15. Normal Forms(a) Prenex Normal Form

A formula is in **prenex normal form (PNF)** if it has the form

$$Q_1 x_{i_1} Q_2 x_{i_2} \cdots Q_r x_{i_r} \psi,$$

where each Q_i is a quantifier (i.e. either \forall or \exists), and where ψ is a formula containing no quantifiers.

15.1 PNF-Theorem

Every $\phi \in Form(\mathcal{L})$ is logically equivalent to an \mathcal{L} -formula in **PNF**.

Proof: Induction on ϕ (working in the language with $\forall, \exists, \neg, \land$):

 ϕ atomic: OK

Lecture 16 - 1/6

$$\phi = \neg \psi,$$

say $\phi \leftrightarrow \neg Q_1 x_{i_1} Q_2 x_{i_2} \cdots Q_r x_{i_r} \chi$

Then $\phi \leftrightarrow Q_1^- x_{i_1} Q_2^- x_{i_2} \cdots Q_r^- x_{i_r} \neg \chi$, where $Q^- = \exists$ if $Q = \forall$, and $Q^- = \forall$ if $Q = \exists$

 $\phi = (\chi \land \rho)$ with χ, ρ in PNF Note that $\vdash (\forall x_j \psi[x_j/x_i] \leftrightarrow \forall x_i \psi)$, provided x_j does not occur in ψ (Ex. 12.5)

So w.l.o.g. the variables quantified over in χ do not occur in ρ and vice versa.

But then, e.g. $(\forall x \alpha \land \exists y \beta) \leftrightarrow \forall x \exists y (\alpha \land \beta)$ etc.

Lecture 16 - 2/6

(b) Skolem Normal Form

Recall: In the proof of CT, we introduced witnessing new constants for existential formulas such that

 $\exists x \phi(x)$ is satisfiable iff $\phi(c)$ is satisfiable.

This way an $\exists x$ in front of a formula could be removed at the expense of a new constant.

Now we remove existential quantifiers 'inside' a formula at the expense of extra function symbols:

15.2 Observation:

Let $\phi = \phi(x, y)$ be an \mathcal{L} -formula with $x, y \in Free(\phi)$. Let f be a new unary function symbol (not in \mathcal{L}).

Lecture 16 - 3/6

Then $\forall x \exists y \phi(x, y)$ is satisfiable iff $\forall x \phi(x, f(x))$ is satisfiable. (f is called a **Skolem function** for ϕ .)

Proof: '⇐': clear

' \Rightarrow ': Let \mathcal{A} be an \mathcal{L} -structure with $\mathcal{A} \models \forall x \exists y \phi(x, y)$

 \Rightarrow for every $a \in A$ there is some $b \in A$ with $\phi(a,b)$

Interpret f by a function assigning to each $a \in A$ one such b (this uses the Axiom of Choice!).

Example: $\mathbf{R} \models \forall x \exists y (x \doteq y^2 \lor x \doteq -y^2) - here$ $f(x) = \sqrt{|x|}$ will do.

Lecture 16 - 4/6

15.3 Theorem

For every \mathcal{L} -formula ϕ there is a formula ϕ^* (with new constant and function symbols) having only universal quantifiers in its PNF such that

 ϕ is satisfiable iff ϕ^* is.

More precisely, any \mathcal{L} -structure \mathcal{A} can be made into a structure \mathcal{A}^* interpreting the new constant and function symbols such that

 $\mathcal{A} \models \phi \text{ iff } \mathcal{A}^* \models \phi^*.$

Lecture 16 - 5/6

Lecture 16 - 6/6