MT 18

Problem Sheet $\ddagger 2$

(1) Prove that for any $\phi, \phi_i, \psi, \chi \in \operatorname{Form}(\mathcal{L})$ and any $\Gamma \subseteq \operatorname{Form}(\mathcal{L})$ (i) $((\phi \to \psi) \to ((\phi \to (\psi \to \chi)) \to (\phi \to \chi)))$ is a tautology (ii) $\Gamma \cup \{\psi\} \models \phi$ if and only if $\Gamma \models (\psi \to \phi)$ (iii) $\neg \bigwedge_{i=1}^{n} \phi_i$ is logically equivalent to $\bigvee_{i=1}^{n} \neg \phi_i$. (iv) $(\phi \lor \psi)$ is logically equivalent to $((\phi \to \psi) \to \psi)$.

(2) Let ϕ be the formula $((p_0 \to p_1) \land (p_1 \to p_2))$. Find a formula in dnf logically equivalent to ϕ which is a disjunct of just three conjunctive clauses.

(3) (i) Prove that every formula is logically equivalent to one in conjunctive normal form.

(ii) Let v_0 be the valuation that assigns the value T to every propositional variable. Prove that a formula ϕ is logically equivalent to one built up from propositional variables using just the connectives \wedge and \rightarrow if and only if $\tilde{v}_0(\phi) = T$.

(4) (i) Find the truth tables for all binary connectives \star having the property that { \star } is adequate. Justify your answer.

(ii) Show that there is no adequate unary connective.

(5) Prove that for any formulas α, β of \mathcal{L}_0 , the following formulas are theorems of the system L_0 . You may use the deduction theorem and, that for any α, β ,

if
$$\vdash (\alpha \to \beta)$$
 and $\vdash (\neg \alpha \to \beta)$ then $\vdash \beta$.

(i) $(\neg \alpha \rightarrow (\alpha \rightarrow \beta))$ (ii) $(\neg \neg \alpha \rightarrow \alpha)$ (iii) $(\alpha \rightarrow \neg \neg \alpha)$ (iv) $((\neg \alpha \rightarrow \alpha) \rightarrow \alpha)$