
B8.3 Mathematical Models for Financial Derivatives

Hilary Term 2019

Problem Sheet Zero

1. The moment generating function of a (real valued) random variable
X is defined by mX(t) = E

[
etX

]
, assuming this expectation exists.

Suppose that X is a normally distributed random variable with zero
mean and variance σ2, so its probability density function is

pX(x) =
1√

2π σ2
e−x

2/2σ2
.

Show that in this case mX(t) = eσ
2t2/2.

We have

mX(t) = E
[
etX

]
=

1√
2π σ2

∫ ∞
−∞

etx e−x
2/2σ2

dx

=
1√

2π σ2

∫ ∞
−∞

e−(x
2−2tσ2x+t2σ4−t2σ4)/2σ2

dx

=
eσ

2t2/2

√
2π σ2

∫ ∞
−∞

e−(x−tσ
2)2/2σ2

dx

= eσ
2t2/2.

Hence deduce that the odd moments of X are all zero, i.e., for n =
0, 1, 2, . . .

E
[
X2n+1

]
= 0,

and the even moments are given by

E
[
X2n

]
=

(2n)!

2n n!
σ2n = 1 · 3 · · · (2n− 3)(2n− 1)σ2n,

for n = 0, 1, 2, . . . .

There are various ways to do this. Mine is as follows. Write

etX = 1 + tX +
t2X2

2!
+ · · ·+ t2nX2n

(2n)!
+
t2n+1X2n+1

(2n+ 1)!
+ · · · ,

so that

E
[
etX
]

= 1 + tE
[
X
]

+
t2

2!
E
[
X2
]

+ · · ·+ t2n

(2n)!
E
[
X2n

]
+

t2n+1

(2n+ 1)!
E
[
X2n+1

]
+ · · · .
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Now expand eσ
2t2/2 as a Taylor series about zero,

eσ
2t2/2 = 1 +

σ2t2

2
+
σ4t4

22 2!
+
σ6t6

23 3!
+ · · ·+ σ2nt2n

2n n!
+ · · · ,

and then match the two series by powers of t. As the series for eσ
2t2/2

has no odd powers of t, we must have

t2n+1

(2n+ 1)!
E
[
X2n+1

]
= 0,

which implies that
E
[
X2n+1

]
= 0,

for n = 0, 1, 2, . . . .. Matching the even powers gives

t2n

(2n)!
E
[
X2n

]
=

2−nσ2nt2n

n!

and then cancelling the t2n and rearranging gives

E
[
X2n

]
=

(2n)!

2n n!
σ2n.

In particular, note for future reference that

E
[
X4
]

= 3σ4.

Putting n = 2 here we get

E
[
X4
]

=
4!

22 2!
σ4 =

4 · 3 · 2 · 1
4 · 2

σ4 = 3σ4,

a quite famous result about the (dimensional) kurtosis of a normally
distributed random variable. We use it in Week 3.

2. A die has six faces labelled 1 to 6 and when rolled the probability that
any given face appears is 1

6 . Find

(a) The expected value of the die;

This is simply

1
6 × 1 + 1

6 × 2 + 1
6 × 3 + 1

6 × 4 + 1
6 × 5 + 1

6 × 6 = 21
6 = 3 1

2 .

(b) The expected value of the die if only an odd number appears;

There are three odd numbers which can appear and, given that
an odd number does appear, they appear with equal probability
of 1

3 . Therefore, given that an odd number does appear, the
expected value is

1
3 × 1 + 1

3 × 3 + 1
3 × 5 = 9

3 = 3.
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(c) The expected value of the die if only an even number appears.

There are three even numbers which can appear and, given that
an even number does appear, they appear with equal probability
of 1

3 . Therefore, given that an even number does appear, the
expected value is

1
3 × 2 + 1

3 × 4 + 1
3 × 6 = 12

3 = 4

Give the probability that an odd number appears and the probability
that an even number appears.

Since all numbers are equally likely and there are three odd ones and
three even ones,

prob(even) = 3
6 = 1

2 , prob(odd) = 3
6 = 1

2 .

Show that the expected value of the die, with no conditions, is the
same thing as

probability
of rolling
an even
number

×


the expected
value if an

even number
is rolled

+


probability
of rolling
an odd
number

×


the expected
value if an

odd number
is rolled

 .

From above, the expected value given no conditions is 3 1
2 . The ex-

pression immediately above evaluates to

1
2 × 3 + 1

2 × 4 = 7
2 = 3 1

2 .

This is a particular case of a general law, called the tower law or the
law of iterated expectations.

We use this idea in Week 4 and possibly in Week 5; it appears more
complicated there, but it is really just the idea outlined above.

3. For t > 0, let

p(y;x, t) =
1√
2π t

e−(x−y)
2/2t.

This can be interpreted as the probability density function for a normal
random variable Y which has mean x and variance t. Show, by direct
calculation, that p(y;x, t) also satisfies the heat equation

∂p

∂t
= 1

2

∂2p

∂x2
, for t > 0, x ∈ R.
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Direct calculation gives

∂p

∂x
= −(x− y)

t
p(y;x, t),

∂2p

∂x2
= −1

t
p(y;x, t)− (x− y)

t

∂p

∂x

= −1

t
p(y;x, t) +

(x− y)2

t2
p(y;x, t),

∂p

∂t
=

−1

2
√

2π t3
e−(x−y)

2/2t +
−(x− y)2

−2t2
p(y;x, t)

= 1
2

(
−1

t
p(y;x, t) +

(x− y)2

t2
p(y;x, t)

)
= 1

2

∂2p

∂x2
.

Hence deduce that

u(x, t) = E
[
f(y)

]
=

1√
2π t

∫ ∞
−∞

f(y)e−(x−y)
2/2t dy

satisfies the heat equation

∂u

∂t
= 1

2

∂2u

∂x2
, for t > 0, x ∈ R,

provided the integral converges absolutely. [Hint: you can assume
that the absolute convergence means you can swap the order of partial
differentiation and integration.]

Write the solution in the form

u(x, t) =

∫ ∞
−∞

f(y) p(y;x, t) dy

and assume that the integral is absolutely convergent, which means
that

∂u

∂t
=

∂

∂t

∫ ∞
−∞

f(y) p(y;x, t) dy

=

∫ ∞
−∞

∂

∂t
(f(y) p(y;x, t)) dy

=

∫ ∞
−∞

f(y)
∂p

∂t
(y;x, t) dy

and, similarly,
∂2u

∂x2
=

∫ ∞
−∞

f(y)
∂2p

∂x2
(y;x, t) dy.
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Thus
∂u

∂t
− 1

2

∂2u

∂x2
=

∫ ∞
−∞

f(y)

(
∂p

∂t
− 1

2

∂2p

∂x2

)
dy = 0

since
∂p

∂t
− 1

2

∂2p

∂x2
= 0

identically for t > 0.

Assuming that the integral converges absolutely and f is continuous
at all points in R, show that

lim
t→0+

u(x, t) = lim
t→0+

1√
2π t

∫ ∞
−∞

f(y)e−(x−y)
2/2t dy = f(x)

for each x ∈ R. [Hint: change variables to s = (y− x)/
√
t and assume

that the absolute convergence allows you to interchange the order of
limit and integration.]

We have

lim
t→0+

u(x, t) = lim
t→0+

1√
2π t

∫ ∞
−∞

f(y)e−(x−y)
2/2t dy

= lim
t→0+

1√
2π

∫ ∞
−∞

f
(
x+ s

√
t
)
e−s

2/2 ds (s = (y − x)/
√
t)

=
1√
2π

∫ ∞
−∞

lim
t→0+

f
(
x+ s

√
t
)
e−s

2/2 ds

=
1√
2π

∫ ∞
−∞

f(x) e−s
2/2 ds

=
f(x)√

2π

∫ ∞
−∞

e−s
2/2 ds

= f(x)

The reason we can write

lim
t→0+

f
(
x+ s

√
t
)

= f(x)

is that we assume that f(y) is continuous for all y ∈ R. If there is a
point x where f is not continuous then, in general, the result

lim
t→0+

u(x, t) = f(x)

does not apply at that point.

4. Show that if u(x, t) is a solution of the heat equation

∂u

∂t
= 1

2

∂2u

∂x2
,
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for t > 0 and all x ∈ R, then so too is u(−x, t).
Set z = −x and look at u(z, t) = u(−x, t). We have

∂u

∂z
(z, t) =

dz

dx

∂u

∂x
(z, t) = −∂u

∂x
(z, t)

and, similarly,
∂2u

∂z2
(z, t) =

∂2u

∂x2
(z, t).

Since the heat equation is satisfied for all x ∈ R, it follows that

∂u

∂t
(z, t) = 1

2

∂2u

∂z2
(z, t)

for all t > 0 and z ∈ R. Now rename the variable z to x.

Write down solutions u1 and u2 of the heat equation, in terms of u
(and for t > 0 and x ≥ 0), which satisfy

(a) u1(0, t) = 0, (b)
∂u2
∂x

(0, t) = 0.

In case (a), try u1(x, t) = u(x, t) − u(−x, t). By linearity of the heat
equation and the previous result, this is a solution of the heat equation.
Then note that

u1(0, t) = u(0, t)− u(0, t) = 0,

so the boundary condition is satisfied as well.

In case (b), try u2(x, t) = u(x, t) + u(−x, t). Again, by linearity of the
heat equation it is clear that u2(x, t) is also a solution. This implies
that ∂2u2/∂x

2 exists for all x ∈ R, which in turn implies that ∂u2/∂x
exists for all x ∈ R. Therefore we can write

∂u2
∂x

(0, t) = lim
δ→0

u2(δ, t)− u2(−δ, t)
2 δ

,

but it is clear that

u2(δ, t)− u2(−δ, t) =
(
u(δ, t) + u(−δ, t)

)
−
(
u(−δ, t) + u(δ, t)

)
= 0

for any real δ, which implies that

∂u2
∂x

(0, t) = 0,

as required.
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5. The Black-Scholes equation (with no dividend yields) is

∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ r S

∂V

∂S
− r V = 0

for t < T and S > 0, where r and σ > 0 are constants (the interest
rate and volatility). Note that we solve this equation backwards in
time, from T (the expiry time, in the future) to the present.

By assuming a separable solution of the form V (S, t) = F (S)G(t), find
solutions which satisfy the terminal condition V (S, T ) = Sm, S > 0,
where m is a constant. [Hint: start with the terminal condition before
worrying about the differential equation.]

As suggested, starting with the terminal condition gives

V (S, T ) = F (S)G(T ) = Sm

for all S > 0. The obvious solution is1

F (S) = Sm, G(T ) = 1.

Now observe that

∂V

∂t
= Sm Ġ(t),

S
∂V

∂S
= mSmG(t),

S2 ∂
2V

∂S2
= m(m− 1)SmG(t),

so the Black-Scholes equation reduces to(
Ġ(t) + 1

2σ
2m(m− 1)G(t) + rmG(t)− r G(t)

)
Sm = 0,

for all S > 0. This implies that G(t) satisfies the ODE

Ġ(t) + λG(t) = 0

where
λ =

(
1
2σ

2m+ r
)

(m− 1) .

Finally, applying the condition that G(T ) = 1 we get

G(t) = eλ(T−t)

1You could choose F (S) = αSm, G(T ) = 1/α for any constant α 6= 0, in which case
you would end up with the same answer, but a more complicated calculation to get it.

7



and hence
V (S, t) = eλ(T−t) Sm.

As an aside, this also gives us the two (linearly independent) steady-
state solutions of the Black-Scholes equation (corresponding to λ = 0),

V1(S) = S, V2(S) = S−2r/σ
2

which occur when m = 1 and m = −2r/σ2, respectively.
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