6. A deductive system for propositional calculus

- We have indtroduced 'logical consequence': $\Gamma \models \phi$ whenever (each formula of) Γ is true so is ϕ
- But we don't know yet how to give an actual **proof** of ϕ from the **hypotheses** Γ .
- A **proof** should be a finite sequence $\phi_1, \phi_2, \dots, \phi_n$ of statements such that
 - either $\phi_i \in \Gamma$
 - or ϕ_i is some **axiom** (which should *clearly* be true)
 - or ϕ_i should follow from previous ϕ_j 's by some **rule of inference**
 - AND $\phi = \phi_n$

6.1 Definition

Let $\mathcal{L}_0 := \mathcal{L}[\{\neg, \rightarrow\}]$ (which is an adequate language). Then the **system** L_0 consists of the following axioms and rules:

Axioms

An **axiom** of L_0 is any formula of the following form $(\alpha, \beta, \gamma \in \text{Form}(\mathcal{L}_0))$:

A1
$$(\alpha \rightarrow (\beta \rightarrow \alpha))$$

A2
$$((\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)))$$

A3
$$((\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta))$$

Rules of inference

Only one: modus ponens

(for any $\alpha, \beta \in \text{Form}(\mathcal{L}_0)$)

MP From α and $(\alpha \to \beta)$ infer β .

Lecture 5 - 2/8

6.2 Definition

For any $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$ we say that α is **de-ducible** (or **provable**) from the hypotheses Γ if there is a finite sequence $\alpha_1, \ldots, \alpha_m \in \text{Form}(\mathcal{L}_0)$ such that for each $i = 1, \ldots, m$ either

- (a) α_i is an axiom, or
- (b) $\alpha_i \in \Gamma$, or
- (c) there are j < k < i such that α_i follows from α_i, α_k by MP,

i.e.
$$\alpha_j = (\alpha_k \to \alpha_i)$$
 or $\alpha_k = (\alpha_j \to \alpha_i)$

AND

(d)
$$\alpha_m = \alpha$$
.

The sequence $\alpha_1, \ldots, \alpha_m$ is then called a **proof** or **deduction** or **derivation** of α from Γ .

Write $\Gamma \vdash \alpha$.

If $\Gamma = \emptyset$ write $\vdash \alpha$ and say that α is a **theorem** (of the system L_0).

Lecture 5 - 3/8

6.3 Example For any $\phi \in \text{Form}(\mathcal{L}_0)$

$$(\phi \rightarrow \phi)$$

is a theorem of L_0 .

Proof:

$$\alpha_{1} (\phi \rightarrow (\phi \rightarrow \phi))$$

$$[A1 \text{ with } \alpha = \beta = \phi]$$

$$\alpha_{2} (\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi))$$

$$[A1 \text{ with } \alpha = \phi, \beta = (\phi \rightarrow \phi)]$$

$$\alpha_{3} ((\phi \rightarrow ((\phi \rightarrow \phi) \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi)))$$

$$[A2 \text{ with } \alpha = \phi, \beta = (\phi \rightarrow \phi), \gamma = \phi]$$

$$\alpha_{4} ((\phi \rightarrow (\phi \rightarrow \phi)) \rightarrow (\phi \rightarrow \phi))$$

$$[MP \alpha_{2}, \alpha_{3}]$$

$$\alpha_{5} (\phi \rightarrow \phi)$$

$$[MP \alpha_{1}, \alpha_{4}]$$

Thus, $\alpha_1, \alpha_2, \ldots, \alpha_5$ is a deduction of $(\phi \to \phi)$ in L_0 .

Lecture 5 - 4/8

6.4 Example

For any $\phi, \psi \in \text{Form}(\mathcal{L}_0)$:

$$\{\phi, \neg \phi\} \vdash \psi$$

Proof:

$$\alpha_{1} \left(\neg \phi \rightarrow (\neg \psi \rightarrow \neg \phi) \right)$$

$$[A1 \text{ with } \alpha = \neg \phi, \beta = \neg \psi]$$

$$\alpha_{2} \neg \phi \ [\in \Gamma]$$

$$\alpha_{3} \left(\neg \psi \rightarrow \neg \phi \right) \ [\text{MP } \alpha_{1}, \alpha_{2}]$$

$$\alpha_{4} \left((\neg \psi \rightarrow \neg \phi) \rightarrow (\phi \rightarrow \psi) \right)$$

$$[A3 \text{ with } \alpha = \phi, \beta = \psi]$$

$$\alpha_{5} \left(\phi \rightarrow \psi \right) \ [\text{MP } \alpha_{3}, \alpha_{4}]$$

$$\alpha_{6} \phi \ [\in \Gamma]$$

$$\alpha_{7} \psi \ [\text{MP } \alpha_{5}, \alpha_{6}]$$

6.5 The Soundness Theorem for L_0

 L_0 is **sound**, i.e. for any $\Gamma \subseteq Form(\mathcal{L}_0)$ and for any $\alpha \in Form(\mathcal{L}_0)$:

if
$$\Gamma \vdash \alpha$$
 then $\Gamma \models \alpha$.

In particular, any theorem of L_0 is a tautology.

Proof:

Assume $\Gamma \vdash \alpha$ and let $\alpha_1, \alpha_2, \dots, \alpha_m = \alpha$ be a deduction of α in L_0 .

Let v be any valuation such that $\tilde{v}(\phi) = T$ for all $\phi \in \Gamma$.

We have to show that $\tilde{v}(\alpha) = T$.

We show by induction on $i \leq m$ that

$$\widetilde{v}(\alpha_1) = \ldots = \widetilde{v}(\alpha_i) = T \quad (\star)$$

Lecture 5 - 6/8

i = 1

either α_1 is an axiom, so $\tilde{v}(\alpha_1) = T$ or $\alpha_1 \in \Gamma$, so, by hypothesis, $\tilde{v}(\alpha_1) = T$.

Induction step

Suppose (\star) is true for some i < m. Consider α_{i+1} .

Either α_{i+1} is an axiom or $\alpha_{i+1} \in \Gamma$, so $\tilde{v}(\alpha_{i+1}) = T$ as above,

or else there are $j \neq k < i + 1$ such that $\alpha_j = (\alpha_k \rightarrow \alpha_{i+1})$.

By induction hypothesis

$$\widetilde{v}(\alpha_k) = \widetilde{v}(\alpha_j) = \widetilde{v}((\alpha_k \to \alpha_{i+1})) = T.$$

But then, by $\operatorname{tt} \to$, $\widetilde{v}(\alpha_{i+1}) = T$ (since $T \to F$ is F).

Lecture 5 - 7/8

For the proof of the converse

Completeness Theorem

If
$$\Gamma \models \alpha$$
 then $\Gamma \vdash \alpha$.

we first prove

6.6 The Deduction Theorem for L_0

For any $\Gamma \subseteq Form(\mathcal{L}_0)$ and for any $\alpha, \beta \in Form(\mathcal{L}_0)$:

if
$$\Gamma \cup \{\alpha\} \vdash \beta$$
 then $\Gamma \vdash (\alpha \rightarrow \beta)$.