14. Applications of Gödel's Completeness Theorem

14.1 Compactness Theorem for Predicate Calculus

Let \mathcal{L} be a first-order language and let $\Gamma \subseteq Sent(\mathcal{L})$.

Then Γ has a model iff every finite subset of Γ has a model.

Proof: as for Propositional Calculus – Exercise sheet $\ddagger 4$, (5)(ii).

14.2 Example

Let $\Gamma \subseteq Sent(\mathcal{L})$. Assume that for every $N \ge 1$, Γ has a model whose domain has at least N elements.

Then Γ has a model with an infinite domain.

Lecture 15 - 1/9

Proof:

For each $n \geq 2$ let χ_n be the sentence

$$\exists x_1 \exists x_2 \cdots \exists x_n \bigwedge_{1 \le i < j \le n} \neg x_i \doteq x_j$$

$$\Rightarrow \text{ for any } \mathcal{L}\text{-structure } \mathcal{A} = ,$$

$$\mathcal{A} \models \chi_n \text{ iff } \sharp A \ge n$$

Let $\Gamma' := \Gamma \cup \{\chi_n \mid n \ge 1\}.$

If $\Gamma_0 \subseteq \Gamma'$ is finite, let N be maximal with $\chi_N \in \Gamma_0$. By hypothesis, $\Gamma \cup \{\chi_N\}$ has a model. $\Rightarrow \Gamma_0$ has a model (note that $\vdash \chi_N \to \chi_{N-1} \to \chi_{N-2} \to ...)$

⇒ By the Compactness Theorem 14.1, Γ' has a model, say $\mathcal{A} = \langle A; \ldots \rangle$

$$\Rightarrow \mathcal{A} \models \chi_n \text{ for all } n \Rightarrow \ \sharp A = \infty \qquad \Box$$

Lecture 15 - 2/9

14.3 The Löwenheim-Skolem Theorem

Let $\Gamma \subseteq Sent(\mathcal{L})$ be consistent.

Then Γ has a model with a countable domain.

Proof:

This follows from the proof of the Completeness Theorem:

The **term model** constructed there was countable, because there are only countably many closed terms.

14.4 Definition

(i) Let \mathcal{A} be an \mathcal{L} -structure. Then the \mathcal{L} -theory of \mathcal{A} is

 $\mathsf{Th}(\mathcal{A}) := \{ \phi \in \mathsf{Sent}(\mathcal{L}) \mid \mathcal{A} \models \phi \},\$

the set of all \mathcal{L} -sentences true in \mathcal{A} . **Note:** Th(\mathcal{A}) is maximal consistent. (ii) If \mathcal{A} and \mathcal{B} are \mathcal{L} -structures with Th(\mathcal{A}) = Th(\mathcal{B}) then \mathcal{A} and \mathcal{B} are **elementarily equivalent** (in symbols ' $\mathcal{A} \equiv \mathcal{B}$ ').

Lecture 15 - 3/9

Π

14.5 Remark

Let $\Gamma \subseteq Sent(\mathcal{L})$ be any set of \mathcal{L} -sentences. Then TFAE:

- (i) Γ is strongly maximal consistent (i.e. for each \mathcal{L} -sentence ϕ , $\phi \in \Gamma$ of $\neg \phi \in \Gamma$)
- (ii) $\Gamma = Th(A)$ for some *L*-structure *A*

Proof: (i) \Rightarrow (ii): Completeness Theorem Rest: clear.

Note that Γ is maximal consistent if and only if Γ has models, and, for any two models \mathcal{A} and \mathcal{B} , $\mathcal{A} \equiv \mathcal{B}$.

Lecture 15 - 4/9

 \square

A worked example: Dense linear orderings without endpoints

Let $\mathcal{L} = \{<\}$ be the language with just one binary predicate symbol '<',

and let Γ be the \mathcal{L} -theory of dense linear orderings without endpoints (cf. Example 10.8) consisting of the axioms ψ_1, \ldots, ψ_4 :

$$\begin{array}{ll} \psi_1: & \forall x \forall y ((x < y \lor x \doteq y \lor y < x) \\ & \wedge \neg ((x < y \land x \doteq y) \lor (x < y \land y < x))) \\ \psi_2: & \forall x \forall y \forall z (x < y \land y < z) \rightarrow x < z) \\ \psi_3: & \forall x \forall z (x < z \rightarrow \exists y (x < y \land y < z)) \\ \psi_4: & \forall y \exists x \exists z (x < y \land y < z) \end{array}$$

14.6 (a) Examples

Q, R,]0,1[, $\mathbf{R} \setminus \{0\}$, $[\sqrt{2}, \pi] \cap \mathbf{Q}$,]0,1[\cup]2,3[, or $\mathbf{Z} \times \mathbf{R}$ with lexicographic ordering: (a, b) < (c, d) $\Leftrightarrow a < c$ or (a = c & b < d)

(b) Counterexamples [0, 1], Z, {0}, \mathbb{R}]0, 1[or $\mathbb{R} \times \mathbb{Z}$ with lexicographic ordering

14.7 Theorem

Let Γ be the theory of dense linear orderings without endpoints, and let $\mathcal{A} = \langle A; \langle \mathcal{A} \rangle$ and $\mathcal{B} = \langle B; \langle \mathcal{B} \rangle$ be two countable models. Then \mathcal{A} and \mathcal{B} are isomorphic, i.e. there is an order preserving bijection between A and B.

Proof: Note: *A* and *B* are infinite. Choose an enumeration (no repeats)

$$A = \{a_1, a_2, a_3, \ldots\} \\ B = \{b_1, b_2, b_3, \ldots\}$$

Define $\phi: A \to B$ recursively s.t. for all n:

 (\star_n) for all $i, j \leq n$: $\phi(a_i) <_{\mathcal{B}} \phi(a_j) \Leftrightarrow a_i <_{\mathcal{A}} a_j$

Suppose ϕ has been defined on $\{a_1, \ldots, a_n\}$ satisfying (\star_n) .

Let $\phi(a_{n+1}) = b_m$, where m > 1 is minimal s.t.

for all $i \leq n$: $b_m <_{\mathcal{B}} \phi(a_i) \Leftrightarrow a_{n+1} <_{\mathcal{A}} a_i$,

i.e. the position of
$$\phi(a_{n+1})$$

relative to $\phi(a_1), \ldots, \phi(a_n)$

is the same as that of a_{n+1} relative to a_1, \ldots, a_n

(possible as $\mathcal{A}, \mathcal{B} \models \Gamma$).

$$\Rightarrow (\star_{n+1})$$
 holds for a_1, \ldots, a_{n+1}

 $\Rightarrow \phi$ is injective

And ϕ is surjective, by minimality of m.

Lecture 15 - 7/9

14.8 Corollary

 Γ is maximal consistent

Proof: to show: Th(A) = Th(B) for any $A, B \models \Gamma$ (by Remark 14.5)

By the Theorem of Löwenheim-Skolem (14.3), Th(\mathcal{A}) and Th(\mathcal{B}) have countable models, say \mathcal{A}_0 and \mathcal{B}_0 .

 $\Rightarrow \mathsf{Th}(\mathcal{A}_0) = \mathsf{Th}(\mathcal{A}) \text{ and } \mathsf{Th}(\mathcal{B}_0) = \mathsf{Th}(\mathcal{B})$

Theorem 14.7 $\Rightarrow A_0$ and B_0 are isomorphic

 $\Rightarrow \mathsf{Th}(\mathcal{A}_0) = \mathsf{Th}(\mathcal{B}_0)$

 $\Rightarrow \mathsf{Th}(\mathcal{A}) = \mathsf{Th}(\mathcal{B}) \qquad \Box$

Lecture 15 - 8/9

Recall that \mathbf{R} is **complete**:

for any subsets $A, B \subseteq \mathbf{R}$ with A' < B'(i.e. a < b for any $a \in A, b \in B$) there is $\gamma \in \mathbf{R}$ with $A' \leq \{\gamma\} \leq B$.

 ${f Q}$ is *not* complete:

take
$$A = \{x \in \mathbf{Q} \mid x < \pi\}$$

 $B = \{x \in \mathbf{Q} \mid \pi < x\}$

14.9 Corollary $Th(\langle \mathbf{Q}; \langle \rangle) = Th(\langle \mathbf{R}; \langle \rangle)$

In particular, the completness of ${\bf R}$ is not a first-order property,

i.e. there is no $\Delta \subseteq Sent(\mathcal{L})$ such that for all \mathcal{L} -structures $\langle A; \langle \rangle$,

 $< A; <> \models \Delta$ iff < A; <> is complete.

Lecture 15 - 9/9