PART II: PREDICATE CALCULUS

so far:

- *logic of the connectives* \neg , \land , \lor , \rightarrow , \leftrightarrow , ... (as used in mathematics)
- smallest unit: propositions
- deductive calculus: checking logical validity and computing truth tables
- --> sound, complete, compact

now:

- look *more deeply into* the structure of propositions used in mathematics
- analyse grammatically correct use of functions, relations, constants, variables and quantifiers
- define logical validity in this refined language
- discover axioms and rules of inference (beyond those of propositional calculus) used in mathematical arguments
- prove: --> sound, complete, compact

Lecture 8 - 1/7

8. The language of (first-order) predicate calculus

The language \mathcal{L}^{FOPC} consists of the following symbols:

Logical symbols

```
connectives: \rightarrow,\neg quantifier: \forall ('for all') variables: x_0, x_1, x_2, \ldots 3 punctuation marks: ( ) , equality symbol: \dot{=}
```

non-logical symbols:

```
predicate (or relation) symbols: P_n^{(k)} for n \ge 0, k \ge 1 (P_n^{(k)} is a k-ary predicate symbol) function symbols: f_n^{(k)} for n \ge 0, k \ge 1 (f_n^{(k)} is a k-ary function symbol) constant symbols: c_n for n \ge 0
```

Lecture 8 - 2/7

8.1 Definition

- (a) The **terms** of \mathcal{L}^{FOPC} are defined recursively as follows:
- (i) Every variable is a term.
- (ii) Every constant symbol is a term.
- (iii) For each $n \geq 0, k \geq 1$, if t_1, \ldots, t_k are terms, so is the string

$$f_n^{(k)}(t_1,\ldots,t_k)$$

(b) An **atomic formula** of \mathcal{L}^{FOPC} is any string of the form

$$P_n^{(k)}(t_1,\ldots,t_k)$$
 or $t_1 \doteq t_2$

with $n \ge 0, k \ge 1$, and where all t_i are terms.

- (c) The **formulas** of \mathcal{L}^{FOPC} are defined recursively as follows:
- (i) Any atomic formula is a formula
- (ii) If ϕ, ψ are formulas, then so are $\neg \phi$ and $(\phi \rightarrow \psi)$
- (iii) If ϕ is a formula, then for any variable x_i so is $\forall x_i \phi$

Lecture 8 - 3/7

8.2 Examples

 c_0 ; c_3 ; x_5 ; $f_3^{(1)}(c_2)$; $f_4^{(2)}(x_1, f_3^{(1)}(c_2))$ are all terms

$$f_2^{(3)}(x_1,x_2)$$
 is *not* a term (wrong arity)

$$P_0^{(3)}(x_4,c_0,f_3^{(2)}(c_1,x_2))$$
 and $f_1^{(2)}(c_5,c_6) \doteq x_{11}$ are atomic formulas

 $f_3^{(1)}(c_2)$ is a term, but no formula

$$\forall x_1 f_2^{(2)}(x_1, c_7) \doteq x_2$$
 is a formula, not atomic

$$\forall x_2 P_0^{(1)}(x_3)$$
 is a formula

8.3 Remark

We have **unique readability** for terms, for atomic formulas, and for formulas.

Lecture 8 - 4/7

8.4 Interpretations and logical validity for \mathcal{L}^{FOPC} (Informal discussion)

(A) Consider the formula

$$\phi_1: \forall x_1 \forall x_2 (x_1 \doteq x_2 \to f_5^{(1)}(x_1) \doteq f_5^{(1)}(x_2))$$

Given that \doteq is to be interpreted as equality, \forall as 'for all', and the $f_n^{(k)}$ as actual functions (in k arguments), ϕ_1 should always be true. We shall write

$$\models \phi_1$$

and say ' ϕ_1 is **logically valid**'.

(B) Consider the formula

$$\phi_2: \forall x_1 \forall x_2 (f_7^{(2)}(x_1, x_2) \doteq f_7^{(2)}(x_2, x_1) \to x_1 \doteq x_2)$$

Then ϕ_2 may be false or true depending on the situation:

Lecture 8 - 5/7

- If we interpret $f_7^{(2)}$ as + on \mathbb{N} , ϕ_2 becomes false, e.g. 1+2=2+1, but $1 \neq 2$. So in this interpretation, ϕ_2 is false and $\neg \phi_2$ is true. Write

$$<\mathbf{N},+>\models \neg\phi_2$$

- If we interpret $f_7^{(2)}$ as - on ${\bf R}$, ϕ_2 becomes true: if $x_1-x_2=x_2-x_1$, then $2x_1=2x_2$, and hence $x_1=x_2$. So

$$<\mathbf{R},->\models\phi_2$$

8.5 Free and bound variables

(Informal discussion)

There is a further complication: Consider the formula

$$\phi_3: \forall x_0 P_0^{(2)}(x_1, x_0)$$

Under the interpretation < N, $\le>$ you cannot tell whether < N, $\le>$ $\models \phi_3$:

- if we put $x_1 = 0$ then yes
- if we put $x_1 = 2$ then no.

So it depends on the value we assign to x_1 (like in propositional calculus: truth value of $p_0 \wedge p_1$ depends on the valuation).

In ϕ_3 we can assign a value to x_1 because x_1 occurs **free** in ϕ_3 .

For x_0 , however, it makes no sense to assign a particular value; because x_0 is **bound** in ϕ_3 by the quantifier $\forall x_0$.

Lecture 8 - 7/7