B8&.3 Mathematical Models for Financial Derivatives
Hilary Term 2019

Solution Sheet Two

In the following (W});>o denotes a standard Brownian motion and ¢ > 0
denotes time. A partition 7 of the interval [0,¢] is a sequence of points
0=ty <t1 <ty <-<ty,="1tand |r| = maxg(txr1 — tx). On a given
partition Wy, = Wy, , Wy, = Wi1 — Wy, 0ty = tg41 —tx and if f is a function
on [0,t], fr, = f(tx) and 6f = fr1 — fi-
1. Show that if ¢,s > 0 then E[W, W] = min(s,t).
If s =¢ > 0 then we have
E[W, W] = E[W2] = t.
If not, assume 0 < s < t and write W; = Wy + W; — W,. Then
E[Ws Wt] = E[WS Ws + W (Wt - Ws)]
= E[W, W, + E[WS (Wt — WS)}
= E[W2 = s = min(s,t).

2. Suppose we define the following two stochastic integrals, the ‘anti-I1t6’

integral
t n—1
/ f(Ws,s) @ dW, = \I}EOZ Wit togr) Wi — We),
0 k=0
and the Stratonovich integral
t
/ f(Ws, s) o dWj
0
n—1
= |11|1i>102 S (FWigt, tes1) + F(Wi, t)) (Wi — Wy).
k=0
Show that
t t
o[ WyedW, = W2+t E[2 W, odWS} — 9,
0 0
t t
2| WyodW, = W2 E[2 WsodWS} — ¢
0 0



n—1

/Ot WyedW, = lim kz_o 2Wi1 (Wis1 — Wi)
= . 2
= ilglokzzo(wlgﬂ ~- W) + illglokzzo(wkﬂ - W)
= W2-WZ+ ‘}rlllil :Z:(Wk-+1 — Wk)2
= W2+t

Since we know E[WE] = t, we see that
t
E[/ 2W, « dW,| =E[W?] +t =2t
0

Similarly we have

n—1

t
/ 2WsodWs = |li‘m0 Z(Wk+1 + Wk) (Wk+1 — Wk)
0 =0

n—1
= 1 Wi — Wi
aim, 2 (Wi = W)
k=0
= wiowg
= W2,

and so .
E[/ 2Ws o dW,| = E[W2] =t.
0

. Assuming that both the integral and its variance exist, show that

Var[/otf(Ws,s) dWs] — /Ot]E[f(Ws,s)Q] ds.

[Note: if the integral and its variance exist then it is legitimate to
interchange the order of expectation and integration.]

If the integral exists then its expected value is zero so

var Wsde (Ws, s) dW
[ sy aw] =e[ ([ sovesyam)]

Set fr = f(Wg, 1) and consider

n—1 n—1n—1
(ka5Wk)2 = Y Fi koW oW
k=0 k 0] 0
= ka SWi) +QZZf]fk5W oWy

= k=1 j<k



We can eliminate the double sum using the tower law,
E [ fi fo OW; 6Wk} - E [Etk [f; fe OW; 5W,€”
= E|f; fi 0W; By [oW4]|

since t; < t3, which means f; and dW; are known at time {j, as is
fro = (Wi, tr). As Eq [(5Wk] = 0, this term vanishes, leaving

E[(nzzlfkéka} - E%fﬁ(ém)ﬂ
o
_ E:ZEtk[f,z((SWk)QH
k=0

n—1
= E[> 2B [(6We)]]

n—1 n—1
= E[Y sRon] = Y E[F] ot
k=0 k=0

and as we refine the partition, |r| — 0, we see

hm E fk 6tk—>/ Ws,s ds

|7r|%0

4. Use the differential version of Itd’s lemma to show that

¢ ¢ ¢
a) / Wsds:tWt—/ deS:/(t—s)dWS,
0 0 0

We have
d(t W) = Wy dt + t dW;

which integrates to show

t t
tWt:/ Wst-l-/ sdWs.
0 0

Rearranging gives

¢ ¢ ¢
/Wsds:tWt—/sdwsz/(t—s)dW
0 0 0



t t
(b) / WdeS—}))Wf’—/ W ds,
0 0

This time
d(W7P) = 3WE dW, + 3 W, dt

which integrates to give
t t
Wt3:3/ Wfdws+3/ W, ds.
0 0

Dividing by 3 and rearranging gives

t t
/Wfdwszgwﬁ—/ W, ds.
0 0

(C) E[eaWt—azt/Q] - 1.
Set f(W,t) = exp(aW — 3a%) and f; = f(Wi,t). 1t6’s lemma

gives

dfy, = —1d®fidt+afidW,+ 3ad®fidt
= aftth.

t
This integrates to give f; — fo = a / fs dWy or, in full,
0

t
exp(aWt — %aQt) =1+ a/ exp(aWS — %a2s) dW
0
Taking expectations gives

t
E[exp(aWt — %a%)} = 1+ aE[/ exp(aWs — %a%) dWs]
0
= 1.
5. Define X; to be the ‘area under a Brownian motion’, Xy = 0 and
X, = f(f W, du for t > 0. Show that X; is normally distributed with
E[X,] =0, E[X7]=3¢.

From Question 4(a) we have

¢ t
/ Wsds = / (t —s)dWs.
0 0



As t — s does not depend on Wy, the integral is normally distributed

with
E[/O Wsds} :E[/O (t—s)dWS} ~0

Var[/OtWSds] = Var[/ot(t—s)dws}
= /Ot(t—s)zds

— 143
= 1

and

Note that X; is continuously differentiable for ¢t > 0, with Xt =W,
(recall W; is continuous in t).

Now define Y; as the ‘average area under a Brownian motion’,
0 ift=0,
Yi pu—
X/t ift>0.

Show that Y; has E[Y;] = 0, E[Y;?] = ¢/3 and that Y; is continuous for
all t > 0.

Is v/3Y; a Brownian motion? Give reasons for you answer.

For any ¢t > 0, Y; is normal because X, is, with
ElY] =E[X]/t=0

and
var [Yt] = var [Xt/t] = var [Xt] /t2 = %t.

For t > 0 we have Y; = X;/t which is the ratio of two differentiable
functions and as the denominator is never zero it follows that Y; is
differentiable for ¢ > 0, which implies continuous. Moreover, it means
we can use ’'Hopital’s rule to show

Wi

lim Y; = lim — =0,
t—0+ t—ot+ 1

which shows that Y; is continuous at ¢t = 0.

The function v/3Y; is not only continuous but differentiable for t > 0
and therefore it can’t be a Brownian motion. (The hard way to do
this part of the question is to show that the increments over disjoint
intervals are not independent.)

6. Show that if s
=t — pdt + o dWy,
St



and f; = f(S;) = S?, then

d
J{t =3(pu+ o) dt +30dW,.
t

Write the SDE for S; as
dSt = ,U,Stdt +O'Stth

so It6’s lemma for a general Fy = F(S,t) is

ot (St,t) + 20’ St 852

With f(S) = S3, so f/(S) =352 and f”(S) = 69, this becomes

OF
dF, = ( (St,t)) dt + 5= (S1) dS:.

dfy = 30283dt+35%dsS;
= 3(0® frdt+ S} (St + 0 S aWy) )
= 3fi((p+ 0% dt+ odW,)
which we could write as

d
J{t =3(u+o?)dt +30dW;.
t

. Find solutions of the Black-Scholes terminal value problem

2
v
+50252(;5,2+(r—y)5?)‘sf—rV—0, S>0,t<T,

V(S,T)=f(5), S>0,

av
ot

when

(a) f(S)=C, where C is a constant;

In this case it makes sense to look for solutions which don’t de-
pend on S, so OV/AS = 0 and 9?V/dS? = 0 identically. Then
we have V' = V(¢) and the partial differential equation reduces
to the ODE

— —rV=0 V(T)=C

which has the solution V = C e "(T=1),

(b) f(S) = S%, where « is a constant.

[Hint: you don’t need the Feynman-Kac formula to do either of
these. Look for simple functional forms of the solution.]



In this case, let’s look for separable solutions

V(S,t) =S f(t), f(T)=1.

We find that
8V_ o OV_ o 232V_ o
E_S f(t), S%—QS f), S @_a(a—l)S f(t)

and the Black-Scholes equation becomes

S (F(H)+30% ala=1) f(O) + (r —y) a f(H) = 7 f(1)) = 0.

As this has to hold for all S > 0 we have an ordinary differential
equation for f(¢) which we can write as

fO) =Af@), f(T)=1,
where
A=r—(r—y)a-itala-1).

The solution is
f(t) = eXTD

and
V(S,t) = e M-t g,



Optional questions

8. The Black-Scholes equation from a binomial method.

One step of the Cox, Ross & Rubinstein binomial method can be
written as

V(S,t) = (qV" + (1- ) V)
where
Ve =V(S"t+dt), VI=V(S%t+dt),
erét o 6—0\/&

u o/t d __ —oV/5t _
=5V §l=gem T g= St

o > 0 is the volatility, r is the risk-free rate and §t > 0 is the length
of the time-step. Supposing this is true for all S > 0 and that V(S,t)
may be expanded in a Taylor series in both S and ¢, show that as
o0t —0

1
Ve o= V45 taS+5t(at+2 (S—as +s 852))+0(5t ),
oV o LV
d _ 2 3/2
v \/taS +5t(8t (s 5+ 852)>+(’)((5t ),

where V' and all its partial derivatives are evaluated at (.59,t). Hence
show that in the limit ¢ — 0 the option price satisfies the (zero
dividend-yield) Black-Scholes equation

oV | 5 50V 0S8 B
5 50° 8 8SQ+ S@S rV =0.

As 0t — 0 we can expand
eV = 140Vt + Lot + O(51%?),
e VO = 1 — oVt + La%it + O(5t%?),
et = 1+4rdt+ O(5t?),
from which it follows that

oVét+ (r — Lo?)st + O(5t3/2)
205t + O(6t3/2)

(91),




and that
V(S eV ¢+ t)

=V(S,t) + 6t %V

2

9V
+ 1025t 8% —— gz (S t) + O(5t%?)

(S,t) + (oV/t + 102&)5%(5 t)

_ oV ov. 1 o 81 2 O’V 3/2
_V+x/§asas+5t(at+2 <Sas $*5qz ) ) + Ot

V(S e Vo ¢+ 5t)

ov ov 0%V
ﬁas+5t<at + 30 (SaS 528S2>> + O(6t%/2).

Therefore

qV(Se™ t 4+ 6t) + (1 — q) V(Se Vo t +5t)

_V+5t(8t+205 a52+2 $5g ) +(r—30%)0t8 5o+ O(6t"?)
_V+6t<8t+ S—aSQJr Sas>+0(5t )
and hence

e (gV(S eV 4 6t) + (1 q) V(S e 1 4 o1))

=(1 r5t)<V+5t<at+2 Sas2+ S35 ) ) +OEt)
—V+5t<8t+2 5’785,2%—7‘5’—85 TV)+O(5t )

Substituting this back into the binomial equation gives

ov 0?V ov
— ot 1 2 2% ¥V v 5t3/2
V=V+ <8t+2 S@SQ+ S@S rV)+(9( )
and cancelling V' and dividing by §t then gives
1% 5 2 0?V ov 12y _
<8t SBSQ SaS—rV>+(’)((5t )=0

Taking the limit 6t — 0 gives the Black-Scholes equation,

av 52 , 0%V ov B
at S852+ S@S_TV7O'



9. The variation of a function, or stochastic process, over [0, t], is

n—1

(fle= ‘iilgloz | frr1 — frl
k=0

If (f); is finite on [0, ] we say f has bounded variation on [0, t]. Show

that:

(a) if £ is C1[0,4] then (f); = [} |f'(t)] dt < oo;

If fis C! on [0,#] then the intermediate value theorem asserts
that fry1 — fr = f'(Sk)(tks1 — tr) for some & € [tg, tpy1]. Since

Ot = (thg1 — t) > 0,

n—1 +
(0= i 217 o0 = 1156

If f’(s) is continuous on [0,¢] then so too is |f'(s)| and as [0, ]
is a closed and bounded set, |f’(s)| must be bounded on [0,¢].
Therefore the integral must be finite and hence f has bounded

variation on [0, t].

(b) if f is a continuous function with (f); < oo then its quadratic

variation is zero, | f]; = 0;
We have

n—1
[fli= ‘}rigIOZ(ka _fk)2 >0
k=0

and we also have

n—1 n—1
Z(fk+1 - fk)2 < (mjc?LX! Ji+1—f; D (Z! Jr1 — Jr D
k=0 k=0

If f has bounded variation then the sum on the right-hand side
is finite as || — 0. If f is continuous then the maximum value of
| fi+1—fj| = 0as|7| — 0. Thus the product of the two vanishes

as |m| — 0.

(c) Brownian motion does not have bounded variation;

Brownian motion is continuous in ¢ and has non-zero quadratic
variation. Therefore it must have unbounded variation by the

previous part of the question.

(d) the arc length of the graph of a Brownian motion is infinite for

any t > 0.

[Hint: if y = X; has an arc length s then ds = \/dy? + dt? >

Vdy? = |dyl ]

10



Assume that we can define arc length for a Brownian motion.
Then it is given by
¢
5= / ds
0

where if y = X; then ds is given by

ds® = dt* + dy?, ds = \/dt2 + dy?.

Now observe that

ds = /dt?> + dy? > \/dy? = | dy]|.

If the integral of |dy| existed it would equal the variation of
Wi, but we know that W; doesn’t have bounded variation. This
implies that the length of the graph of a Brownian motion is
infinite (for any ¢ > 0).
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