13.7 Theorem (CT after reduction 13.4) Let Γ be a maximal consistent witnessing set of sentences not containing $a \doteq -symbol$. Then Γ has a model. #### Proof: Let $A := \{t \in \text{Term}(\mathcal{L}) \mid t \text{ is closed}\}$ (recall: t **closed** means no variables in t). A will be the domain of our model A of Γ (A is called **term model**). For $P = P_n^{(k)} \in \operatorname{Pred}(\mathcal{L})$ resp. $f = f_n^{(k)} \in \operatorname{Fct}(\mathcal{L})$ resp. $c = c_n \in \operatorname{Const}(\mathcal{L})$ define the interpretations $P_{\mathcal{A}}$ resp. $f_{\mathcal{A}}$ resp. $c_{\mathcal{A}}$ by $$P_{\mathcal{A}}(t_1, \dots, t_k)$$ holds $:\Leftrightarrow \Gamma \vdash P(t_1, \dots, t_k)$ $f_{\mathcal{A}}(t_1, \dots, t_k) := f(t_1, \dots, t_k)$ $c_{\mathcal{A}} := c$ Lecture 14 - 1/8 to show: $A \models \Gamma$ (i.e. $A \models \Gamma[v]$ for some/all assignments v in A: note that Γ contains only sentences). Let v be an assignment in A, say $v(x_i) =: s_i \in A$ for i = 0, 1, 2, ... Claim 1: For any $u \in \text{Term}(\mathcal{L})$: $\tilde{v}(u) = u[\vec{s}/\vec{x}]$ (:= the closed term obtained by replacing each x_i in u by s_i) *Proof:* by induction on u $$- u = x_i \Rightarrow$$ $$\widetilde{v}(u) = v(x_i) = s_i = x_i[s_i/x_i] = u[\vec{s}/\vec{x}]$$ $$- u = c \in \text{Const}(\mathcal{L}) \Rightarrow$$ $$\widetilde{v}(u[\vec{s}/\vec{x}]) = \widetilde{v}(u) = \widetilde{v}(c) = c_{\mathcal{A}}$$ $$- u = f(t_1, \dots, t_k) \Rightarrow$$ $$\begin{split} \widetilde{v}(u) &:= f_{\mathcal{A}}(\widetilde{v}(t_1), \dots, \widetilde{v}(t_k)) \\ &= f_{\mathcal{A}}(t_1[\vec{s}/\vec{x}], \dots, t_k[\vec{s}/\vec{x}]) \quad \text{by IH} \\ &= f(t_1[\vec{s}/\vec{x}], \dots, t_k[\vec{s}/\vec{x}]) \quad \text{by def. of } f_{\mathcal{A}} \\ &= f(t_1, \dots, t_k)[\vec{s}/\vec{x}] \quad \quad \text{by def. of subst.} \\ &= u[\vec{s}/\vec{x}] \quad \qquad \Box_{\text{Claim 1}} \end{split}$$ Lecture 14 - 2/8 **Claim 2:** For any $\phi \in Form(\mathcal{L})$ without \doteq -symbol: $$\mathcal{A} \models \phi[v] \text{ iff } \Gamma \vdash \phi[\vec{s}/\vec{x}],$$ where $\phi[\vec{s}/\vec{x}]$:= the sentence obtained by replacing each *free* occurrence of x_i by s_i : note that s_i is free for x_i in ϕ because s_i is a *closed* term. **Proof:** by induction on ϕ ϕ atomic, i.e. $$\phi = P(t_1, \dots, t_k)$$ for some $P = P_n^{(k)} \in \text{Pred}(\mathcal{L})$ Then $$\begin{array}{lll} \mathcal{A} \models \phi[v] \\ \text{iff} & P_{\mathcal{A}}(\widetilde{v}(t_1), \ldots, \widetilde{v}(t_k)) & [\text{def. of `} \models \text{'}] \\ \text{iff} & P_{\mathcal{A}}(t_1[\vec{s}/\vec{x}], \ldots, t_k[\vec{s}/\vec{x}]) & [\text{Claim 1}] \\ \text{iff} & \Gamma \vdash P(t_1[\vec{s}/\vec{x}], \ldots, t_k[\vec{s}/\vec{x}]) & [\text{def. of } P_{\mathcal{A}}] \\ \text{iff} & \Gamma \vdash P(t_1, \ldots, t_k)[\vec{s}/\vec{x}] & [\text{def. subst.}] \\ \text{iff} & \Gamma \vdash \phi[\vec{s}/\vec{x}] & \end{array}$$ Note that Claim 2 might be false for formulas of the form $t_1 \doteq t_2$: might have $\Gamma \vdash c_0 \doteq c_1$, but c_0, c_1 are distinct elements in A. Lecture 14 - 3/8 ### **Induction Step** $$\forall$$ -step ' \Rightarrow ' Suppose $\mathcal{A} \models \forall x_i \phi[v]$ (*) but not $\Gamma \vdash (\forall x_i \phi)[\vec{s}/\vec{x}]$ $$\Rightarrow \Gamma \vdash (\neg \forall x_i \phi)[\vec{s}/\vec{x}] \qquad (\Gamma \text{ max.})$$ $$\Rightarrow \Gamma \vdash (\exists x_i \neg \phi)[\vec{s}/\vec{x}] \qquad (\text{Exercise})$$ Lecture 14 - 4/8 Now let ϕ' be the result of substituting each free occurrence of x_j in ϕ by s_j for all $j \neq i$. $$\Rightarrow (\exists x_i \neg \phi)[\vec{s}/\vec{x}] = \exists x_i \neg \phi'$$ $$\Rightarrow \Gamma \vdash \exists x_i \neg \phi'$$ Γ witnessing \Rightarrow $\Gamma \vdash \neg \phi'[c/x_i]$ for some $c \in \mathsf{Const}(\mathcal{L})$ #### Define $$v^{\star}(x_{j}) := \begin{cases} v(x_{j}) & \text{if } j \neq i \\ c & \text{if } j = i \end{cases} \text{ and } s_{j}^{\star} := \begin{cases} s_{j} & \text{if } j \neq i \\ c & \text{if } j = i \end{cases}$$ $$\Rightarrow \neg \phi'[c/x_{i}] = \neg \phi[\vec{s^{\star}}/\vec{x}]$$ $$\Rightarrow \Gamma \vdash \neg \phi[\vec{s^{\star}}/\vec{x}]$$ $$\Rightarrow \Gamma \models \neg \phi[v^{\star}] \qquad [IH]$$ But, by (\star) , $\mathcal{A} \models \phi[v^{\star}]$: contradiction. Lecture 14 - 5/8 # ∀-step '**←**': Suppose $\mathcal{A} \not\models \forall x_i \phi[v]$ \Rightarrow for some v^* agreeing with v except possibly at x_i $$\mathcal{A} \models \neg \phi[v^{\star}]$$ Let $$s_j^{\star} := \begin{cases} s_j & \text{for } j \neq i \\ v^{\star}(x_j) & \text{for } j = i \end{cases}$$ IH $$\Rightarrow \Gamma \vdash \neg \phi[\vec{s^*}/\vec{x}],$$ i.e. $\Gamma \vdash \neg \phi'[s_i^*/x_i],$ where ϕ' is the result of substituting each free occurrence of x_j in ϕ by s_j for all $j \neq i$ $$\Rightarrow \Gamma \vdash \exists x_i \neg \phi'$$ ## (Exercise: $\chi \in \text{Form}(\mathcal{L})$, $\text{Free}(\chi) \subseteq \{x_i\}$, s a closed term $\Rightarrow \vdash (\chi[s/x_i] \to \exists x_i \chi))$ Lecture 14 - 6/8 So $$\Gamma \vdash \neg \forall x_i \neg \neg \phi'$$ $$\Rightarrow \Gamma \vdash \neg \forall x_i \phi'$$ $$\Rightarrow \Gamma \vdash (\neg \forall x_i \phi)[\vec{s}/\vec{x}]$$ $$\Rightarrow \Gamma \vdash (\forall x_i \phi)[\vec{s}/\vec{x}]$$ □Claim 2 Now choose any $\phi \in \Gamma \subseteq Sent(\mathcal{L})$ $$\Rightarrow \phi[\vec{s}/\vec{x}] = \phi$$ $$\Rightarrow$$ $\mathcal{A} \models \phi[v]$, i.e. $\mathcal{A} \models \phi$ [Claim 2] $$\Rightarrow$$ $A \models \Gamma$ [□]13.7 Lecture 14 - 7/8 ## 13.8 Modification required for ≐-symbol Define an equivalence relation E on A by $$t_1Et_2$$ iff $\Gamma \vdash t_1 \doteq t_2$ (easy to check: this *is* an equivalence relation, e.g. transitivity = (1)(ii) of sheet \sharp 4). Let A/E be the set of equivalence classes t/E (with $t \in A$). Define \mathcal{L} -structure \mathcal{A}/E with domain A/E by $$P_{\mathcal{A}/E}(t_1/E, \dots, t_k/E) :\Leftrightarrow \Gamma \vdash P(t_1, \dots, t_k)$$ $f_{\mathcal{A}/E}(t_1/E, \dots, t_k/E) := f_{\mathcal{A}}(t_1, \dots, t_k)/E$ $c_{\mathcal{A}/E} := c_{\mathcal{A}}/E$ **check:** independence of representatitves of t/E (this is the purpose of Axiom **A7**). Rest of the proof is much the same as before. $\square_{13.1}$ Lecture 14 - 8/8