
B8.3 Mathematical Models for Financial Derivatives

Hilary Term 2019

Problem Sheet Three

Your grade will be determined from the best five answers to the first seven
questions.

1. Assume a zero interest rate, r = 0, in this problem (to avoid problems
with the time-value of cash payments). Let 0 = t0 < t1 < t2 < · · · <
tn−1 < tn = t be a partition of the interval [0, t]. Let Su > 0 be the
price of a share at time u ∈ [0, t], ∆u be a number of shares at time u
and abbreviate Stk = Sk, ∆tk = ∆k. At time t0 = 0 we buy ∆0 shares,
at price S0, and hold these until time t1. At time t1 we buy (or sell)
enough shares, at price S1, so that we have ∆1 shares, which we hold
until time t2, at which point we buy (or sell) enough shares, at price
S2, so that we have ∆2 shares. We continue this process until time
tn−1, when we end up with ∆n−1 shares which we hold until tn = t at
which point we sell all shares we hold, at price Sn. Show that the cost
of this procedure is

−
n−1∑
j=0

∆j (Sj+1 − Sj).

[Hint: at time step tk+1 the change from holding ∆k shares to holding
∆k+1 shares is equivalent to selling all the ∆k shares and then buying
back ∆k+1 shares, with both the trades being executed at share price
Sk+1.]

Show that, formally at least, in the limit |π| → 0 the cost becomes

Ct = −
∫ t

0
∆u dSu

where the integral is an Itô integral (with respect to Su) and hence
deduce that

dCt = −∆t dSt.

2. Show that if V (S, t) is a solution of the Black-Scholes equation (for
S > 0 and t < T ) then so too are:

(a) a V (S, t) with a ∈ R;

(b) V (bS, t) with b > 0;

(c) a V (bS, t) with a ∈ R, b > 0.
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3. A log-option is an option with the payoff function

Po(ST ) = log(ST /K),

where the “strike” is positive, K > 0. Find the Black-Scholes value
function for a European log-option. (Such options are not traded,
but they occur in the theory underlying the CBOE’s VIX (variance
index) which measures the S&P500 index’s variance, allowing futures
and options to be written on this variance.)

4. Find the Black-Scholes price function of a European digital call option,
i.e., an option whose payoff function is

f(ST ) = 1{ST≥K} =

{
0 if 0 < ST < K,

1 if ST ≥ K.

A European digital put option has the payoff f(ST ) = 1{ST<K}. Use a
no arbitrage argument to establish a digital put-call parity result and
hence find the Black-Scholes price function for a digital put.

5. Show that if V (S, t) is a sufficiently differentiable solution of the Black-
Scholes equation (for S > 0 and t < T ) then so too is

W (S, t) = S
∂V

∂S
(S, t).

By induction, conclude that if V (S, t) is sufficiently differentiable then(
S
∂

∂S

)n
V (S, t), Sn

∂nV

∂Sn
(S, t), n = 2, 3, 4, . . .

are also solutions of the Black-Scholes equation.

6. Let Cbs(S, t;K,T, r, y, σ) denote the solution of a Black-Scholes call
value problem with strike K, expiry date T , risk-free rate r, continuous
dividend yield y and volatility σ. Consider the Black-Scholes problem

∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ (r − y)S

∂V

∂S
− r V = 0, S > 0, t < T

V (S, t) =
1

K2
max

(
S3 −K3, 0

)
, S > 0.

Show that

V (S, t) =
1

K2
Cbs(S

3, t;K3, T, r, ŷ, σ̂)

where ŷ = 3y − 2r − 3σ2 and σ̂ = 3σ.

[Hint: either write Ŝ = S3 and do a change of variables in the terminal
value problem or think about the payoff and risk-neutral process for
Ŝt = S3

t .]
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7. Show that if V (S, t) is a solution of the Black-Scholes equation (for
S > 0 and t < T ) and B > 0 then

W (S, t) =

(
S

B

)2α

V

(
B2

S
, t

)
,

where 2α = 1 − 2(r − y)/σ2
)
, is also a solution of the (same) Black-

Scholes equation.

[Hint: put ξ = B2/S and note that V (ξ, t) satisfies the Black-Scholes
equation in ξ > 0 and t < T .]

Optional questions

8. Let V (S, t) satisfy the Black-Scholes problem

∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ (r − y)S

∂V

∂S
− r V = 0 S > 0, t < T,

V (S, t) = Po(S), S > 0.

For some fixed reference price, S0 > 0, set the dimensionless variables
x = log(S/S0), τ = σ2(T − t) and v(x, τ) = V (S, t)/S0. Show that

∂v

∂τ
= 1

2

∂2v

∂x2
+ k1

∂v

∂x
− k2 v, x ∈ R, τ > 0,

v(x, 0) = p(x), x ∈ R,
(1)

where k1 and k2 are constants which you should find (in terms of r, y
and σ) and p(x) is a function which you should also find (in terms of
Po(S)).

Assuming that p(x) is a “reasonable” function1, it can be shown that
the solution of (1) is infinitely differentiable in x for τ > 0. Hence
deduce that

vn(x, τ) =
∂nv

∂xn
(x, τ), n = 1, 2, 3, . . .

are also solution of the partial differential equation in (1) for τ > 0.
Infer that if Po(S) is a “reasonable” function then

Vn(S, t) =
(
S
∂

∂S

)n
V (S, t), n = 1, 2, 3, . . .

1For example, if p(x) is integrable on every compact subset of R and there are constants

C > 0 and κ > 0 with | p(x) | < C eκx
2

for all x ensures that the solution

u(x, τ) =
1√
2πτ

∫ ∞
−∞

p(ξ) e−(x−ξ)2/2τ dξ

is C∞ in x for 0 < τ < 1/2κ.
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are also solutions of the Black-Scholes partial differential equation for
t < T .

9. Show that if we put

v(x, τ) = eατ+βx u(x, τ),

in (1) then, for certain values of α and β, which you should determine,
we can reduce (1) to the heat equation problem

∂u

∂τ
= 1

2

∂2u

∂x2
, x ∈ R, τ > 0

u(x, 0) = q(x), x ∈ R.
(2)

Suppose that u(x, τ) is the solution to (2) and set û(x, τ) = u(2b−x, τ)
for some constant b. Show that û(x, τ) is also a solution of the heat
equation (but not necessarily the initial condition) in (2). Unwinding
the transformations that reduced the Black-Scholes equation to the
heat equation it is clear that u(x, τ) leads back to the solution of the
original Black-Scholes problem. Show that unwinding the transforma-
tions on û(x, τ) leads to the ‘reflected’ solution

V̂ (S, t) = S2α V
( B2

S
, t
)
,

where 2α = 1− 2(r − y)/σ2 and B2 > 0.

10. The covariation of two functions or processes, X and Y , on [0, t] is
defined to be

[X,Y ]t = lim
|π|→0

n−1∑
k=0

(Xk+1 −Xk)(Yk+1 − Yk).

Show that if both X and Y have finite quadratic variation on [0, t]
then [X,Y ]t is finite and satisfies 2

∣∣ [X,Y ]t
∣∣ ≤ [X]t + [Y ]t.

Assuming [X]t and [Y ]t are finite, show that

(a) [X + Y ]t = [X]t + [Y ]t + 2 [X,Y ]t,

(b) [X,Y ]t = 1
4

(
[X + Y ]t − [X − Y ]t

)
.

(c) if X and Y are C1 functions on [0, t] then [X,Y ]t = 0.

11. Let (Wt)t≥0 and (Zt)t≥0 be two Brownian motions. They are correlated
with correlation ρ ∈ (−1, 1) if

(a) for all s, t ≥ 0, E
[
(Wt+s −Wt)(Zt+s − Zt)] = ρ s,
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(b) for all 0 ≤ p ≤ q ≤ s ≤ t, the pair (Wq −Wp) and (Zt − Zs)
are independent and the pair (Wt −Ws) and (Zq − Zp) are also
independent.

Show that in this case [W,Z]t = ρ t, in the sense that

E
[
[W,Z]t − ρ t

]
= 0 and E

[(
[W,Z]t − ρ t

)2]
= 0.

[Hint: first show that if X and Y are random variables with second
moments then |E[XY ] | ≤ 1

2

(
E[X2] + E[Y 2]

)
. ]

[Note that if we define a process by ft = f(Wt, Zt, t) where f(W,Z, t)
is C2,2,1, then (the differential version of) Itô’s lemma is

dft =
∂f

∂t
dt+

∂f

∂W
dWt +

∂f

∂Z
dZt

+ 1
2

∂2f

∂W 2
d[W ]t + 1

2

∂2f

∂Z2
d[Z]t +

∂2f

∂W∂Z
d[W,Z]t,

where all functions on the right-hand side are evaluated at (Wt, Zt, t).
The result derived above simplifies this expression.]
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