Oxford, MT2017

B1.1 Logic

Jonathan Pila

Slides by **J. Koenigsmann** with some small additions; further reference see: **D. Goldrei**, "Propositional and Predicate Calculus: A Model of Argument", Springer.

Introduction

- 1. What is mathematical logic about?
 - provide a uniform, unambiguous **language** for mathematics
 - make precise what a **proof** is
 - explain and guarantee exactness, rigor and certainty in mathematics
 - establish the **foundations** of mathematics

B1 (Foundations) = B1.1 (Logic) + B1.2 (Set theory)

N.B.: Course does not teach you to think logically, but it explores what it *means* to think logically

Lecture 1 - 1/6

2. Historical motivation

• 19th cent.:

need for conceptual foundation in analysis: what is the correct notion of **infinity, infinitesimal, limit, ...**

- attempts to formalize mathematics:
 - Frege's Begriffsschrift
 - *Cantor*'s **naive** set theory:
 - a set is any collection of objects
- led to **Russell's paradox**: consider the set $R := \{S \text{ set } | S \notin S\}$

 $R \in R \Rightarrow R \notin R$ contradiction $R \notin R \Rightarrow R \in R$ contradiction

→ fundamental crisis in the foundations of mathematics

Lecture 1 - 2/6

3. Hilbert's Program

- **1.** find a uniform (formal) **language** for all mathematics
- 2. find a complete system ofinference rules/ deduction rules
- **3.** find a complete system of mathematical **axioms**
- prove that the system 1.+2.+3. is consistent, i.e. does not lead to contradictions
- * **complete:** every mathematical sentence can be proved or disproved using 2. and 3.
- * 1., 2. and 3. should be finitary/effective/computable/algorithmic so, e.g., in 3. you can't take as axioms the system of all true sentences in mathematics
 * idea: any piece of information is of finte length

Lecture 1 - 3/6

4. Solutions to Hilbert's program

Step 1. is possible in the framework of
ZF = Zermelo-Fraenkel set theory or
ZFC = ZF + Axiom of Choice
(this is an empirical fact)
~→ B1.2 Set Theory HT 2017

Step 3. is not possible (\rightsquigarrow C1.2): Gödel's 1st Incompleteness Theorem: there is no effective axiomatization of arithmetic

Step 4. is not possible (\rightsquigarrow C1.2): Gödel's 2nd Incompleteness Theorem, (but..)

Lecture 1 - 4/6

5. Decidability

Step 3. of Hilbert's program fails: there is no effective axiomatization for the entire body of mathematics

But: many important parts of mathematics are completely and effectively axiomatizable, they are **decidable**, i.e. there is an *algorithm* = *program* = *effective procedure* deciding whether a sentence is true or false \rightarrow allows proofs by computer

Example: Th(C) = the **1st-order theory** of C = all *algebraic* properties of C:

Axioms = field axioms + all non-constant polynomials have a zero + the characteristic is 0

Every algebraic property of ${\bf C}$ follows from these axioms.

Similarly for $Th(\mathbf{R})$. \rightsquigarrow C1.1 Model Theory

Lecture 1 - 5/6

6. Why *mathematical* logic?

- Language and deduction rules are tailored for *mathematical objects* and mathematical ways of reasoning
 N.B.: Logic tells you what a proof *is*, not how to *find* one
- 2. The method is mathematical: we will develop logic as a calculus with sentences and formulas ⇒ Logic is itself a mathematical discipline, not meta-mathematics or philosophy, no ontological questions like what is a number?
- Logic has *applications* towards other areas of mathematics, e.g. Algebra, Topology, but also towards theoretical computer science

Lecture 1 - 6/6