6. A deductive system for propositional calculus - We have indtroduced 'logical consequence': $\Gamma \models \phi$ whenever (each formula of) Γ is true so is ϕ - But we don't know yet how to give an actual **proof** of ϕ from the **hypotheses** Γ . - A **proof** should be a finite sequence $\phi_1, \phi_2, \dots, \phi_n$ of statements such that - either $\phi_i \in \Gamma$ - or ϕ_i is some **axiom** (which should *clearly* be true) - or ϕ_i should follow from previous ϕ_j 's by some **rule of inference** - AND $\phi = \phi_n$ #### 6.1 Definition Let $\mathcal{L}_0 := \mathcal{L}[\{\neg, \rightarrow\}]$ (which is an adequate language). Then the **system** L_0 consists of the following axioms and rules: ### **Axioms** An **axiom** of L_0 is any formula of the following form $(\alpha, \beta, \gamma \in \text{Form}(\mathcal{L}_0))$: **A1** $$(\alpha \rightarrow (\beta \rightarrow \alpha))$$ **A2** $$((\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)))$$ **A3** $$((\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta))$$ #### Rules of inference Only one: modus ponens (for any $\alpha, \beta \in \text{Form}(\mathcal{L}_0)$) **MP** From α and $(\alpha \to \beta)$ infer β . Lecture 5 - 2/8 #### 6.2 Definition For any $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ we say that α is **de-ducible** (or **provable**) from the hypotheses Γ if there is a finite sequence $\alpha_1, \ldots, \alpha_m \in \text{Form}(\mathcal{L}_0)$ such that for each $i = 1, \ldots, m$ either - (a) α_i is an axiom, or - (b) $\alpha_i \in \Gamma$, or - (c) there are j < k < i such that α_i follows from α_i, α_k by MP, i.e. $$\alpha_j = (\alpha_k \to \alpha_i)$$ or $\alpha_k = (\alpha_j \to \alpha_i)$ AND (d) $$\alpha_m = \alpha$$. The sequence $\alpha_1, \ldots, \alpha_m$ is then called a **proof** or **deduction** or **derivation** of α from Γ . Write $\Gamma \vdash \alpha$. If $\Gamma = \emptyset$ write $\vdash \alpha$ and say that α is a **theorem** (of the system L_0). Lecture 5 - 3/8 ## **6.3 Example** For any $\phi \in \text{Form}(\mathcal{L}_0)$ $$(\phi \rightarrow \phi)$$ is a theorem of L_0 . Proof: $$\alpha_{1} (\phi \rightarrow (\phi \rightarrow \phi))$$ $$[A1 \text{ with } \alpha = \beta = \phi]$$ $$\alpha_{2} (\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi))$$ $$[A1 \text{ with } \alpha = \phi, \beta = (\phi \rightarrow \phi)]$$ $$\alpha_{3} ((\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi)))$$ $$[A2 \text{ with } \alpha = \phi, \beta = (\phi \rightarrow \phi), \gamma = \phi]$$ $$\alpha_{4} ((\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi))$$ $$[MP \alpha_{2}, \alpha_{3}]$$ $$\alpha_{5} (\phi \rightarrow \phi)$$ $$[MP \alpha_{1}, \alpha_{4}]$$ Thus, $\alpha_1, \alpha_2, \ldots, \alpha_5$ is a deduction of $(\phi \to \phi)$ in L_0 . Lecture 5 - 4/8 ## 6.4 Example For any $\phi, \psi \in \text{Form}(\mathcal{L}_0)$: $$\{\phi, \neg \phi\} \vdash \psi$$ Proof: $$\alpha_{1} \left(\neg \phi \rightarrow (\neg \psi \rightarrow \neg \phi) \right)$$ $$[A1 \text{ with } \alpha = \neg \phi, \beta = \neg \psi]$$ $$\alpha_{2} \neg \phi \ [\in \Gamma]$$ $$\alpha_{3} \left(\neg \psi \rightarrow \neg \phi \right) \ [\text{MP } \alpha_{1}, \alpha_{2}]$$ $$\alpha_{4} \left((\neg \psi \rightarrow \neg \phi) \rightarrow (\phi \rightarrow \psi) \right)$$ $$[A3 \text{ with } \alpha = \phi, \beta = \psi]$$ $$\alpha_{5} \left(\phi \rightarrow \psi \right) \ [\text{MP } \alpha_{3}, \alpha_{4}]$$ $$\alpha_{6} \phi \ [\in \Gamma]$$ $$\alpha_{7} \psi \ [\text{MP } \alpha_{5}, \alpha_{6}]$$ ## 6.5 The Soundness Theorem for L_0 L_0 is **sound**, i.e. for any $\Gamma \subseteq Form(\mathcal{L}_0)$ and for any $\alpha \in Form(\mathcal{L}_0)$: if $$\Gamma \vdash \alpha$$ then $\Gamma \models \alpha$. In particular, any theorem of L_0 is a tautology. #### Proof: Assume $\Gamma \vdash \alpha$ and let $\alpha_1, \alpha_2, \dots, \alpha_m = \alpha$ be a deduction of α in L_0 . Let v be any valuation such that $\tilde{v}(\phi) = T$ for all $\phi \in \Gamma$. We have to show that $\tilde{v}(\alpha) = T$. We show by induction on $i \leq m$ that $$\widetilde{v}(\alpha_1) = \ldots = \widetilde{v}(\alpha_i) = T \quad (\star)$$ Lecture 5 - 6/8 #### i = 1 either α_1 is an axiom, so $\tilde{v}(\alpha_1) = T$ or $\alpha_1 \in \Gamma$, so, by hypothesis, $\tilde{v}(\alpha_1) = T$. ## **Induction step** Suppose (\star) is true for some i < m. Consider α_{i+1} . Either α_{i+1} is an axiom or $\alpha_{i+1} \in \Gamma$, so $\tilde{v}(\alpha_{i+1}) = T$ as above, or else there are $j \neq k < i + 1$ such that $\alpha_j = (\alpha_k \rightarrow \alpha_{i+1})$. By induction hypothesis $$\widetilde{v}(\alpha_k) = \widetilde{v}(\alpha_j) = \widetilde{v}((\alpha_k \to \alpha_{i+1})) = T.$$ But then, by $\operatorname{tt} \to$, $\widetilde{v}(\alpha_{i+1}) = T$ (since $T \to F$ is F). Lecture 5 - 7/8 For the proof of the converse ## **Completeness Theorem** If $$\Gamma \models \alpha$$ then $\Gamma \vdash \alpha$. we first prove ## 6.6 The Deduction Theorem for L_0 For any $\Gamma \subseteq Form(\mathcal{L}_0)$ and for any $\alpha, \beta \in Form(\mathcal{L}_0)$: if $$\Gamma \cup \{\alpha\} \vdash \beta$$ then $\Gamma \vdash (\alpha \rightarrow \beta)$.