6.6 The Deduction Theorem for Lg

For any I C Form(Ly) and
for any a, 8 € Form(Lg):

ifTu{a}lkpg thenl + (a — B).
Proof:
We prove by induction on m:
if a1,...,am IS derivable in Lg
from the hypotheses I' U {a}
then for all 1 <m
(o — «y) is derivable in L
from the hypotheses [ .

m=1

Either aq is an Axiom or a1 € ' U {a}.
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Case 1: «q is an Axiom

Then
1 oy [Axiom]
2 (a1 = (a— a1)) [Instance of Al ]
3 (a—a1) [MP 1,2]

is a derivation of (o — «a7) from hypotheses 0.

Note that if A F 1 and A C A/, then obviously
A,

Thus (o — «q) is derivable in Ly from hypothe-
ses .

Case 2: a1 €elNJ{a}
If 1 € I then same proof as above works (with
justification on line 1 changed to ‘e ).

If &1 = «, then, by Example 6.3, + (o — a7),
hence I - (a0 — aq).
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Induction Step
IH: Suppose result is true for derivations of
length < m.

Let ay,...,q,,41 be a derivation in Lg from
ruU{a}.

Then either o, 1 is an axiom
of a,p41 € MU {a} — in these cases proceed as
above, even without IH.

Or a,,41 is obtained by MP from some earlier
g, g, i.e. there are 53,k < m + 1 such that

Q5 = (ak — am—|—1)-

By IH, we have

MF (a— ag)
and [k (a— aj),
so Ik (a— (o = amy1))
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Let 51,...,08r be a derivation in Lg of
(o = ap) = Br from I

and let ~q1,...,7vs be a derivation in Lg of
(@ = (o, = oypy1)) = vs from T,

Then
1 51
r-1 57“—1
r (o — ayp)
r<+1 Y1
sl Y51

r+s (o = (o = 1))
r+s+1 ((a = (o = apt1)) =
(e = a) = (= apmy1))) [A2]
r+s+2 ((aa — ap) — (o — am_|_1)) [MP r+s, r4s+1]
r+s+3 (o — ap41) [MP r, r4s42]

is a derivation of (o = a;,41) in Lo from . O
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6.7 Remarks

e Only needed instances of A1, A2 and the
rule MP.
So any system that includes Al, A2 and
MP satisfies the Deduction Theorem.

e Proof gives a precise algorithm for con-
verting any derivation showing 'u{a} g
into one showing I + (a — B3).

e Converse is easy:

If M- (a— B) then TU {a} F B.
Proof:

; derivation from [
r o—p

r+1  « [e U {a}]

r+2 I5; [MP r, r+1]

[
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6.8 Example of use of DT

Iffr'c(a—B)and M= (B8 — ~)
then ' (a — 7).

Proof:

By the deduction theorem (‘DT’), it suffices
to show that MU {a} F~.

proof from [

r (a—p)
r-+1 :
: : proof from [
r+s (B =)
r4s4+1 Q [e T U{a}]
r4-s42 I} [MP r, r+s+1]
r+s+3 Y [MP r4s, r4s+2]

O

From now on we may treat DT as an additional
inference rule in Lg.
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6.9 Definition

The sequent calculus SQ is the system where
a proof (or derivation) of ¢ € Form(Lgy) from
[ C Form(Lg) is a finite sequence of sequents,
i.e. of expressions of the form

Atgo v
with A C Form(Lp) and I Fgg ¢ as last se-
quent.

Sequents may be formed according to the fol-
lowing rules

Ass: if ¢y € A then infer Atgg ¢

MP: from A l_SQ Y and A’ |_SQ (w — X)
infer A U A/ l_SQX

DT: from AU {@b} l_SQ X infer A l_SQ (@D — X)
PC: from AuU{—} |_SQ x and
AU {1} Fgg —x infer AUA Fgg ¢

‘PC’ stands for proof by contradiction’
Note: no axioms.
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6.10 Example of a proof in SQ

1 —p l_SQ - [Ass]

2 (28— —a)Fgg (=8 — —a)  [Ass]

3 (78— —a),~BFgg ~a [MP 1,2]
4 «,—f |_SQ o [Ass]

5 (=8 = —a),« '_SQ I} [PC 3,4]
6 (=8 — ) l_SQ (a — B) [DT 5]
7 Fsqg (=8 — —a) = (a— B)) [DT 6]

So l_SQ A3.

We'd better write ‘T 1, ¢" for ‘' = ¢ in Lo’

6.11 Theorem
Lo and SQ are equivalent: for all I, ¢

UbEpg @ IfFT g @.

Proof: Exercise
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