definite too, which is why we prefer to use it when k = C:

〈f, f〉 =
1

|G|

∑

g∈G

|f(g)|2 ≥ 0,

with equality if and only if f = 0.
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6.4. Character tables. Assume from now on that k = C. Let {C1, . . . , Cn} be the conjugacy classes of
G, and {χ1, . . . , χn} be the characters of inequivalent irreducible G-representations. The inner product on
Cclass(G) can be rewritten as:

〈f1, f2〉 =
n∑

j=1

|Cj |

|G|
f1(Cj)f2(Cj), (6.5)

where for f ∈ Cclass(G), and C a conjugacy class, f(C) denotes the common value f(g) for g ∈ C. Then the
orthogonality relation that we have just proven says that:

n∑

j=1

|Cj |

|G|
χi1(Cj)χi2(Cj) = δi1,i2 . (6.6)

Definition 6.14. The character table of G is the finite square matrix A = (aij) where aij = χi(Cj).

If we denote by D the diagonal matrix with diagonal entries (dj : j = 1, . . . , n),

dj =
|Cj |

|G|
,

then the orthogonality of characters can be rewritten as

A ·D ·At = I, (6.7)

where I is the identity matrix.

Lemma 6.15. If B ·Bt = I, then Bt ·B = I.

Proof. This is clear since the first relation implies that Bt = (B)−1. �

Set B = A ·D1/2 where D1/2 is the diagonal matrix whose diagonal entries are
√
dj . The equation (6.7)

says that B ·Bt = I and hence Bt ·B = I. Translating back we get D1/2AtAD1/2 = I, and therefore

At ·A = D−1. (6.8)

Expressing this in terms of the columns of A we arrive at the second orthogonality relation.

Proposition 6.16. The columns of the character table are orthogonal, more precisely

n∑

i=1

χi(Cj1)χi(Cj2) =

{
|G|
|Cj1

| , if Cj1 = Cj2 ,

0, otherwise.

6.5. Examples. The following situation appears quite often. Let G act on a finite set Ω and define the
permutation G-representation on kΩ:

g ·
∑

ω∈Ω

λωω =
∑

ω∈Ω

λω(g · ω).

Lemma 6.17. The character of a permutation representation is

χkΩ(g) = |Ω
g|, g ∈ G,

where Ωg = {ω ∈ Ω | g · ω = ω}.

Proof. By definition χkΩ(g) is the trace of the action of g on kΩ. But a basis of kΩ is precisely Ω, and so the
matrix of the action of g is a permutation matrix with the 1’s on the diagonal coming precisely from Ωg. �

Example 6.18. Let Ωn = {e1, . . . , en} ∼= kn and G = Sn acting by usual permutation of indices. Then

χkΩn
(σ) = |{i | σ(i) = i, 1 ≤ i ≤ n}|.

In particular, recall that CΩn
∼= Cn decomposes into a direct sum

Cn = Stn ⊕ trivn,

where Stn = {(x1, . . . , xn) |
∑
xi = 0} is an irreducible (n − 1)-representation and trivn = C〈x1 + · · · + xn〉

is a copy of the trivial representation. This implies that

χStn(σ) = |{i | σ(i) = i, 1 ≤ i ≤ n}| − 1.
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As an explicit example of a character table, take G = S3. There are three conjugacy classes with represen-
tatives e, (12), and (123) of sizes 1, 3, and 2, respectively. There are three irreducible representations, triv,
sgn (the sign representation, one dimensional where σ acts by the signature of σ) and St2. The character
table is

e (12) (123)
χtriv 1 1 1
χsgn 1 −1 1
χSt2 2 0 −1

One may verify easily that the two orthogonality formulas hold in this case.

Here is a more involved example, namely the character table of S4. We use this calculation as a pretext
to illustrate a couple of useful techniques for determining characters. The first is about tensoring with
one-dimensional representations.

Lemma 6.19. Let V be a G-representation and W be a one-dimensional G-representation. Then

(1) V is irreducible if and only the contragredient representation V ∗ is irreducible;
(2) V ⊗W is irreducible if and only if V is irreducible.

Proof. Exercise. �

Example 6.20. Let V be an irreducible Sn-representation. Then V ⊗ sgn is also irreducible. It may be
possible that V ⊗ sgn ∼= V , we will see this for S4. In general, one can tell easily from the character table if
that is the case or not: check if χV · χsgn is equal or not to χV .

For example, we know that χStn((12)) = n − 3. This means that χStn⊗sgn((12)) = 3 − n and therefore,
if n ≥ 4, Stn ⊗ sgn is an irreducible Sn-representation which is nonisomorphic to Stn (but of the same
dimension).

Now, taking G = S4, we see that we already know 4 irreducible representations: triv, sgn, St4 and
St4 ⊗ sgn. On the other hand, S4 has 5 conjugacy classes with representatives: e, (12), (123), (12)(34), and
(1234), respectively. By the general theory, we know we are missing one irreducible S4-representation, call it
U . If n is the dimension of U , since the sum of squares of irreducible representations equals the size of the
group, we see that

24 = 12 + 12 + 32 + 32 + n2,

hence n = 2. We can start to fill in the character table, since we know the characters of triv, sgn, but also of
St4 (hence also St4 ⊗ sgn) by Example 6.18, to get

S4 e (12) (123) (12)(34) (1234)
size 1 6 8 3 6

χtriv 1 1 1 1 1
χsgn 1 −1 1 1 −1
χSt4 3 1 0 −1 −1

χSt4⊗sgn 3 −1 0 −1 1
χU 2

The remaning entries in the table can be found by using the the columns are orthogonal . For example,
using the first and second colum: 1 · 1 + 1 · (−1) + 3 · 1 + 3 · (−1) + 2 · x = 0 implies that the unknown entry
is x = 0. The complete table is:

S4 e (12) (123) (12)(34) (1234)
size 1 6 8 3 6

χtriv 1 1 1 1 1
χsgn 1 −1 1 1 −1
χSt4 3 1 0 −1 −1

χSt4⊗sgn 3 −1 0 −1 1
χU 2 0 −1 2 0
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To double-check that U is irreducible, we can compute the inner product of χU with itself, it should come
out 1:

〈χU , χU 〉 =
1

24
(1 · 22 + 6 · 02 + 8 · (−1)2 + 3 · 22 + 6 · 02) = 1.

We may ask however how one could construct U explicitly as a representation. We get lucky here because
χU ((12)(34)) = χU (e) = 2.

Lemma 6.21. Let ρ : G → GL(V ) be a representation, and define N = {g ∈ G | χV (g) = χV (e)}. Then
N = ker ρ, in particular, N is normal in G.

Proof. Exercise. �

Whenever N is a normal subgroup of G, so G/N is a group, it is easy to construct (irreducible) represen-
tations of G from (irreducible) representations of G/N . Suppose ρ : G/N → GL(V ) is a representation, and
let πN : G→ G/N be the natural projection homomorphism. Then the composition

ρ = ρ ◦ πN : G→ GL(V ) (6.9)

is a group homomorphism, hence it is a G representation. Explicitly, ρ(g) = ρ(gN) for all g ∈ G. In
particular,

χρ(g) = χρ(gN), g ∈ G. (6.10)

Notice that this implies that N ⊆ ker ρ. Moreover, it is easy to see that N = ker ρ if and only if ρ̄ is a faithful
G/N -representation, i.e., ρ̄ is injective. We call ρ the lift of ρ.

Lemma 6.22. The lift ρ is an irreducible G-representation if and only if ρ̄ is an irreducible G/N -representation.

Proof. Exercise. �

Now, back to the motivating S4 example, setting N = {σ ∈ S4 | χU (σ) = χU (e) = 2}, we see that
N = {e, (12)(34), (13)(24), (14)(23)}, a normal subgroup of S4. By the discussion above, the representation
ρU : S4 → GL(U) is the lift of the representation ρ̄U : S4/N → GL(U) such that ρU (σ) = ρ̄U (σU) for
all σ ∈ S4. It is easy to check that G/N is naturally isomorhic to S3, for example, by considering the
representatives e, (12), (23), (13), (123) and (132) of the left cosets G/N . A neat way to visualize this is
to think of the “essential” labels of a rectangle. Consider a rectangle (not a square) with vertices labelled
by 1, 2, 3, 4. The essential labels of the rectangle are all the possible labels of the rectangle up to rigid
symmetries, i.e., geometric transformations which map the rectangle to itself without twisting its shape. If
we think of the rectangle with (x, y)-coordinates (−2, 1), (2, 1), (2,−1), and (−2,−1), it is clear that the
group of rigid symmetries is C2 × C2, where the two generators of C2 × C2 are the reflections in the x-axis
and in the y-axis. If we label a “base” rectangle 1, 2, 3, 4, in the order above, then the permutation (12)(34)
corresponds to the reflection in the y-axis, while (14)(23) to the reflection in the x-axis. Hence the group of
symmetries can be identified with N . But then it follows that the set of essential labels of the rectangle can
be naturally identified with S4/N . On the other hand, fixing the label 4 on the bottom left corner of the
rectangle, we see that all other permutations of 1, 2, 3 define different essential labels.

Thus ρ̄U is a faithful representation of S3, and we know it is 2-dimensional, because U is, hence ρ̄U must
be the standard representation St2. In conclusion, U is the lift of St2.

7. Induction and restriction

The discussion at the end of the previous section shows that it is very easy to relate representations of
a group and representation of its quotient groups. But what about the relation with representations of
subgroups? In other words, if H is a subgroup of G, is there a way to construct representations of H from
G and viceversa?
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7.1. Restriction. One direction is very easy. Suppose that ρ : G → GL(V ) is a representation of G and
H ≤ G. Then we can restrict the representation ρ to H, namely, define the H-representation

ResGH V := ρ|H : H → GL(V ), ρ|H(h) = ρ(h). (7.1)

In particular, it is clear that

χResG
H

V (h) = χV (h), for all h ∈ H.

In general, if V is an irreducible G-representation, ResGH V is a reducible H-representation.

Exercise 7.1. Verify, using the character tables that ResS4

S3
St4 = St3 ⊕ triv3.

7.2. Induction. On the other hand, to construct representations of G from H-representations is a more
difficult. The best known construction is called induction.

Definition 7.2. If H ≤ G and (µ,W ) is an H-representation, define the induced representation

IndGH W = {f : G→W | f(xh) = µ(h−1)f(x), for all x ∈ G, h ∈ H}.

In this definition, in the right hand side of the condition, f(x) ∈ W and µ(h−1) is the action of h−1 on W .

The action of G on IndGH W is the left-regular action

(g · f)(x) = f(g−1x), g ∈ G, x ∈ G.

We remark that µ(h−1) rather than µ(h) is needed for the condition to make sense. This is so that

f(xh1h2) = µ(h−1
2 )f(xh1) = µ(h−1

2 )µ(h−1
1 )f(x) = µ((h1h2)

−1)f(x),

which is consistent.

Lemma 7.3. IndGH W is indeed a G-representation.

Proof. Let Fun(G) = {f : G→ C} be the C-vector space of functions on G. As we have seen before, this is

a representation of G with the left regular action. Hence we only need to check that IndGH W is a G-stable

subspace. Let f ∈ IndGH W and g ∈ G, then:

(g · f)(xh) = f(g−1xh) = µ(h−1)f(g−1x) = µ(h−1)(g · f)(x),

hence g · f satisfies the defining condition. �

Example 7.4. Let W be the trivial representation of H. Then IndGH triv = {f : G → C | f(xh) =
f(x), for all x ∈ G, h ∈ H} = {f̄ : G/H → C} with the left regular action. But this is nothing by
CG/H as a left representation of G. Hence

IndGH triv = CG/H.

In particular, IndG{e} triv = CG as a G-representation, where e is the identity element of G.

To understand the induced representation better, notice that if we choose a set of representative S for the
left cosets G/H, then every f ∈ IndGH W is uniquely determined by the set {f(s) | s ∈ S}. On the other
hand, we are free to choose f(s) ∈W , which means that

dim IndGH W = [G : H] · dimW, (7.2)

where [G : H] is the index of H in G, i.e., the number of left cosets G/H. We compute now the character of
the induced representation.

Theorem 7.5. The character of IndGH W is

χIndG
H

W (g) =
∑

s∈S
s−1gs∈H

χW (s−1gs) =
1

|H|

∑

x∈G
x−1gx∈H

χW (x−1gx). (7.3)
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Proof. The second equality is easy. This is because every x ∈ G is of the form x = sh for some s ∈ S, h ∈ H,
and x−1gx ∈ H if and only if s−1gs ∈ H; moreover χW (x−1gx) = χW (h−1s−1gsh) = χW (s−1gs) because
χW is an H-character, hence an H-class function.

To prove the first equality4, for every s ∈ S, define

Ws = {f ∈ IndGH W | f(g) = 0 for all g /∈ sH}.

In other words, each Ws consists of functions which are 0 outside the coset sH. In addition, every f ∈ Ws

is uniquely determined by its value f(s), which means that, as a vector space Ws
∼=W. Then

IndGH W =
⊕

s∈S

Ws, as vector spaces.

As a side remark, notice that this decomposition is not one of G-representations since Ws is not G-stable;
indeed the action of G is via the left regular representation, so it mixes the left cosets in G/H.

Let us denote by ρ : G → GL(IndGH W ) the induced representation homomorphism. Fix g ∈ G. We wish

to compute the trace χρ(g) of the linear map ρ(g) : IndGH W → IndGH W . If we compute this trace using a

basis of IndGH W coming from the concatenation of the bases of the Ws, s ∈ S, then

χρ(g) =
∑

s∈S

χs(g),

where χs(g) is the trace of the diagonal block of ρ(g) corresponding to Ws. (We are not claiming that ρ(g)
is block diagonal with respect to the decomposition

⊕
s∈S Ws, which isn’t true, but, since we compute the

trace, we only need to worry about these pieces of the matrix of ρ(g).)
If gsH 6= sH, then ρ(g) maps Ws to Wgs which different than Ws, and hence there won’t be any contri-

bution to the trace, i.e., χs(g) = 0.
So assume that gsH = sH, which is equivalent to s−1gs ∈ H. Denote s−1gs = h ∈ H. Define

α :Ws →W, α(f) = f(s).

This is a linear map, and as already remarked, f is uniquely determined by fs, hence α is the natural
isomorphism betweenWs andW . We wish to see how the action of g onWs transforms under this isomorphism
to an action on W . We calculate

α(g · f) = (g · f)(s) = f(g−1s) = f(sh−1) = µ(h)f(s) = µ(h)α(f).

In other words, the action of g on f corresponds to the action of h = s−1gs on α(f). This implies that
χs(g) = χW (h) = χW (s−1gs), hence the first equality in the theorem is proved. �

If we wish to compute the induced character using the character table, then we need to rephrase (7.3) in
terms of conjugacy classes. Firstly, notice that if C is a conjugacy class in G such that C ∩H = ∅, then the
condition x−1gx ∈ H is never satisfied for g ∈ C, hence

χIndG
H

W (C) = 0, for all C such that C ∩H = ∅.

On the other hand, suppose that C ∩H 6= ∅. Then C ∩H is closed under conjugation by H, so it breaks up
into a disjoint union of H-conjugacy classes C = ⊔ℓi=1Di.

Corollary 7.6. If C ∩H = ⊔ℓi=1Di, then

χIndG
H

W (C) =
|G|

|H|

ℓ∑

i=1

|Di|

|C|
χW (Di). (7.4)

Proof. Fix g ∈ C. Denote by ZG(g) = {x ∈ G | x
−1gx = g} the centralizer of g in G. From (7.3), we know

that

χIndG
H

W (C) =
1

|H|

∑

x∈G
x−1gx∈H

χW (x−1gx) =
|ZG(g)|

|H|

∑

y∈C∩H

χW (y),

4I follow the exposition in [2] for this proof.
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where we made the change y = x−1gx, and we had to account for the fact that if x′ ∈ ZG(g)x, then
(x′)−1gx′ = y as well. By the orbit-stabilizer theorem, we have

|ZG(g)| = |G|/|C|.

Finally, it is clear that
∑

y∈C∩H

χW (y) =

ℓ∑

i=1

|Di|χW (Di). �

Example 7.7. In general, C ∩ H does not equal a single H-conjugacy class. For example, take G = S3,
H = A3. Then the conjugacy class C = {(123), (132)} in S3 breaks up into C ∩ A3 = {(123)} ∪ {(132)} in
A3. Of course, A3 is abelian, hence every A3-conjugacy class is a singleton.

7.3. Frobenius reciprocity. The main relation between induction and restriction is Frobenius reciprocity.

Proposition 7.8. Let H ≤ G be a subgroup, V a G-representation and W an H-representation.

(1) There is a natural linear isomorphism HomG(V, Ind
G
H W ) ∼= HomH(ResGH V,W ).

(2) 〈χV , χIndG
H

W 〉G = 〈χResG
H

V , χW 〉H .

Proof. (1) This is the type of abstract algebra nonsense proof that writes itself(and yet the proof is non-
examinable). Let us denote for simplicity M the space on the left and N the space on the right. We define to
maps Φ : M → N and Ψ : N → M and prove that they are well defined, linear, and inverses to each other.
The definitions are the only things that make sense naturally.

Firstly, for Φ :M → N , for every α ∈M , set

Φ(α)(v) = α(v)(e) ∈W, v ∈ V,

where e is the identity element in G. Secondly, for Ψ : N →M , for every β ∈ N , set

Ψ(β)(v)(x) = β(x−1 · v), v ∈ V, x ∈ G.

Check the following steps:

(i) Φ(α) is an H-homomorphism:

Φ(α)(h · v) = α(h · v)(e) = (h · α(v))(e) = α(v)(h−1e)

= h · (α(v)(e)) = h · Φ(α)(v).

(ii) Ψ(β)(v) is an element of IndGH W :

(Ψ(β)(v))(xh) = β(h−1x−1 · v) = h−1 · β(x−1 · v) = h−1 · (Ψ(β)(v))(x).

(iii) Ψ(β) is a G-homomorphism:

(Ψ(β)(g · v)(x) = β(x−1g · v) = β((g−1x)−1 · v) = (Ψ(β)(v))(g−1x) = g · (Ψ(β)(v))(x).

(iv) Φ ◦Ψ = IdN :

Φ(Ψ(β))(v) = (Ψ(β)(v))(e) = β(e−1 · v) = β(v).

(v) Ψ ◦ Φ = IdM :

(Ψ(Φ(α))(v))(x) = Φ(α)(x−1 · v) = α(x−1 · v)(e) = (x−1 · α(v))(e) = α(v)(x).

(2) The character formula follows immediately from (1) just by taking dimensions of M and N .
But we also give another direct proof involving characters. The left hand side equals

LHS =
1

|G|

∑

g∈G

χV (g)χIndG
H

W (g) =
1

|G|

∑

g∈G

1

|H|

∑

x∈G
x−1gx∈H

χV (g)χW (x−1gx)

=
1

|G|

1

|H|

∑

g,x∈G
x−1gx∈H

χV (x−1gx)χW (x−1gx),
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where we used that χV is a class function on G, hence χV (g) = χV (x
−1gx). Now denote x−1gx =

h ∈ H, and write g = xhx−1 and change the summation indices from g and x to h and x:

LHS =
1

|G|

1

|H|

∑

x∈G
h∈H

χV (h)χW (h)

=
1

|H|

∑

h∈H

χV (h)χW (h),

which is exactly the RHS.

�

Example 7.9. To illustrate Frobenius reciprocity, take H = {e}, W = triv, the trivial representation of the

trivial group. Then ResG{e} V = dimV · triv, hence the right hand side of the character form of Frobenius

reciprocity equals dimV . On the other hand, as we have seen already IndG{e} triv = CG. Therefore

〈χV , χCG〉G = dimV. (7.5)

In particular, if V is irreducible, this says that V appears in CG dimV times:

CG =
⊕

V irreducible

(dimV ) V, (7.6)

which is something that we knew as a consequence of the Artin-Wedderburn Theorem.

7.4. An interesting example. To give a more subtle application of Frobenius reciprocity, let us assume
that H = N is a normal subgroup of G. Recall that S is a set of representatives for G/N (the latter is
also a group now). From the character formula for induced representations (7.3), we have χIndG

N
W (g) =∑

s∈G/N

s−1gs∈N

χW (s−1gs).

Since N is normal, we have s−1gs ∈ N if and only if g ∈ N . This means that in this case

χIndG
N

W (g) =

{∑
s∈S χ

s
W (g), if g ∈ N,

0, if g /∈ N,
(7.7)

where we define for every s ∈ S,

χs
W : N → C, χs

W (g) = χW (s−1gs), g ∈ N.

Lemma 7.10. The function χs
W is a class function on N . Moreover, 〈χs

W , χs
W 〉N = 〈χW , χW 〉N . In

particular, if χW is an irreducible character, so is χs
W .

Proof. For the first claim, let n ∈ N and g ∈ N . Since N is normal ns = sn′ for some n′ ∈ N . Calculate

χs
W (n−1gn) = χW (s−1n−1gns) = χW ((n′)−1s−1gsn′).

Since χW is the character of an N -representation, it is a class function on N , hence we continue

χs
W (n−1gn) = χW (s−1gs) = χs

W (g).

This proves that χs
W is a class function. For the second claim, compute

〈χs
W , χs

W 〉N =
1

|N |

∑

n∈N

χs
W (n)χs

W (n) =
1

|N |

∑

n∈N

χW (s−1ns)χW (s−1ns).

Make the change n′ = s−1ns ∈ N since N is normal. As n ranges over N so does n′, hence

〈χs
W , χs

W 〉N =
1

|N |

∑

n′∈N

χW (n′)χW (n′) = 〈χW , χW 〉N .

The last claim is immediate since χW is irreducible if and only if 〈χW , χW 〉N = 1. �

This means that formula (7.7) can be rewritten in the following more elegant form:

χResG
N

IndG
N
(W ) =

∑

s∈S

χs
W . (7.8)
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Proposition 7.11. Let N be a normal subgroup of G and W be an irreducible N -representation. Then
IndGN W is an irreducible G-representation if and only if χs

W 6= χW for all s ∈ S \ {e}.

Proof. Apply Frobenius reciprocity:

〈χIndG
N

W , χIndG
N

W 〉G = 〈χResG
N

IndG
N

W , χW 〉N ,

and then by (7.8)

〈χIndG
N

W , χIndG
N

W 〉G =
∑

s∈S

〈χs
W , χW 〉N = 1 +

∑

s∈S\{e}

〈χs
W , χW 〉N ,

where the 1 comes from 〈χW , χW 〉N . The claim now follows from Lemma 7.10. �

Example 7.12. (1) Suppose N is a proper normal subgroup of G. Then IndGN triv is always reducible.
This is because when W = triv, all χs

triv = χtriv. In fact, the proof of Proposition 7.11 shows that

〈χIndG
N

triv, χIndG
N

triv〉G = [G : N ]. (7.9)

(2) Let N = A3 in G = S3. Since A3
∼= C3, there are 3 one-dimensional irreducible A3 representations

µ1, µζ , µζ2 , where ζ is a primitive 3-root of unity, defined by

µζi((123)) = ζi, 0 ≤ i ≤ 2. (7.10)

By the previous example, IndS3

A3
µ1 is reducible and it is 2-dimensional, hence it must be IndS3

A3
µ1 =

triv3 ⊕ sgn3.
On the other hand, taking S = {e, (12)},

µ
(12)
ζ ((123)) = µζ((12)(123)(12)) = µζ((132)) = µζ((123)

2) = ζ2,

meaning that µ
(12)
ζ = µζ2 and similarly, µ

(12)
ζ2 = µζ . By Proposition 7.11, both IndS3

A3
(µζi), i = 1, 2,

are irreducible. Since they are both two-dimensional, it follows that

IndS3

A3
(µζ) ∼= IndS3

A3
(µζ2) ∼= St3. (7.11)

We remark, that by Frobenius reciprocity, this implies that

ResS3

A3
St3 = µζ ⊕ µζ2 . (7.12)

7.5. An example: dihedral groups. The dihedral group D2n is the group of symmetries of the regular
n-gon. It is defined in terms of generators and relations as:

D2n = 〈r, s | rn = s2 = 1, srs = r−1〉. (7.13)

We would like to describe the irreducible complex representations of D2n. Firstly, let us determine the conju-
gacy classes. In addition to the trivial element 1, there are two types of elements: rotations (r, r2, . . . , rn−1)
and reflections (s, sr, . . . , srn−1). Since sris = r−i = rn−i, we see that ri and rn−i are in the same con-
jugacy class. Moreover, s · sri · s = ris = s−i, so sri and sr−i are in the same conjugacy class. Finally,
r · sri · r−1 = sri−2, so sri and sri−2 are conjugate. Since s and r generate D2n, this discussion gives the
following

Lemma 7.13. If n is even, there are n
2 + 3 conjugacy classes: {1}, {ri, rn−i}, 1 ≤ i < n

2 , {r
n/2},

{s, sr2, sr4, . . . , srn−2} and {sr, sr3, . . . , srn−1}.
If n is odd, there are n+1

2 + 1 conjugacy classes: {1}, {ri, rn−i}, 1 ≤ i ≤ n−1
2 , and {s, sr, sr2, . . . , srn−1}.

Next, we can easily determine the one-dimensional representations. If ρ : D2n → C× is a one-dimensional
representation, then we only need to determine the scalars by which r and s act, since everything else is
determined by them. Suppose that λr and λs are these scalars. Then because of the relations in D2n, the
conditions they need to satisfy are:

λ2s = 1, λnr = 1, λr = λ−1
r .

This means that if n is even, there are four one-dimensional representations given by λs, λr ∈ {±1}. If n is
odd on the other hand, there are only two one-dimensional representations: λs ∈ {±1} and λr = 1.

So it remains to determine n
2 − 1 irreducible representations when n is even and n−1

2 irreducible represen-
tations, when n is odd.
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Suppose n is even, of dimensions di ≥ 2, 1 ≤ i ≤ n
2 − 1. Adding the squares of the dimensions, we see

n
2
−1∑

i=1

d2i = 2n− 4,

which means that di = 2 for all i. Similarly, we see that also in the odd case, all of the remaining n−1
2

representations are two dimensional.
To determine these two-dimensional representations, all we need is to remember that D2n acts on the

plane as the symmetries of the regular n-gon. Motivated by this, define

ρk : D2n → GL(2,C), ρk(s) =

(
0 1
1 0

)
, ρk(r) =

(
cos kθ sin kθ
− sin kθ cos kθ

)
,

where θ = 2π/n and 1 ≤ k ≤ n− 1.

Proposition 7.14. The equivalence classes of irreducible representations of D2n are given by the 4 (re-
spectively 2) one-dimensional representations when n is even (respectively odd), and by the two-dimensional
representations ρk, where 1 ≤ k ≤ ⌊n−1

2 ⌋.

Proof. It is easy to check that ρk are group homomorphisms, i.e., representations. We only need to check
that the matrices written above satisfy the same relations as s and r. Next, notice that the number of ρk,
where 1 ≤ k ≤ ⌊n−1

2 ⌋ is exactly the number of two dimensional representations that we need to find. This
means that we only need to show that the ρk are inequivalent. For that, we look at their characters. In
particular,

χρk
(s) = 0, χρk

(r) = 2 cos kθ.

Since cos kθ 6= cos k′θ for 1 ≤ k 6= k′ ≤ ⌊n−1
2 ⌋, we see that the characters are different. �

8. Exterior and symmetric powers

The construction of exterior and symmetric powers makes sense for vector spaces over an arbitrary field
k. Recall that if V and W are two k-vector spaces, we defined their tensor product V ⊗W . The following
lemma is easy to prove using the universal property of the tensor product.

Lemma 8.1. Let U, V,W be k-vector spaces.

(1) The assignment v ⊗ w 7→ w ⊗ v extends to a k-linear isomorphism V ⊗W ∼=W ⊗ V.
(2) The assignment (u⊗v)⊗w 7→ u⊗(v⊗w) extends to a k-linear isomorphism (U⊗V )⊗W ∼= U⊗(V ⊗W ).

Because of the second part of this lemma, we may write V ⊗n = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

without ambiguity, and

call it the n-fold tensor product of V .

Definition 8.2 (Exterior powers). Consider the subspace U of V ⊗n generated by all simple tensors of the
form v1 ⊗ v2 ⊗ · · · ⊗ vn, where vi = vj for some i 6= j. Define the quotient vector space

∧n
V = V ⊗n/U.

Let π : V ⊗n →
∧n

V be the projection map, and denote the image of v1⊗v2⊗· · ·⊗vn in
∧n

V by v1∧v2∧· · ·∧vn.

If σ is any permutation in Sn, then

vσ(1) ∧ · · · ∧ vσ(n) = sgn(σ) v1 ∧ · · · ∧ vn. (8.1)

To see this, recall that every permutation is a product of transpositions, so it is sufficient to prove this for a
transposition (ij), i < j. The usual bilinearity trick is

(vi + vj)⊗ (vi + vj)− vi ⊗ vi − vj ⊗ vj = vi ⊗ vj + vj ⊗ vi.

Applying π to both sides, the left hand side is mapped to 0 and the right hand side gives

vi ∧ vj = −vj ∧ vi.

Suppose {ei} is a basis of V , then

{ei1 ∧ ei2 ∧ · · · ∧ ein | i1 < i2 < · · · < in} (8.2)
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is a basis of
∧n

V . In particular, if dimV = m, then

dim
∧n

V =

{(
m
n

)
, if n ≤ m,

0, if n > m.

Definition 8.3 (Symmetric powers). Consider the subspace U ′ of V ⊗n generated by all expressions v1⊗v2⊗
· · · ⊗ vn − vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n), σ ∈ Sn. Define the quotient vector space

SymnV = V ⊗n/U ′.

Let π′ : V ⊗n → SymnV be the projection map, and denote the image of v1 ⊗ v2 ⊗ · · · ⊗ vn in SymnV by
v1 · v2 · · · vn.

By definition, if σ is any permutation in Sn, then

vσ(1) · vσ(2) · · · vσ(n) = v1 · v2 · · · vn. (8.3)

A basis of SymnV is

{ei1 · ei2 · · · · · ein | i1 ≤ i2 ≤ · · · ≤ in}. (8.4)

If the characteristic of the field k is 0, then we may think of the exterior and symmetric powers as subspaces
of V ⊗n. More precisely, define

ι :
∧n

V → V ⊗n, v1 ∧ · · · ∧ vn 7→
1

n!

∑

σ∈Sn

sgn(σ) vσ(1) ⊗ · · · ⊗ vσ(n), (8.5)

ι′ : SymnV → V ⊗n, v1 · · · · · vn 7→
1

n!

∑

σ∈Sn

vσ(1) ⊗ · · · ⊗ vσ(n). (8.6)

It is easy to see that π ◦ ι = Id on
∧n

V , and similarly π ◦ ι′ = Id on SymnV .

8.1. Representations on symmetric and exterior powers. Specialize again k = C. If V is a G-
representation, then V ⊗n is also a G-representation via

g · (v1 ⊗ · · · ⊗ vn) = (g · v1)⊗ · · · ⊗ (g · vn).

It is clear that the subspaces U and U ′ used to define the exterior and symmetric powers, respectively, are
subrepresentations, which means that so are the quotients

∧n
V and SymnV .

Example 8.4. If n = 2, then V ⊗ V = Sym2V ⊕
∧2
V as C-vector spaces. This is because every simple

tensor can be written as

v1 ⊗ v2 =
1

2
(v1 ⊗ v2 + v2 ⊗ v1) +

1

2
(v1 ⊗ v2 − v2 ⊗ v1),

and the first component is in Sym2V , while the second is in
∧2
V , and Sym2V ∩

∧2
V = {0}.

If V is a G-representation, then this decomposition is one of G-representations.

Lemma 8.5. If V is a G-representation, the characters of
∧2
V and Sym2V are given by:

χ∧
2V (g) =

1

2
(χV (g)

2 − χV (g
2)),

χSym2V (g) =
1

2
(χV (g)

2 + χV (g
2)).

(8.7)

Proof. Since χV⊗V (g) = χV (g)
2, it is sufficient to prove one of the formulas. Let ρ : G → GL(V ) be the

representation. Let λ1, . . . , λm be the eigenvalues of ρ(g). Since ρ(g) is diagonalizable, there exists a basis of
V given by eigenvectors e1, . . . , em for these eigenvalues. Then

g · (ei ∧ ej) = (g · ei) ∧ (g · ej) = λiλj(ei ∧ ej),

for all i < j. This means that the eigenvalues of the action of g on
∧2
V are λiλj , i < j. So the character is

2χ∧
2V (g) = 2

∑

i<j

λiλj = (
∑

i

λi)
2 −

∑

i

λ2i ,

which proves the formula. �
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8.2. The character table of S5. To illustrate one use of exterior and symmetric powers, we will use them
to determine the character table of S5. The group S5 has 7 conjugacy classes, hence we need to find 7
irreducible characters. We already know 4 of them: the trivial and the sign representations, the standard
representation St5 and its tensor with sgn. So the first 4 lines of the table look like

S5 e (12) (123) (1234) (12345) (12)(34) (12)(345)
size 1 10 20 30 24 15 20

χtriv 1 1 1 1 1 1 1
χsgn 1 −1 1 −1 1 1 −1
χSt5 4 2 1 0 −1 0 −1

χSt5⊗sgn 4 −2 1 0 −1 0 1

We now consider the second exterior and symmetric powers of St5. From Lemma 8.5, we see that the row
of

∧2
St5 is

χ∧
2St5

= (6, 0, 0, 0, 1,−2, 0).

Computing the character pairing, we find

〈χ∧
2St5

, χ∧
2St5
〉 =

1

120
(36 + 24 + 15× 4) = 1,

which means that
∧2

St5 is irreducible. Now using the sum of squares of the degrees of representations, we
find that

120 = 12 + 12 + 42 + 42 + 62 + d21 + d22, hence d
2
1 + d22 = 50,

where d1 and d2 are the degrees of the missing representations. We know that the only one-dimensional
representations are the trivial and the sign, hence d1 = d2 = 5. Let us denote by W and W ′ these two
5-dimensional representations.

The character of Sym2St5 is
χSym2St5 = (10, 4, 1, 0, 0, 2, 1).

Computing the character pairing, we find

〈χSym2St5 , χSym2St5〉 =
1

120
(100 + 160 + 20 + 60 + 20) = 3.

Hence Sym2St5 is the sum of three inequivalent irreducible representations. Indeed, we check easily that

〈χSym2St5 , χtriv〉 = 1 and 〈χSym2St5 , χSt5〉 = 1.

So Sym5St5 is the direct sum of the trivial, the standard, and one of the 5-dimensional representations, say
W :

Sym5St5 = triv ⊕ St5 ⊕W.

In particular, the character of W is
χW = (5, 1,−1,−1, 0, 1, 1).

Since χW⊗sgn = (5,−1,−1, 1, 0, 1,−1) 6= χW , it follows that W ′ = W ⊗ sgn. This completes the character
table.

S5 e (12) (123) (1234) (12345) (12)(34) (12)(345)
size 1 10 20 30 24 15 20

χtriv 1 1 1 1 1 1 1
χsgn 1 −1 1 −1 1 1 −1
χSt5 4 2 1 0 −1 0 −1

χSt5⊗sgn 4 −2 1 0 −1 0 1
χW 5 1 −1 −1 0 1 1

χW⊗sgn 5 −1 −1 1 0 1 −1

Exercise 8.6. Let S5 denote the set of Sylow 5-subgroups of S5. The elements of order 5 in S5 are precisely
the 5-cycles and there are 24 of them. This means that |S5| = 6 and each Sylow 5-subgroup is cyclic. The
group S5 acts by conjugation of S5. Check that this action is 2-transitive, i.e., if (H1, H2) and (H ′

1, H
′
2) are

pairs of Sylow 5-subgroups, then there exists a permutation σ ∈ S5 such that σ(H1) = H ′
1 and σ(H2) = H ′

2.
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From this, deduce that the permutation representation CS5 decomposes as the direct sum of the trivial
representation with one irreducible 5-dimensional representations. (Which 5-dimensional?)

9. Characters and algebraic integers

In this section, we study more closely the character values of irreducible complex representations of a finite
group G. Suppose ρ : G → GL(V ) is such a representation with character χ. Recall that for every g ∈ G,
since gm = e for some m, the minimal polynomial of ρ(g) divide xm − 1, hence the minimal polynomial has
no repeated factors. Therefore, ρ(g) is diagonalizable and

χ(g) = trV (g) =

n∑

i=1

λi,

where λi are the eigenvalues, which are n-th roots of 1. Here n = dimV .
The question we want to answer first is what kind of complex numbers are the λi’s.

9.1. Algebraic integers.

Definition 9.1. An number α ∈ C is called an algebraic integer if α is a root of a monic polynomial
f(x) = xm + a1x

m−1 + · · · + am−1x + am with integer coefficients. Let A denote the set of all algebraic
integers in C.

Example 9.2. (1) Every integer is an algebraic integer. (This is clear: if α ∈ Z, then α is the root of
x− α.)

(2) Every root of 1 is an algebraic integer. (If α is an n-th root of 1, then α is a root of xn − 1.)

Lemma 9.3. If α is a rational number, then α is an algebraic integer if and only if α ∈ Z. In other words,
A ∩Q = Z.

Proof. Suppose α = a
b , where a and b are coprime integers. If f(ab ) = 0, we clear denominators and find that

am + a1a
m−1b+ · · ·+ am−1ab

m−1 + amb
m = 0.

If p is a prime and p divides b, then from this equation, it follows that p divides am, hence a, and this is a
contradiction unless b = 1. �

We need a criterion to check is a complex number is an algebraic integer.

Proposition 9.4. Let (A,+) be a nonzero finitely generated subgroup of (C,+). If α ∈ C is such that
αA ⊆ A, then α ∈ A.

Proof. Since A is a finitely generated torsion-free abelian group,

A = Zx1 ⊕ · · · ⊕ Zxn,

for some xi ∈ C. Consider the map

mα : A→ A, mα(a) = α · a.

The condition αA ⊆ A means that the map is well defined. On the other hand, it is clearly a group
homomorphism. For every j, mα(xj) =

∑n
i=1 aijxi, for some aij ∈ Z. Let M be the matrix M = (aij). Then

M is the matrix of mα with respect to {x1, . . . , xn}. Let fM (x) = xm + a1x
m−1 + · · ·+ am−1x+ am be the

characteristic polynomial of M . Since M has integer coefficients, fM (x) is a monic polynomial with integer
coefficients. By the Cayley-Hamilton Theorem

fM (mα) = 0.

Hence fM (mα)a = 0 for all a ∈ A, which means that (αm + a1α
m−1 + · · ·+ am−1α+ am) · a = 0. Take a to

be any nonzero element of A, then it follows that α is a root of fM (x), hence an algebraic integer.
�



INTRODUCTION TO REPRESENTATION THEORY AND CHARACTERS 29

Example 9.5. If α is any complex number, then we may form

A = Z[α] = {
m∑

i=0

aiα
i | m ∈ Z≥0, ai ∈ Z}.

One can show easily that Proposition 9.4 implies that

α is an algebraic integer if and only if Z[α] is a finitely generated subgroup of (C,+). (9.1)

The first important result about algebraic numbers is the following

Theorem 9.6. If α and β are algebraic integers, then so are α + β and αβ. In other words, (A,+, ·) is a
subring of (C,+, ·).

Proof. Let α, β be algebraic integers with corresponding polynomials p(x) and q(x) of degrees n and m,
respectively. Set

Z[α, β] = {
∑

0≤i<n, 0≤j<m

aijα
iβj | aij ∈ Z}.

Then (Z[α, β],+) is a subgroup of (C,+). Notice that in fact Z[α, β] is in fact a nonzero subring of (C,+, ·).
This is because any power of α higher than n can be expressed in terms of lower powers, and similarly for
β. Also Z[α, β] is clearly finitely generated by {αiβj}. Since α+ β and αβ belong to Z[α, β], we may apply
Proposition 9.4, and deduce that α+ β and αβ are algebraic integers. �

Corollary 9.7. If χ is the character of a representation of G, then χ(g) ∈ A.

Proof. This is because χ(g) is a sum of algebraic integers (roots of 1). �

9.2. Frobenius-Burnside divisibility. To investigate closer the relation between character values and
algebraic integers, we need first a result about the ring structure of the centre Z(CG) of the group algebra
CG. Suppose C1, . . . , Ck are the conjugacy classes of G. Define

zi =
∑

g∈Ci

g ∈ Z(CG).

As seen before, {zi} form a C-basis of Z(CG).

Lemma 9.8. There exist nonnegative integers µi,j,s such that, in Z(CG), we have:

zi · zj =
k∑

s=1

µi,j,szs,

for every 1 ≤ i, j ≤ k.

Proof. In the proof, we will find a precise formula for the integers µi,j,s in fact. Notice that since zi and zj
are in Z(CG), then so is zi · zj . Given that {zi} is a C-basis of Z(CG), it is then automatic that

zi · zj =
k∑

s=1

µ′
i,j,szs,

for some complex numbers µ′
i,j,s, so the content of the lemma is that these numbers can be chosen to be

integers. We calculate

zi · zj =
∑

g∈Ci, h∈Cj

gh =
∑

x∈G

µi,j,xx,

where

µi,j,x = |{(g, h) | g ∈ Ci, h ∈ Cj , gh = x} ∈ Z.

If x and x′ are conjugate in G, then µi,j,x = µi,j,x′ . This is because if x′ = yxy−1 and x = gh, then
x′ = (ygy−1)(yhy−1). So we may denote µi,j,s = µi,j,x for any x ∈ Cs and rewrite the formula as in the
statement of the lemma. �
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Recall that, as a consequence of Schur’s Lemma, if V is any simple CG-module, every z ∈ Z(CG) acts by
a scalar λz ∈ C. If we denote by λi the scalar by which zi acts, then Lemma 9.8 implies

λiλj =

k∑

s=1

µi,j,sλs. (9.2)

Lemma 9.9. The numbers λi are algebraic integers.

Proof. Let A denote the abelian subgroup of (C,+) generated by λ1, . . . , λk. Formula (9.2) says that for
every i, λi ·A ⊆ A. (In fact, a better way is to say that (A,+, ·) is a subring of (C,+, ·).) The claim follows
by Proposition 9.4. �

Proposition 9.10. Let C be a conjugacy class of G, g ∈ C, and let χ be an irreducible character of G. Then

|C|χ(g)

χ(e)

is an algebraic integer.

Proof. This follows from computing λi from before in terms of the characters. Let (ρ, V ) be the irreducible
representation with character χ and think of V as a simple CG-module. Let zi be the central element given
by the sum of elements of our fixed conjugacy class C. Since zi acts by λi · Id on V , we see that

trV ρ(zi) = λi dimV.

On the other hand,

trV ρ(zi) =
∑

x∈C

trV ρ(x) =
∑

x∈G

χ(x) = |C|χ(g).

Hence

λi =
|C|χ(g)

dimV
,

and the claim follows from Lemma 9.9. �

Theorem 9.11. Let χ be an irreducible character of G. Then χ(e) divides |G|.

Proof. Since χ is irreducible, 〈χ, χ〉 = 1, which means

1

|G|

k∑

i=1

|Ci|χ(gi)χ(gi) = 1,

where gi is a representative of Ci. We rewrite this as

k∑

i=1

|Ci|χ(gi)

χ(e)
χ(g−1

i ) =
|G|

χ(e)
.

By Proposition 9.10, the left hand side is a sum of products of algebraic integers, hence an algebraic integer.

Thus |G|
χ(e) is an algebraic integer. But it is also a rational number, hence an integer. �

While Theorem 9.11 seems at first that it might be useful in getting concrete information about the
irreducible representations of a finite group, in practice this isn’t so much the case. For example, we know
that when G is abelian, then every irreducible representation is one dimensional, so in that case the result
would say that 1 divides |G|. On the other hand, if G = Sn, then |G| = n!, so again we can’t infer much
from the fact that χ(e) divides n!. But the interesting thing about Theorem 9.11 is the proof, the fact that
it links algebraic integers to character values in a perhaps surprising way.

Remark 9.12. It is worth remarking that there exists a refinement of Theorem 9.11, namely that the degree
of every irreducible representation divides the index |G : Z(G)|, where Z(G) is the centre of G. See [3, Section
6.5, Proposition 17] for a clever proof of this fact.
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9.3. Burnside’s paqb Theorem. We begin by recalling the Orbit-Stabiliser Theorem. If G is a group acting
on a set Ω, then, for every ω ∈ Ω, there is a natural bijection

G/Stab(ω)←→ Oω, gStab(ω) 7→ g · ω, (9.3)

where Stab(ω) = {g ∈ G | g · ω = ω} is the stabiliser and Oω = {g · ω | g ∈ G} is the orbit. In particular, if
we apply this to the action of G on itself given by conjugation, we see that

|G/CG(x)| = |Cx|,

where CG(x) = {g ∈ G | gxg
−1 = x} is the centraliser of x, and Cx is the conjugacy class of x.

Ig G is a finite p-group, G| = pa, this means that every conjugacy class in G has order equal to a power
of p. Let C1, . . . , Cℓ be the conjugacy classes in G. Then

|C1|+ |C2|+ · · ·+ |Cℓ| = |G|.

Separate the conjugacy classes into the ones with one element and the ones with more:
∑

|Ci|=1

|Ci|+
∑

|Cj |>1

|Cj | = |G|.

Notice that an element is its own conjugacy class if and only if it is in the centre Z(G) of G. Using that the
order of every conjugacy class is a power of p, we see that

|Z(G)| ≡ 0 (mod p).

Since e ∈ Z(G), this implies that |Z(G)| ≥ p.

Lemma 9.13. A finite p-group G with |G| = pa has a normal subgroup of order pm for every 0 ≤ m ≤ a.
In particular, a finite p-group is simple if and only if it is isomorphic to Cp.

Proof. The second claim follows directly from the first. The first claim can be proved by induction. Assumes
it is true for all p-groups of order less than pa. Suppose |Z(G)| = pk ≥ p. Since |G/Z(G)| = pa−k, by induction
there exists a normal subgroup N of G/Z(G) of order pm−k. But then NZ(G) is a normal subgroup of G of
order pm. �

The main result5 of the subsection is the following

Theorem 9.14 (Burnside). A group G of order paqb, where p and q are prime numbers, is simple if and
only if G is isomorphic to Cp or to Cq.

To prove it, we need some preliminary results. Firstly, we need to record some easy facts from Galois
theory. Suppose µ is a primitive m-th root of 1. Define Q(µ) to be the cyclotomic field generated by µ, i.e.,
the subfield of C generated by Q and µ. The minimal polynomial of µ (the m-th cyclotomic polynomial)
over Q divides xm − 1, which means in particular that Q(µ) is a finite field extension over Q (of degree less
than n). Define the Galois group

Gal(Q(µ)/Q) = {σ : Q(µ)→ Q(µ) field isomorphism | σ(α) = α, for all α ∈ Q}. (9.4)

This is a group with respect to composition. For every 1 ≤ k ≤ m such that hcf(k,m) = 1, define

σk : Q(µ)→ Q(µ), σk |Q= Id, σk(µ) = µk}.

Since σk maps µ to another primitive m-th root of 1, it is easy to see that

σk ∈ Gal(Q(µ)/Q) and σk ◦ σℓ = σkℓ.

In fact, it isn’t difficult to prove the following

Proposition 9.15. Gal(Q(µ)/Q) = {σk | 1 ≤ k ≤ m, hcf(k,m) = 1} ∼= ((Z/mZ)×, ·). Moreover, if
α ∈ Q(µ) is such that σ(α) = α for all σ ∈ Gal(Q(µ)/Q), then α ∈ Q.

Now we can prove a lemma about the average of roots of unity.

5The proof of the theorem is not examinable
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Lemma 9.16. If λ1, . . . , λn are roots of unity such that their average

a =
λ1 + · · ·+ λn

n

is an algebraic integer, then either a = 0 or λ1 = λ2 = · · · = λn.

Proof. Without loss of generality, we may assume that all λi are m-th roots of 1. Let µ be a primitive m-th
root of 1, as before. Then λi ∈ Q(µ) for all i. Define

α =
∏

σ∈Gal(Q(µ)/Q)

σ(a) ∈ Q(µ).

It is clear from the definition that σ(α) = α for all σ ∈ Gal(Q(µ)/Q), which by Proposition 9.15, means that
α ∈ Q.

On the other hand, every σ ∈ Gal(Q(µ)/Q) maps roots of unity to roots of unity, hence σ(α) is an algebraic
number (because α is) for all σ. Hence α is an algebraic number and a rational number, so it is an integer.

Finally, |a| ≤ 1, which means that |σ(a)| ≤ 1 for all σ. Thus |α| ≤ 1 and α is an integer. There are two
cases: if α = 0, then one of the σ(a) = 0, but then a = 0, as well. Or, if |α| = 1, we must have |σ(a)| = 1 for
all σ, so |a| = 1. But this implies that λ1 = · · · = λn. �

This lemma can be rephrased as follows.

Lemma 9.17. Let χ be the character of a representation ρ : G→ GL(V ) of a finite group G. Suppose g ∈ G

is such that χ(g)
χ(e) is an algebraic integer. Then one of the following holds:

(1) either χ(g) = 0,
(2) or ρ(g) is a scalar multiple of the identity in GL(V ).

In particular, suppose that G is a nonabelian simple group, g 6= e, and χ is an irreducible nontrivial character.

If χ(g)
χ(e) is an algebraic integer, then χ(g) = 0.

Proof. If λ1, . . . , λn are the eigenvalues of ρ(g), then we see that the condition is just the same as in the
previous lemma: λ1+···+λn

n is an algebraic integer. The two cases are exactly the ones from before.
For the second part, we need to show that ρ(g) can’t be a multiple of the identity. Suppose it is, e.g.,

ρ(g) = λ IdV for some λ ∈ C. By assumption, ρ is an irreducible nontrivial G-representation. Since G is a
simple group, ρ must be faithful, and therefore, by the first isomorphism theorem, ρ(G) ∼= G. This means
that ρ(G) is a simple group too. But ρ(g) is a central element of ρ(G), which means that ρ(G) must be
abelian simple group (cyclic of prime order), and this is a contradiction with the assumption. �

Proposition 9.18. Let G be a nonabelian simple group and let C be a conjugacy class in G, C 6= {e}. Then
|C| is not a prime power.

Proof. Suppose |C| = qk for some prime number q and k ∈ Z≥0. Fix a representative g ∈ C. Using the
column orthogonality of characters, g 6= e,

∑

χ∈Irr G

χ(g)χ(e) = 0,

which implies

1 +
∑

χ∈Irr G\{χtriv}

χ(g)χ(e) = 0. (9.5)

We claim that for every χ 6= χtriv, either q | χ(e) or χ(g) = 0. Suppose q does not divide χ(e). Then
hcf(|C|, χ(e)) = 1, since |C| = qk. So there exist integers a, b ∈ Z such that a|C| + bχ(e) = 1. Multiply by
χ(g)
χ(e) and get

a
|C|χ(g)

χ(e)
+ bχ(g) =

χ(g)

χ(e)
.

All the elements in the left hand side are algebraic integers (the difficult bit was done in Proposition 9.10),

hence χ(g)
χ(e) is also an algebraic integer. By Lemma 9.17, it follows that χ(g) = 0, so the claim is proved.
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Returning to (9.5), taking mod q, we now see that we may write
∑

χ∈Irr G\{χtriv}
χ(g)χ(e) = qα for some

algebraic integer α. But then 1
q = −α is an algebraic integer and this is a contradiction, since 1

q is rational

but not an integer.
�

We can now finally prove Theorem 9.14.

Proof of Theorem 9.14. If a = 0 (or b = 0), then Lemma 9.13 gives the statement in the theorem. Suppose
a ≥ 1 and b ≥ 1. Applying Sylow’s Theorem, we see that G has a Sylow subgroup H of order pa > 1. By
Lemma 9.13 again, Z(H) 6= {e}. Let g ∈ Z(H) be an element, g 6= e. Let C be the conjugacy class of g in G.

Since g ∈ Z(H), we have H ⊆ CG(H). But then

|G : H| = |G : CG(g)| · |CG(g) : H|.

Since |G : H| = qb and |C| = |G : CG(g)|, we have that the order of C is a power of q. But this is a
contradiction with Proposition 9.18. �

Appendix A. Unitary representations

In this appendix, we will work with the field k = C.

A.1. Inner products.

Definition A.1. Let V be a C-vector space. An inner product on V is a pairing ( , ) : V ×V → C which is:

(i) sesquilinear: (λ1v1 + λ2v2, u) = λ1(v1, u) + λ2(v2, u), v1, v2, u ∈ V , λ ∈ C;
(ii) hermitian: (v, u) = (u, v);
(iii) positive-definite: (v, v) ≥ 0 for all v ∈ V , and if (v, v) = 0 then v = 0.

A subset {vi : i ∈ I} of V is called orthogonal if (vi, vj) = 0 for all i 6= j. It is called orthonormal if, in
addition, (vi, vi) = 1 for all i.

Example A.2. (1) Let V = Cn be the standard n-dimensional C-vector space. Set (v, u) =
∑n

i=1 viui,
where v = (vi)1≤i≤n and u = (ui)1≤i≤n are vectors in V . This is the standard inner product on V .

(2) 6 Suppose X is a measure space with measure µ. Let L2(X) denote the space of integrable functions
f : X → C such that

||f ||2 := (

∫

X

|f(x)|2 dµ(x) <∞)1/2. (A.1)

The space L2(X) is a metric space with the metric d2(f, g) = ||f − g||2. An inner product on L2(X)
is defined by

(f, g)2 =

∫

X

f(x)g(x) dµ(x). (A.2)

Hölder’s inequality says that |(f, g)2| ≤ ||f ||2||g||2, so this pairing takes finite values indeed. It is
moreover true that L2(X), just as Cn, is a complete metric space; such spaces are called Hilbert
spaces.

Lemma A.3. Let V be a C-vector space with an inner product ( , ) and let U be a subspace. Then

U⊥ = {v ∈ V | (v, u) = 0, for all u ∈ U}

is a subspace of V and U ∩ U⊥ = 0. If V is finite dimensional, then V = U ⊕ U⊥.

Proof. The fact that U⊥ is a subspace follows immediately from the conjugate-linearity of ( , ) with respect
to the first variable. For the second claim, suppose u ∈ U ∩ U⊥. Then (u, u) = 0, hence u = 0.

For the last claim, let {u1, . . . , um} be an orthonormal basis of U . (This exists by the Gram-Schmidt
procedure.) Then we may extend this to a basis {u1, . . . , um, w1, . . . , wl} of V . Again by Gram-Schmidt, we
make this into an orthonormal basis {u1, . . . , um, w

′
1, . . . , w

′
l}. The span of {w′

1, . . . , w
′
l} is in U⊥ (since the

elements are orthogonal to U), and since U ∩ U⊥ = 0, we have that they form a basis of U⊥. The claim
follows. �

6If you took Part A Integration.
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A better way to phrase the last part of the proof is to define the projection onto U by

p : V → U, p(v) =
m∑

i=1

(v, ui)ui.

Notice that p(u) = u for all u ∈ U , hence p(p(v)) = p(v) for all v ∈ V . For every v ∈ V , v = p(v)+(v−p(v)),
and v − p(v) ∈ ker pU = U⊥.

This means that if we have a well-defined projection onto U even if V is infinite dimensional, then we can
still conclude that V = U ⊕ U⊥. This is precisely why for infinite dimensional inner product spaces, one
needs to assume completeness. The basic result is the following.

Theorem A.4 (See Part A Metric Spaces). Let V be a Hilbert space with metric d and let U be a closed
subspace of V . Then for every v ∈ V ,

d(v, U) = inf{d(v, u) : u ∈ U} ≥ 0

is attained at some point in U . Define pU (v) to be the point of U where d(v, U) is attained. Then pU : V → U
is a projection of V onto U and U⊥ = ker pU . Moreover,

V = U ⊕ U⊥.

A.2. Algebras with star operations. The goal of this subsection is to explain how semisimple modules
occur naturally in representation theory.

LetA be a C-algebra (not necessarily finite dimensional). A star operation onA is a ring anti-automorphism
κ : A→ A, meaning that

(i) κ(a+ b) = κ(a) + κ(b);
(ii) κ(ab) = κ(b)κ(a), a, b ∈ A,

and in addition

(iii) κ is conjugate-linear, κ(λa) = λκ(a), λ ∈ C, a ∈ A, and
(iv) κ is an involution κ2 = IdA.

This definition looks a bit complicated at first, but there are natural examples.

Example A.5. (i) If A is an abelian algebra, then we would like to say that κ = IdA is a star operation.
But this doesn’t quite work because of the conjugate-linear property. One non-canonical way to fix it
is to take a C-basis {ai : i ∈ I} of A and define κ(

∑
finite λiai) =

∑
finite λai.

(ii) Let A =Mn(C). Then we may take

κ(X) = X
t

for all matrices X ∈Mn(C).
(iii) Let A = CG, for a group G. The natural star operation is

κ(
∑

λgg) =
∑

λgg
−1.

Definition A.6. Let A be a C-algebra with a star operation κ and let M be an A-module. We say that M
is κ-preunitary if M has a positive-definite inner product ( , )M which is κ-invariant, i.e.:

(a ·m1,m2)M = (m1, κ(a) ·m2)M , a ∈ A, m1,m2 ∈M. (A.3)

We say that M is (κ-)unitary if M is a Hilbert space.

We see from the definition why we need κ to be an anti-automorphism:

((ab)·m1,m2)M = (a·(b·m1),m2)M = (b·m1, κ(a)·m2)M = (m1, κ(b)·(κ(a)·m2)M = (m1, (κ(b)κ(a))·m2)M .

On the other hand, this has to equal (m1, κ(ab) ·m2)M . This justifies the condition κ(ab) = κ(b)κ(a).
The main first property of preunitary modules is the following observation.

Proposition A.7. Suppose that M is a preunitary A-module. If N is a submodule of M , then N⊥ is also
a submodule of M and N ∩N⊥ = 0.
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Proof. We need to prove that N⊥ is a submodule, the rest following from the statements for vector spaces.
Let m ∈ N⊥ and a ∈ A. Then

(a ·m,n)M = (m,κ(a) · n = 0, for all n ∈ N.

By definition, this means that a ·m ∈ N⊥ as well. �

Corollary A.8. Suppose M is a unitary A-module and N a closed submodule of M . Then M = N ⊕ N⊥

as A-modules.

Proof. This is immediate from the previous proposition and the decomposition of Hilbert spaces from before.
�

Remark A.9. The decomposition in Corollary A.8 applies in particular whenever M is a finite dimensional
(pre)unitary A-module and N is any submodule ofM . Corollary A.8 says that unitary modules are completely
reducible, and in fact more, since we have a canonical complement for any (closed) submodule.

Proposition A.10. Let M be a finite dimensional A-module. Then M is semisimple if and only if it is
completely reducible.

Proof. We proved this in the lectures. �

A.3. Finite groups. Let G be a finite group and A = CG with κ(g) = g−1 as in Example A.5. The following
result can be viewed as an easy, conceptual proof of Maschke’s Theorem in this setting.

Theorem A.11. Every finite dimensional CG-module is unitary. Therefore CG is a semisimple finite-
dimensional C-algebra.

Proof. Let V be a finite dimensional CG-module and let ( , ) be any positive definite inner product on V .
Such an inner product exists, because as a C-vector space V is isomorphic to Cn for n = dimV , and we can
just take the standard inner product on Cn. We make ( , ) G-invariant by averaging, i.e., define

(u, v)V :=
1

|G|

∑

g∈G

(g · u, g · v). (A.4)

Then ( , )V is indeed G-invariant: for h ∈ G,

(h · u, v)V =
1

|G|

∑

g∈G

(gh · u, g · v) =
1

|G|

∑

g′∈G

(g′ · u, g′h−1 · v) (g′ = gh)

= (u, h−1 · v)V .

Since ( , )V is G-invariant, it is easy to see that it is also A-invariant. Moreover ( , )V is sesquilinear since
( , ) is. Finally,

(u, u)V =
1

|G|

∑

g∈G

(g · u, g · u) ≥ 0,

and it is 0 if and only if (g · u, g · u) = 0 for all g, but then (u, u) = 0 hence u = 0. So indeed V is unitary
with respect to ( , )V .

�

A.4. L2-spaces. This part is non-examinable, but I hope you may still find it interesting. We will look at
two examples, G = S1 and G = (R,+). Recall, that in general, if a group G acts on a set X, then it acts on
the space of functions F(X) = {f : X → C} by the left-regular representation

(g · f)(x) = f(g−1x), g ∈ G, x ∈ X. (A.5)

This is a representation of G. If X is a measure space with a measure µ and the action of G preserves the
measure, i.e.,

µ(g ·B) = µ(B), for every measurable set B ⊆ X, (A.6)

then G acts on L2(X). In other words, if f ∈ L2(X), then g · f ∈ L2(X). In this way, L2(X) becomes a
unitary representation of G.



36 DAN CIUBOTARU

Let µR denote the Lebesgue measure on R. This measure is translation invariant, namely B is a measurable
set if and only B + x is a measurable set for all x ∈ R and moreover

µR(B) = µ(B + x).

If G = (R,+), then this says exactly that µR is G-invariant. Hence L2(R) is naturally a unitary representation
of (R,+).

Using again that µR is translation invariant, it is clear that µR defines a well-defined measure on

S1 ∼= R/Z, (x ∈ R/Z 7→ e2πix ∈ S1),

which we denote by µS1 . Similarly G = S1 acts on L2(S1) and this is a unitary S1-representation.
Notice that both S1 and R carry natural topologies, but the difference is that S1 is compact, whereas R

is non-compact. This difference will be reflected in the decompositions of L2(G).
Since S1 and R are abelian groups, we are interested first in the description of the one-dimensional

representations. To account for the topology of these groups, we look at continuous group homomorphisms ρ :
G→ C×. Finally, since we are interested in the decomposition of L2(G), we restrict to unitary representations,
which means that the image of ρ is in S1. This makes no difference for S1: a similar argument to that in
Theorem A.11 shows that every finite dimensional representation of S1 is unitary. (Instead of averaging using
a sum as for finite groups, we average using an integral for a compact group.) But it makes a difference for
R which has one-dimensional non-unitary representations.

Similarly to the case of finite abelian groups, we may define the Pontrijagin dual of G = S1 or R, by
setting

Ĝ = {ρ : G→ S1 | ρ continuous group homomorphism}.

Lemma A.12. (1) The irreducible unitary continuous representations of S1 over C are the (one-dimensional)
group homomorphisms

ρn : S1 → S1, ρn(z) = zn, z ∈ S1,

for every n ∈ Z. In other words, Ŝ1 ∼= (Z,+).
(2) The irreducible unitary continuous representations of (R,+) over C are the (one-dimensional) group

homomorphisms
ρx : (R,+)→ S1, ρx(y) = eixy,

for every x ∈ R. In other words, (̂R,+) ∼= (R,+).

Proof. Left as an exercise for now. �

We need a generalization of the notion of direct sums for Hilbert spaces.

Definition A.13. Suppose that Vi, i ∈ I is a family of Hilbert spaces with inner products ( , )Vi
and norms

|| ||Vi
indexed by a countable set I. The Hilbert space direct sum is

⊕̂
i∈I
Vi = {(vi)i∈I ∈

∏

i∈I

Vi |
∑

i∈I

||vi||Vi
<∞}.

One endows
⊕̂

i∈IVi with a an inner product

((vi), (ui)) :=
∑

i∈I

(vi, ui)Vi
.

This makes
⊕̂

i∈IVi into a Hilbert space.

When the set I is finite, the Hilbert space direct sum is the same as the usual notion of a direct sum.

Theorem A.14. As a representation of S1,

L2(S1) ∼=
⊕̂

n∈Z

ρn,

where ρn is as in Lemma A.12.

Proof. This is nothing but the main result of Fourier series, namely that a periodic L2-function can be
decomposed uniquely into a Fourier series. �
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Now we turn to (R,+). To simplify notation, we write dx in place of dµB(x) in the integration with
respect to the Lebesgue measure. Suppose f : R→ C is an integrable function. Recall the Fourier transform
of f :

f̂ : R→ C, f̂(ξ) =

∫

R

f(y)e−iyξ dy, ξ ∈ R. (A.7)

The translation property of the Fourier transform says, in our notation, that

̂(x0 · f)(ξ) = e−ix0ξ f̂(ξ), x0 ∈ R, ξ ∈ R. (A.8)

We recall that (x0 · f)(y) = f(y − x0) is the left regular action of R on L2(R) (or any functions on R).

Remark A.15. Let ρx, x ∈ R be an irreducible unitary representation of (R,+). We can think of ρ̂x as the
delta function supported at x, a “function” which is nonzero only at x (“supported at x) with “infinite value”
at x. (This leads to the notion of distribution in analysis.)

The Fourier inversion theorem says that

f(x) =

∫

R

f̂(ξ)eixξ dξ. (A.9)

In representation theoretic terms, you want to think of this formula as saying that there exists a measure µ̂

on R̂ = (̂R,+) (which can be seen concretely here by identifying (̂R,+) with R as in Lemma A.12) such that

f(x) =

∫

R̂

f̂(ξ) dµ̂(ρx(ξ)). (A.10)

The question is to describe the R-invariant subspaces (the subrepresentations) of L2(R). Let S be a
measurable subset of R. Consider

L2(R)S = {f ∈ L2(R) | f̂ = 0 almost everywhere on R \ S}. (A.11)

The subspace L2(R) is nonzero if and only if S has positive measure.

Theorem A.16. The R-invariant closed subspaces of L2(R) are precisely L2(R)S for all measurable sets S
in R.

Proof. Skipped. �

In a measure space (X,µ), one says that a measurable set S ⊂ X is an atom if µ(S) > 0 and whenever S′

is measurable and µ(S′) < µ(S), necessarily µ(S′) = 0.

Lemma A.17. The Lebesgue measure on R does not have atoms.

Proof. Left as an exercise. �

Corollary A.18. As a representation of (R,+), the unitary representation L2(R) is completely reducible,
but not semisimple.

Proof. As a unitary representation, we already know that L2(R) is completely reducible (in the Hilbert space
sense, i.e., with closed subspaces). On the other hand, from Theorem A.16, we know that the subrepresenta-
tions are L2(R)S , for measurable sets S. Notice that if S1 ⊆ S2, then L

2(R)S1
⊆ L2(R)S2

. But since R does
not have atoms, it follows that every nonzero L2(R)S has a proper nonzero subrepresentation. This means
that L2(R) doesn’t have any simple subrepresentations, and therefore, it cannot be semisimple. �

Thus the representation L2(R) does not decompose as a (Hilbert) direct sum of irreducible representations.
However, the Fourier inversion formula (A.10) indicates that there is a “continuous”, integral decomposition
into the one-dimensional irreducible unitary representations ρx, x ∈ R.
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