
B8.3 Mathematical Models for Financial Derivatives

Hilary Term 2019

Solution Sheet Two

In the following (Wt)t≥0 denotes a standard Brownian motion and t ≥ 0
denotes time. A partition π of the interval [0, t] is a sequence of points
0 = t0 < t1 < t2 < · · · < tn = t and |π| = maxk(tk+1 − tk). On a given
partition Wk ≡Wtk , δWk ≡Wk+1−Wk, δtk ≡ tk+1−tk and if f is a function
on [0, t], fk ≡ f(tk) and δfk ≡ fk+1 − fk.

1. Show that if t, s ≥ 0 then E[WsWt] = min(s, t).

If s = t ≥ 0 then we have

E[WsWt] = E[W 2
t ] = t.

If not, assume 0 ≤ s < t and write Wt = Ws +Wt −Ws. Then

E[WsWt] = E
[
WsWs +Ws

(
Wt −Ws

)]
= E[WsWs] + E

[
Ws

(
Wt −Ws

)]
= E[W 2

s ] = s = min(s, t).

2. Suppose we define the following two stochastic integrals, the ‘anti-Itô’
integral∫ t

0
f(Ws, s) • dWs = lim

|π|→0

n−1∑
k=0

f(Wk+1, tk+1)(Wk+1 −Wk),

and the Stratonovich integral∫ t

0
f(Ws, s) ◦ dWs

= lim
|π|→0

n−1∑
k=0

1
2

(
f(Wk+1, tk+1) + f(Wk, tk)

)
(Wk+1 −Wk).

Show that

2

∫ t

0
Ws • dWs = W 2

t + t, E
[
2

∫ t

0
Ws • dWs

]
= 2 t,

2

∫ t

0
Ws ◦ dWs = W 2

t , E
[
2

∫ t

0
Ws ◦ dWs

]
= t
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∫ t

0
2Ws • dWs = lim

|π|→0

n−1∑
k=0

2Wk+1

(
Wk+1 −Wk

)
= lim

|π|→0

n−1∑
k=0

(
W 2
k+1 −W 2

k

)
+ lim
|π|→0

n−1∑
k=0

(
Wk+1 −Wk

)2
= W 2

n −W 2
0 + lim

|π|→0

n−1∑
k=0

(
Wk+1 −Wk

)2
= W 2

t + t.

Since we know E
[
W 2
t

]
= t, we see that

E
[∫ t

0
2Ws • dWs

]
= E

[
W 2
t

]
+ t = 2 t.

Similarly we have∫ t

0
2Ws ◦ dWs = lim

|π|→0

n−1∑
k=0

(
Wk+1 +Wk

)(
Wk+1 −Wk

)
= lim

|π|→0

n−1∑
k=0

(
W 2
k+1 −W 2

k

)
= W 2

n −W 2
0

= W 2
t ,

and so

E
[∫ t

0
2Ws ◦ dWs

]
= E

[
W 2
t

]
= t.

3. Assuming that both the integral and its variance exist, show that

var
[∫ t

0
f(Ws, s) dWs

]
=

∫ t

0
E
[
f(Ws, s)

2
]
ds.

[Note: if the integral and its variance exist then it is legitimate to
interchange the order of expectation and integration.]

If the integral exists then its expected value is zero so

var
[∫ t

0
f(Ws, s) dWs

]
= E

[ (∫ t

0
f(Ws, s) dWs

)2]
.

Set fk = f(Wk, tk) and consider(n−1∑
k=0

fk δWk

)2
=

n−1∑
k=0

n−1∑
j=0

fj fk δWj δWk

=

n−1∑
k=0

f2k (δWk)
2 + 2

n−1∑
k=1

∑
j<k

fj fk δWj δWk.
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We can eliminate the double sum using the tower law,

E
[
fj fk δWj δWk

]
= E

[
Etk
[
fj fk δWj δWk

]]
= E

[
fj fk δWj Etk

[
δWk

]]
since tj < tk, which means fj and δWj are known at time tk, as is
fk = f(Wk, tk). As Etk

[
δWk

]
= 0, this term vanishes, leaving

E
[(n−1∑

k=0

fk δWk

)2]
= E

[n−1∑
k=0

f2k (δWk)
2
]

= E
[n−1∑
k=0

Etk
[
f2k (δWk)

2
]]

= E
[n−1∑
k=0

f2k Etk
[
(δWk)

2
]]

= E
[n−1∑
k=0

f2k δtk

]
=

n−1∑
k=0

E
[
f2k
]
δtk

and as we refine the partition, |π| → 0, we see

lim
|π|→0

n−1∑
k=0

E
[
f2k
]
δtk →

∫ t

0
E
[
f(Ws, s)

2
]
ds.

4. Use the differential version of Itô’s lemma to show that

(a)

∫ t

0
Ws ds = tWt −

∫ t

0
s dWs =

∫ t

0
(t− s) dWs,

We have
d
(
tWt

)
= Wt dt+ t dWt

which integrates to show

tWt =

∫ t

0
Ws ds+

∫ t

0
s dWs.

Rearranging gives∫ t

0
Ws ds = tWt −

∫ t

0
s dWs =

∫ t

0
(t− s) dWs.
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(b)

∫ t

0
W 2
s dWs = 1

3W
3
t −

∫ t

0
Ws ds,

This time
d
(
W 3
t

)
= 3W 2

t dWt + 3Wt dt

which integrates to give

W 3
t = 3

∫ t

0
W 2
s dWs + 3

∫ t

0
Ws ds.

Dividing by 3 and rearranging gives∫ t

0
W 2
s dWs = 1

3 W
3
t −

∫ t

0
Ws ds.

(c) E
[
eaWt−a2t/2

]
= 1.

Set f(W, t) = exp(aW − 1
2a

2t) and ft = f(Wt, t). Itô’s lemma
gives

dft = −1
2 a

2 ft dt+ a ft dWt + 1
2 a

2 ft dt

= a ft dWt.

This integrates to give ft − f0 = a

∫ t

0
fs dWs or, in full,

exp
(
aWt − 1

2a
2t
)

= 1 + a

∫ t

0
exp
(
aWs − 1

2a
2s
)
dWs

Taking expectations gives

E
[
exp
(
aWt − 1

2a
2t
)]

= 1 + aE
[∫ t

0
exp
(
aWs − 1

2a
2s
)
dWs

]
= 1.

5. Define Xt to be the ‘area under a Brownian motion’, X0 = 0 and
Xt =

∫ t
0 Wu du for t > 0. Show that Xt is normally distributed with

E
[
Xt

]
= 0, E

[
X2
t

]
= 1

3 t
3.

From Question 4(a) we have∫ t

0
Ws ds =

∫ t

0
(t− s) dWs.
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As t − s does not depend on Ws, the integral is normally distributed
with

E
[∫ t

0
Ws ds

]
= E

[∫ t

0
(t− s) dWs

]
= 0

and

var
[∫ t

0
Ws ds

]
= var

[∫ t

0
(t− s) dWs

]
=

∫ t

0
(t− s)2 ds

= 1
3 t

3.

Note that Xt is continuously differentiable for t > 0, with Ẋt = Wt

(recall Wt is continuous in t).

Now define Yt as the ‘average area under a Brownian motion’,

Yt =

{
0 if t = 0,

Xt/t if t > 0.

Show that Yt has E[Yt] = 0, E
[
Y 2
t

]
= t/3 and that Yt is continuous for

all t ≥ 0.

Is
√

3Yt a Brownian motion? Give reasons for you answer.

For any t > 0, Yt is normal because Xt is, with

E
[
Yt
]

= E
[
Xt

]
/t = 0

and
var
[
Yt
]

= var
[
Xt/t

]
= var

[
Xt

]
/t2 = 1

3 t.

For t > 0 we have Yt = Xt/t which is the ratio of two differentiable
functions and as the denominator is never zero it follows that Yt is
differentiable for t > 0, which implies continuous. Moreover, it means
we can use l’Hopital’s rule to show

lim
t→0+

Yt = lim
t→0+

Wt

1
= 0,

which shows that Yt is continuous at t = 0.

The function
√

3Yt is not only continuous but differentiable for t > 0
and therefore it can’t be a Brownian motion. (The hard way to do
this part of the question is to show that the increments over disjoint
intervals are not independent.)

6. Show that if
dSt
St

= µdt+ σ dWt,
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and ft = f(St) = S3
t , then

dft
ft

= 3 (µ+ σ2) dt+ 3σ dWt.

Write the SDE for St as

dSt = µSt dt+ σ St dWt

so Itô’s lemma for a general Ft = F (St, t) is

dFt =
(∂F
∂t

(St, t) + 1
2σ

2 S2
t

∂2F

∂S2
(St, t)

)
dt+

∂F

∂S
(St, t) dSt.

With f(S) = S3, so f ′(S) = 3S2 and f ′′(S) = 6S, this becomes

dft = 3σ2 S3
t dt+ 3S2

t dSt

= 3
(
σ2 ft dt+ S2

t

(
µSt dt+ σ St dWt

))
= 3 ft

(
(µ+ σ2) dt+ σ dWt

)
which we could write as

dft
ft

= 3 (µ+ σ2) dt+ 3σ dWt.

7. Find solutions of the Black-Scholes terminal value problem

∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ (r − y)S

∂V

∂S
− r V = 0, S > 0, t < T,

V (S, T ) = f(S), S > 0,

when

(a) f(S) = C, where C is a constant;

In this case it makes sense to look for solutions which don’t de-
pend on S, so ∂V/∂S = 0 and ∂2V/∂S2 = 0 identically. Then
we have V = V (t) and the partial differential equation reduces
to the ODE

dV

dt
− r V = 0, V (T ) = C

which has the solution V = C e−r(T−t).

(b) f(S) = Sα, where α is a constant.

[Hint: you don’t need the Feynman-Kǎc formula to do either of
these. Look for simple functional forms of the solution.]
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In this case, let’s look for separable solutions

V (S, t) = Sα f(t), f(T ) = 1.

We find that

∂V

∂t
= Sα ḟ(t), S

∂V

∂S
= αSα f(t), S2 ∂

2V

∂S2
= α(α−1)Sα f(t)

and the Black-Scholes equation becomes

Sα
(
ḟ(t) + 1

2σ
2 α(α− 1) f(t) + (r − y)α f(t)− r f(t)

)
= 0.

As this has to hold for all S > 0 we have an ordinary differential
equation for f(t) which we can write as

ḟ(t) = λ f(t), f(T ) = 1,

where
λ = r − (r − y)α− 1

2σ
2 α(α− 1).

The solution is
f(t) = e−λ(T−t)

and
V (S, t) = e−λ(T−t) Sα.
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Optional questions

8. The Black-Scholes equation from a binomial method.

One step of the Cox, Ross & Rubinstein binomial method can be
written as

V (S, t) = e−rδt
(
q V u + (1− q)V d

)
where

V u = V
(
Su, t+ δt

)
, V d = V

(
Sd, t+ δt

)
,

Su = S eσ
√
δt, Sd = S e−σ

√
δt, q =

erδt − e−σ
√
δt

eσ
√
δt − e−σ

√
δt
,

σ > 0 is the volatility, r is the risk-free rate and δt > 0 is the length
of the time-step. Supposing this is true for all S > 0 and that V (S, t)
may be expanded in a Taylor series in both S and t, show that as
δt→ 0

q =
1

2
+
r − 1

2σ
2

2σ

√
δt+O(δt),

V u = V +
√
δt σ S

∂V

∂S
+ δt

(
∂V

∂t
+ 1

2σ
2
(
S
∂V

∂S
+ S2 ∂

2V

∂S2

))
+O(δt3/2),

V d = V −
√
δt σ S

∂V

∂S
+ δt

(
∂V

∂t
+ 1

2σ
2
(
S
∂V

∂S
+ S2 ∂

2V

∂S2

))
+O(δt3/2),

where V and all its partial derivatives are evaluated at (S, t). Hence
show that in the limit δt → 0 the option price satisfies the (zero
dividend-yield) Black-Scholes equation

∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ r S

∂S

∂S
− r V = 0.

As δt→ 0 we can expand

eσ
√
δt = 1 + σ

√
δt+ 1

2σ
2δt+O(δt3/2),

e−σ
√
δt = 1− σ

√
δt+ 1

2σ
2δt+O(δt3/2),

erδt = 1 + rδt+O(δt2),

from which it follows that

q =
σ
√
δt+ (r − 1

2σ
2)δt+O(δt3/2)

2σ
√
δt+O(δt3/2)

=
1

2
+
r − 1

2σ
2

2σ

√
δt+O(δt),
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and that

V (S eσ
√
δt, t+ δt)

= V (S, t) + δt
∂V

∂t
(S, t) +

(
σ
√
δt+ 1

2σ
2δt
)
S
∂V

∂S
(S, t)

+ 1
2σ

2δt S2 ∂
2V

∂S2
(S, t) +O(δt3/2)

= V +
√
δt σ S

∂V

∂S
+ δt

(
∂V

∂t
+ 1

2σ
2

(
S
∂V

∂S
+ S2∂

2V

∂S2

))
+O(δt3/2)

V (S e−σ
√
δt, t+ δt)

= V −
√
δt σ S

∂V

∂S
+ δt

(
∂V

∂t
+ 1

2σ
2

(
S
∂V

∂S
+ S2∂

2V

∂S2

))
+O(δt3/2).

Therefore

q V (S eσ
√
δt, t+ δt) + (1− q)V (S e−σ

√
δt, t+ δt)

= V + δt

(
∂V

∂t
+ 1

2σ
2S2 ∂

2V

∂S2
+ 1

2σ
2S

∂V

∂S

)
+ (r − 1

2σ
2) δt S

∂V

∂S
+O(δt3/2)

= V + δt

(
∂V

∂t
+ 1

2σ
2 S2∂

2V

∂S2
+ r S

∂V

∂S

)
+O(δt3/2)

and hence

e−rδt
(
q V (S eσ

√
δt, t+ δt) + (1− q)V (S e−σ

√
δt, t+ δt)

)
= (1− rδt)

(
V + δt

(
∂V

∂t
+ 1

2σ
2 S2∂

2V

∂S2
+ r S

∂V

∂S

))
+O(δt3/2)

= V + δt

(
∂V

∂t
+ 1

2σ
2 S2∂

2V

∂S2
+ r S

∂V

∂S
− r V

)
+O(δt3/2).

Substituting this back into the binomial equation gives

V = V + δt

(
∂V

∂t
+ 1

2σ
2 S2∂

2V

∂S2
+ r S

∂V

∂S
− r V

)
+O(δt3/2)

and cancelling V and dividing by δt then gives(
∂V

∂t
+ 1

2σ
2 S2∂

2V

∂S2
+ r S

∂V

∂S
− r V

)
+O(δt1/2) = 0.

Taking the limit δt→ 0 gives the Black-Scholes equation,

∂V

∂t
+ 1

2σ
2 S2∂

2V

∂S2
+ r S

∂V

∂S
− r V = 0.
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9. The variation of a function, or stochastic process, over [0, t], is

〈f〉t = lim
|π|→0

n−1∑
k=0

| fk+1 − fk |.

If 〈f〉t is finite on [0, t] we say f has bounded variation on [0, t]. Show
that:

(a) if f is C1[0, t] then 〈f〉t =
∫ t
0 |f

′(t)| dt <∞;

If f is C1 on [0, t] then the intermediate value theorem asserts
that fk+1 − fk = f ′(ξk)(tk+1 − tk) for some ξk ∈ [tk, tk+1]. Since
δtk = (tk+1 − tk) > 0,

〈f〉t = lim
|π|→0

n−1∑
k=0

| f ′(ξk) | δtk =

∫ t

0
| f ′(s) | ds.

If f ′(s) is continuous on [0, t] then so too is |f ′(s)| and as [0, t]
is a closed and bounded set, |f ′(s)| must be bounded on [0, t].
Therefore the integral must be finite and hence f has bounded
variation on [0, t].

(b) if f is a continuous function with 〈f〉t < ∞ then its quadratic
variation is zero, [ f ]t = 0;

We have

[ f ]t = lim
|π|→0

n−1∑
k=0

(
fk+1 − fk

)2 ≥ 0

and we also have

n−1∑
k=0

(
fk+1 − fk

)2 ≤ (max
j

∣∣ fj+1 − fj
∣∣)(n−1∑

k=0

∣∣ fk+1 − fk
∣∣).

If f has bounded variation then the sum on the right-hand side
is finite as |π| → 0. If f is continuous then the maximum value of
| fj+1−fj | → 0 as |π| → 0. Thus the product of the two vanishes
as |π| → 0.

(c) Brownian motion does not have bounded variation;

Brownian motion is continuous in t and has non-zero quadratic
variation. Therefore it must have unbounded variation by the
previous part of the question.

(d) the arc length of the graph of a Brownian motion is infinite for
any t > 0.

[Hint: if y = Xt has an arc length s then ds =
√
dy2 + dt2 ≥√

dy2 = |dy|.]
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Assume that we can define arc length for a Brownian motion.
Then it is given by

s =

∫ t

0
ds

where if y = Xt then ds is given by

ds2 = dt2 + dy2, ds =
√
dt2 + dy2.

Now observe that

ds =
√
dt2 + dy2 ≥

√
dy2 = | dy |.

If the integral of | dy | existed it would equal the variation of
Wt, but we know that Wt doesn’t have bounded variation. This
implies that the length of the graph of a Brownian motion is
infinite (for any t > 0).
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