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4 Modes of convergence and renewal theory (Sheet4 for classes)

Questions 7 to 11 will not be marked. Please see MINERVA for hand in times. This sheet will
be covered in the final class.

1. Inspection paradox. Suppose that buses arrive at a bus stop as a Poisson process of
rate λ. Consider the duration Dt of the inter-arrival time containing t, i.e. Dt = At +Et,
where, at time t, Et is the time until the next bus arrives, and At is the time since the
last one has passed (and At = t if no bus arrived in [0, t]). What is the distribution of Et?
What is the distribution of At? Show that E(Dt) > 1/λ, so that the inter-arrival time we
see (“inspect”) has larger mean than a standard inter-arrival time.

2. Waiting time paradox. Consider the Gamma(a, λ) distribution with density

f(x) =
λa

Γ(a)
xa−1e−λx, x > 0 .

(a) Calculate and identify the associated size-biased distribution.

(b) Suppose that the counting process of buses at a particular bus stop can be modelled
by a renewal process X with stationary increments and Gamma(a, λ) inter-arrival
times. Calculate the average waiting time mstat of a customer arriving at time t.

(c) Also calculate the average waiting time mren of a customer arriving just after a bus
has passed. Deduce that

mstat > mren ⇐⇒ a < 1

This is a version of the waiting time paradox. What is paradoxical here?

3. Let X be an (undelayed) renewal process with finite mean inter-renewal times with den-
sity f . Let m(t) = E(Xt) be the associated renewal function. Recall that m′(t) =∑∞

k=1 f
∗(k)(t).

(a) Suppose that H: [0,∞)→ R is bounded on bounded intervals. Show that the function
r = H +H ∗m′ satisfies the renewal-type equation r = H + r ∗ f .

(b) (For the keen) Show that r = H +H ∗m′ is, in fact, the unique solution.

(c) Show that the distribution of the excess lifetime Et = TXt+1 − t satisfies

P(Et > y) = F (t+ y) +

∫ t

0
F (t+ y − x)m′(x)dx, where F (t) =

∫ ∞
t

f(s)ds.

(d) Let X be a renewal process with continuous inter-renewal times of finite mean µ.
Deduce, using the Key Renewal Theorem, that the limit of P(Et > y) as t→∞ is

1

µ

∫ ∞
y

F (z)dz.

4. Let X be a renewal process with 1-arithmetic (in particular integer-valued) inter-renewal
times Zj of finite mean µ.

(i) Show that En = TXn+1 − n is a discrete-time Markov chain.

(ii) Calculate its stationary distribution and deduce that

P(En = k)→ µ−1P(Z1 ≥ k) as n→∞.
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(iii) Show that µ−1P(Z1 ≥ k) is the probability function of a random variable U picked
uniformly from {1, . . . , S} conditionally given S, where S has the size-biased distri-
bution associated with the distribution of Z1.

5. A branch of an insurance company has at its disposal an initial capital of u > 0 at time
t = 0 and receives linear premium income, ct by time t ≥ 0, from which it has to meet
claims An, n ≥ 1, of independent exponential sizes with parameter µ, arriving at the times
Tn, n ≥ 1, of a Poisson process (Nt)t≥0 with rate λ. Denote the reserve at time t by Rt.

(a) Using Zi = Rεi −Rε(i−1), i ≥ 1, or otherwise, show that

Rεn
εn
→ c− λ

µ
almost surely as n→∞,

for any ε > 0 fixed, and hence that Rεn →∞ almost surely, if c > λ/µ.

(b) Denote by Yn, n ≥ 1, the inter-renewal times of the claims, and define T0 = 0,
Tn = Y1 + · · ·+ Yn. Define Sn = RTn and also consider RTn− = Sn +An. Show that

RTn
n
→ c

λ
− 1

µ
and

RTn−
n
→ c

λ
− 1

µ
almost surely as n→∞

(c) Using RTNt
≤ Rt ≤ RTNt+1−, deduce from (b) that

Rt
t
→ c− λ

µ
almost surely as t→∞.

6. Consider a stationary M/M/1 queue (Xt)t≥0 with independent exponential inter-arrival
times with rate λ and independent exponential service times with rate µ. Here, the initial
distribution is ξ with ξi = ρi(1 − ρ), where ρ = λ/µ < 1. Denote by T0 = 0 and
Tn+1 = inf{t > Tn : Xt 6= XTn} the jump times, by Mn = XTn the embedded jump chain.
Denote by A0 = 0, Am+1 = inf{t>Am:Xt−Xt− = 1}, m≥0, the successive arrival times.

(a) Show that P(A1 > Tk|X0 = m) =

(
µ

λ+ µ

)k
, m ≥ k.

(b) Show that P(A1 > Tk) =

(
λ

λ+ µ

)k
, k ≥ 0.

(c) Show that P(Mk = i|A1 > Tk) = ρi(1− ρ), i ≥ 0.

(d) Show that P(XA1 = i) = ρi(1 − ρ), i ≥ 2. Without any further calculations, is ξ
stationary for (XAm)m≥0?

The following questions are meant to deepen your understanding of the earlier material and/or
go a little beyond the scope of the course. There will probably not be time for them to be covered
in the classes and they will not be marked, but full solutions will be given on the solution sheets.

7. Let pn = λn

n! e
−λ, n ≥ 0, be the probability function of the Poisson distribution. Calculate

the associated size-biased distribution. For a random variable Xsb with the size-biased
distribution, show that Xsb − 1 is Poisson distributed.

8. Potential customers arrive at a single-server bank according to a Poisson process (Nt)t≥0
with rate λ. However, potential customers will enter the bank only if the server is free when
they arrive, and otherwise will go home. Assume that the service times are independent
random variables with probability density function g and mean ν.
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(a) Denote by Xt the number of customers that have left after completed service before
time t, t ≥ 0. Show that (Xt)t≥0 is a renewal process, and describe its inter-renewal
distribution.

(b) Calculate the asymptotic rate limt→∞Xt/t at which customers leave the bank (after
completed service).

(c) Consider the proportion Pt = Xt/Nt. What long-term proportion of potential cus-
tomers are actually served?

(d) Consider the sequence of departure times Tn, n ≥ 1 (departures after completed
service). What long-term proportion of time is the server busy?

Hint: Consider this proportion at departure times first and then argue as in the proof
of the strong law of renewal theory.

9. In the setting of the previous sheet Question 4 (Proof of the Ergodic Theorem), suppose
that the jump chain is also positive recurrent, denote by η its stationary distribution and
by Π = (πi,j)i,j∈S its transition matrix. Let X0 = i.

Denote by N(t) the number of transitions of X up to time t ≥ 0, and by Ni(t) the number

of transitions to i up to time t ≥ 0. Show that
Ni(t)

N(t)
→ ηi almost surely as t→∞.

Also show that
Ni(t)

t
→ 1

mi
almost surely as t → ∞. Deduce that

N(t)

t
→ 1

miηi
almost

surely, and that the limit does not depend on i ∈ S.

10. Consider a single-server queueing system with Poisson arrivals at rate λ and exponential
service times at rate µ. The system has the following special feature: the server can serve
two customers at the same time. He can also serve a single customer in the system but
then a second customer cannot be jointly served before the single customer leaves. Take
S = N ∪ {∅}. Let Xt = ∅ if the server is idle. Let Xt = 0 if the server is busy but no-one
else is waiting to be served. If the server is busy and there are n people waiting to be
served, set Xt = n.

(a) Determine the Q-matrix and the invariant distribution.

Hint: Try ξn = αnξ0 for n ∈ N.

(b) Determine the long-term proportion of customers that are served alone.

Hint: Which transitions correspond to a beginning single service? Consider the count-
ing processes counting these transitions separately.

11. Let X̃ be a delayed renewal process whose first renewal time has density g, the subsequent
inter-renewal times density f . Let F (t) =

∫ t
0 f(s)ds, G(t) =

∫ t
0 g(s)ds and F (t) = 1−F (t),

G(t) = 1−G(t).

(a) Show that m̃(t) = E(X̃t) (as opposed to the undelayed m(t) = E(Xt)) satisfies both

m̃ = G+m ∗ g and m̃ = G+ m̃ ∗ f.

(b) Show, now by conditioning on the last arrival before time t that

P(Ẽt > y) = G(t+ y) +

∫ t

0
F (t+ y − x)m̃′(x)dx.

(c) If more specifically g(y) = f0(y) = F (y)/µ, show that m̃(t) = t/µ and that Ẽt also
has density f0, for all t ≥ 0.


