7. Consistency, Completeness and Compactness

7.1 Definition

Let $\Gamma \subseteq \text{Form}(\mathcal{L}_0)$. Γ is said to be **consistent** (or \mathcal{L}_0 -consistent) if for *no* formula α both $\Gamma \vdash \alpha$ and $\Gamma \vdash \neg \alpha$.

Otherwise Γ is **inconsistent**.

E.g. \emptyset is consistent: by soundness theorem, α and $\neg \alpha$ are never simultaneously true.

7.2. Lemma

 $\Gamma \cup \{\neg \phi\}$ is inconsistent iff $\Gamma \vdash \phi$. (In part., if $\Gamma \not\vdash \phi$ then $\Gamma \cup \{\neg \phi\}$ is consistent). Proof: ' \Leftarrow ':

$$\Gamma \vdash \phi \Rightarrow \begin{array}{c} \Gamma \cup \{\neg \phi\} \vdash \phi \\ \Gamma \cup \{\neg \phi\} \vdash \neg \phi \end{array} \right\} \Rightarrow \begin{array}{c} \Gamma \cup \{\neg \phi\} \\ \text{is inconsistent} \\ \\ \Rightarrow \text{':} \\ \Gamma \cup \{\neg \phi\} \vdash \alpha \\ \Gamma \cup \{\neg \phi\} \vdash \neg \alpha \end{array} \right\} \Rightarrow_{6.11} \begin{array}{c} \Gamma \cup \{\neg \phi\} \vdash_{SQ} \alpha \\ \Gamma \cup \{\neg \phi\} \vdash_{SQ} \neg \alpha \end{array} \right\} \\ \Rightarrow_{PC} \begin{array}{c} \Gamma \vdash_{SQ} \phi \end{array} \Rightarrow_{6.11} \begin{array}{c} \Gamma \cup \{\neg \phi\} \vdash_{SQ} \neg \alpha \end{array} \right\}$$

Lecture 7 - 1/9

7.3 Lemma

Suppose Γ is consistent and $\Gamma \vdash \phi$. Then $\Gamma \cup \{\phi\}$ is consistent.

Proof: Suppose not, i.e. for some α

$$\Gamma \cup \{\phi\} \vdash \alpha \\
\Gamma \cup \{\phi\} \vdash \neg \alpha$$

$$\Rightarrow \neg \Gamma \vdash (\phi \to \alpha) \\
\Gamma \vdash (\phi \to \neg \alpha)$$

$$\Rightarrow \Gamma \vdash \alpha \\
\Gamma \vdash \neg \alpha$$

$$\Rightarrow \Gamma \vdash \alpha \\
\Gamma \vdash \neg \alpha$$

7.4 Definition

 $\Gamma \subseteq \mathsf{Form}(\mathcal{L}_0)$ is **maximal consistent** if

- (i) Γ is consistent, and
- (ii) for *every* ϕ , either $\Gamma \vdash \phi$ or $\Gamma \vdash \neg \phi$.

Note: This is equivalent to saying that for every ϕ , if $\Gamma \cup \{\phi\}$ is consistent then $\Gamma \vdash \phi$.

Proof: Exercise

Lecture 7 - 2/9

7.5 Lemma

Suppose Γ is maximal consistent.

Then for every $\psi, \chi \in Form(\mathcal{L}_0)$

- (a) $\Gamma \vdash \neg \psi$ iff $\Gamma \not\vdash \psi$
- (b) $\Gamma \vdash (\psi \rightarrow \chi)$ iff either $\Gamma \vdash \neg \psi$ or $\Gamma \vdash \chi$.

Proof:

(a) '⇒': by consistency

'⇐': by maximality

- - ' \Leftarrow ': Suppose $\Gamma \vdash \neg \psi$ $\Gamma \vdash (\neg \psi \rightarrow (\psi \rightarrow \chi))$ - Problems \sharp 2, (5)(i) $\Rightarrow_{\mathsf{MP}} \Gamma \vdash (\psi \rightarrow \chi)$

Suppose
$$\Gamma \vdash \chi$$

 $\Gamma \vdash (\chi \to (\psi \to \chi))$ - Axiom A1
 $\Rightarrow_{\mathsf{MP}} \Gamma \vdash (\psi \to \chi)$

Lecture 7 - 3/9

7.6 Theorem

Suppose Γ is maximal consistent. Then Γ is satisfiable.

Proof:

For each i, $\Gamma \vdash p_i$ or $\Gamma \vdash \neg p_i$ (by maximality), but not both (by consistency)

Define a valuation v by

$$v(p_i) = \begin{cases} T & \text{if } \Gamma \vdash p_i \\ F & \text{if } \Gamma \vdash \neg p_i \end{cases}$$

Claim: for all $\phi \in \text{Form}(\mathcal{L}_0)$:

$$\widetilde{v}(\phi) = T \text{ iff } \Gamma \vdash \phi$$

Proof by induction on the length n of ϕ :

n=1:

Then $\phi = p_i$ for some i, and so, by def. of v,

$$\widetilde{v}(p_i) = T \text{ iff } \Gamma \vdash p_i.$$

Lecture 7 - 4/9

IH: Claim true for all $i \leq n$.

Now assume length $(\phi) = n+1$

Case 1:
$$\phi = \neg \psi$$
 (\Rightarrow length $(\psi) = n$)
$$\widetilde{v}(\phi) = T \quad \text{iff} \quad \widetilde{v}(\psi) = F \quad \text{tt} \quad \neg$$

$$\quad \text{iff} \quad \Gamma \not\vdash \psi \qquad \text{IH}$$

$$\quad \text{iff} \quad \Gamma \vdash \neg \psi \qquad 7.5 \text{(a)}$$

$$\quad \text{iff} \quad \Gamma \vdash \phi$$

Case 2:
$$\phi = (\psi \rightarrow \chi)$$

(\Rightarrow length (ψ) , length $(\chi) \leq n$)

$$\begin{split} \widetilde{v}(\phi) &= T \quad \text{iff} \quad \widetilde{v}(\psi) = F \text{ or } \widetilde{v}(\chi) = T \quad \text{tt} \quad \rightarrow \\ & \quad \text{iff} \quad \Gamma \not\vdash \psi \text{ or } \Gamma \vdash \chi \qquad \qquad \text{IH} \\ & \quad \text{iff} \quad \Gamma \vdash \neg \psi \text{ or } \Gamma \vdash \chi \qquad \qquad 7.5 \text{(a)} \\ & \quad \text{iff} \quad \Gamma \vdash (\psi \rightarrow \chi) \qquad \qquad 7.5 \text{(b)} \\ & \quad \text{iff} \quad \Gamma \vdash \phi \end{split}$$

So $\tilde{v}(\phi) = T$ for all $\phi \in \Gamma$, i.e. v satisfies Γ .

Lecture 7 - 5/9

7.7 Theorem

Suppose Γ is consistent. Then there is a maximal consistent Γ' such that $\Gamma \subseteq \Gamma'$.

Proof:

Form (\mathcal{L}_0) is countable, say

Form
$$(\mathcal{L}_0) = \{\phi_1, \phi_2, \phi_3, \ldots\}.$$

Construct consistent sets

$$\Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_2 \subseteq \dots$$

as follows: $\Gamma_0 := \Gamma$.

Having constructed Γ_n consistently, let

$$\Gamma_{n+1} := \left\{ \begin{array}{ll} \Gamma_n \cup \{\phi_{n+1}\} & \text{if } \Gamma_n \vdash \phi_{n+1} \\ \Gamma_n \cup \{\neg \phi_{n+1}\} & \text{if } \Gamma_n \not\vdash \phi_{n+1} \end{array} \right.$$

Then Γ_{n+1} is consistent by 7.3 and 7.2.

Lecture 7 - 6/9

Now let $\Gamma' := \bigcup_{n=0}^{\infty} \Gamma_n$.

Then Γ' is consistent:

Any proof of $\Gamma' \vdash \alpha$ and $\Gamma' \vdash \neg \alpha$ would use only finitely many formulas from Γ' , so for some n, $\Gamma_n \vdash \alpha$ and $\Gamma_n \vdash \neg \alpha$ — contradicting the consistency of Γ_n .

Finally, Γ' is maximal (even in a stronger sense): for all n, either $\phi_n \in \Gamma'$ or $\neg \phi_n \in \Gamma'$.

Note that the proof does not make use of Zorn's Lemma.

7.8 Corollary

If Γ is consistent then Γ is satisfiable.

Proof: 7.6 + 7.7

Lecture 7 - 7/9

7.9 The Completeness Theorem

If $\Gamma \models \phi$ then $\Gamma \vdash \phi$.

Proof:

Suppose $\Gamma \models \phi$, but $\Gamma \not\vdash \phi$.

- \Rightarrow by 7.2, $\Gamma \cup \{\neg \phi\}$ is consistent
- \Rightarrow by 7.8, there is some valuation v such that $\tilde{v}(\psi) = T$ for all $\psi \in \Gamma \cup \{\neg \phi\}$
- $\Rightarrow \widetilde{v}(\psi) = T \text{ for all } \psi \in \Gamma, \text{ but } \widetilde{v}(\phi) = F$
- $\Rightarrow \Gamma \not\models \phi$: contradiction. \square

7.10 Corollary

(7.9 Completeness + 6.5 Soundness)

$$\Gamma \models \phi \text{ iff } \Gamma \vdash \phi$$

7.11 The Compactness Theorem for L_0

 $\Gamma \subseteq Form(\mathcal{L}_0)$ is satisfiable iff every finite subset of Γ is satisfiable.

Proof: ' \Rightarrow ': obvious – if $\tilde{v}(\psi) = T$ for all $\psi \in \Gamma$ then $\tilde{v}(\psi) = T$ for all $\psi \in \Gamma' \subseteq \Gamma$.

Suppose every finite $\Gamma' \subseteq \Gamma$ is satisfiable, but Γ is not.

Then, by 7.8, Γ is inconsistent, i.e. $\Gamma \vdash \alpha$ and $\Gamma \vdash \neg \alpha$ for some α .

But then, for some finite $\Gamma' \subseteq \Gamma$:

$$\Gamma' \vdash \alpha$$
 and $\Gamma' \vdash \neg \alpha$

- \Rightarrow $\Gamma' \models \alpha$ and $\Gamma' \models \neg \alpha$ (by soundness)
- \Rightarrow Γ' not satisfiable: contradiction.

Lecture 7 - 9/9