B8.3 Mathematical Models for Financial Derivatives

Hilary Term 2019

Problem Sheet Three

Your grade will be determined from the *best five* answers to the first *seven* questions.

1. Assume a zero interest rate, r = 0, in this problem (to avoid problems with the time-value of cash payments). Let $0 = t_0 < t_1 < t_2 < \cdots < t_{n-1} < t_n = t$ be a partition of the interval [0, t]. Let $S_u > 0$ be the price of a share at time $u \in [0, t]$, Δ_u be a number of shares at time uand abbreviate $S_{t_k} = S_k$, $\Delta_{t_k} = \Delta_k$. At time $t_0 = 0$ we buy Δ_0 shares, at price S_0 , and hold these until time t_1 . At time t_1 we buy (or sell) enough shares, at price S_1 , so that we have Δ_1 shares, which we hold until time t_2 , at which point we buy (or sell) enough shares, at price S_2 , so that we have Δ_2 shares. We continue this process until time t_{n-1} , when we end up with Δ_{n-1} shares which we hold until $t_n = t$ at which point we sell all shares we hold, at price S_n . Show that the cost of this procedure is

$$-\sum_{j=0}^{n-1} \Delta_j \, (S_{j+1} - S_j).$$

[Hint: at time step t_{k+1} the change from holding Δ_k shares to holding Δ_{k+1} shares is equivalent to selling all the Δ_k shares and then buying back Δ_{k+1} shares, with both the trades being executed at share price S_{k+1} .]

Show that, formally at least, in the limit $|\pi| \to 0$ the cost becomes

$$C_t = -\int_0^t \Delta_u \, dS_u$$

where the integral is an Itô integral (with respect to S_u) and hence deduce that

$$dC_t = -\Delta_t \, dS_t.$$

- 2. Show that if V(S,t) is a solution of the Black-Scholes equation (for S > 0 and t < T) then so too are:
 - (a) a V(S, t) with $a \in \mathbb{R}$;
 - (b) V(bS,t) with b > 0;
 - (c) a V(bS, t) with $a \in \mathbb{R}, b > 0$.

3. A log-option is an option with the payoff function

$$P_{\rm o}(S_T) = \log(S_T/K),$$

where the "strike" is positive, K > 0. Find the Black-Scholes value function for a European log-option. (Such options are not traded, but they occur in the theory underlying the CBOE's VIX (variance index) which measures the S&P500 index's variance, allowing futures and options to be written on this variance.)

4. Find the Black-Scholes price function of a European digital call option, i.e., an option whose payoff function is

$$f(S_T) = \mathbf{1}_{\{S_T \ge K\}} = \begin{cases} 0 & \text{if } 0 < S_T < K, \\ 1 & \text{if } S_T \ge K. \end{cases}$$

A European digital put option has the payoff $f(S_T) = \mathbf{1}_{\{S_T < K\}}$. Use a no arbitrage argument to establish a digital put-call parity result and hence find the Black-Scholes price function for a digital put.

5. Show that if V(S, t) is a sufficiently differentiable solution of the Black-Scholes equation (for S > 0 and t < T) then so too is

$$W(S,t) = S \,\frac{\partial V}{\partial S}(S,t).$$

By induction, conclude that if V(S, t) is sufficiently differentiable then

$$\left(S\frac{\partial}{\partial S}\right)^n V(S,t), \quad S^n \frac{\partial^n V}{\partial S^n}(S,t), \quad n=2,3,4,\ldots$$

are also solutions of the Black-Scholes equation.

6. Let $C_{\rm bs}(S,t;K,T,r,y,\sigma)$ denote the solution of a Black-Scholes call value problem with strike K, expiry date T, risk-free rate r, continuous dividend yield y and volatility σ . Consider the Black-Scholes problem

$$\begin{aligned} \frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + (r - y) S \frac{\partial V}{\partial S} - r V &= 0, \quad S > 0, \ t < T \\ V(S, t) &= \frac{1}{K^2} \max\left(S^3 - K^3, 0\right), \quad S > 0. \end{aligned}$$

Show that

$$V(S,t) = \frac{1}{K^2} C_{\rm bs}(S^3, t; K^3, T, r, \hat{y}, \hat{\sigma})$$

where $\hat{y} = 3y - 2r - 3\sigma^2$ and $\hat{\sigma} = 3\sigma$.

[Hint: either write $\hat{S} = S^3$ and do a change of variables in the terminal value problem or think about the payoff and risk-neutral process for $\hat{S}_t = S_t^3$.]

7. Show that if V(S,t) is a solution of the Black-Scholes equation (for S > 0 and t < T) and B > 0 then

$$W(S,t) = \left(\frac{S}{B}\right)^{2\alpha} V\left(\frac{B^2}{S},t\right),$$

where $2\alpha = 1 - 2(r - y)/\sigma^2$, is also a solution of the (same) Black-Scholes equation.

[Hint: put $\xi = B^2/S$ and note that $V(\xi, t)$ satisfies the Black-Scholes equation in $\xi > 0$ and t < T.]

Optional questions

8. Let V(S,t) satisfy the Black-Scholes problem

$$\begin{split} \frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + (r - y) S \frac{\partial V}{\partial S} - r V &= 0 \quad S > 0, \ t < T, \\ V(S, t) &= P_{\rm o}(S), \quad S > 0. \end{split}$$

For some fixed reference price, $S_0 > 0$, set the dimensionless variables $x = \log(S/S_0), \tau = \sigma^2(T-t)$ and $v(x,\tau) = V(S,t)/S_0$. Show that

$$\frac{\partial v}{\partial \tau} = \frac{1}{2} \frac{\partial^2 v}{\partial x^2} + k_1 \frac{\partial v}{\partial x} - k_2 v, \quad x \in \mathbb{R}, \ \tau > 0,$$

$$v(x,0) = p(x), \quad x \in \mathbb{R},$$
(1)

where k_1 and k_2 are constants which you should find (in terms of r, y and σ) and p(x) is a function which you should also find (in terms of $P_o(S)$).

Assuming that p(x) is a "reasonable" function¹, it can be shown that the solution of (1) is infinitely differentiable in x for $\tau > 0$. Hence deduce that

$$v_n(x,\tau) = \frac{\partial^n v}{\partial x^n}(x,\tau), \quad n = 1, 2, 3, \dots$$

are also solution of the partial differential equation in (1) for $\tau > 0$. Infer that if $P_0(S)$ is a "reasonable" function then

$$V_n(S,t) = \left(S\frac{\partial}{\partial S}\right)^n V(S,t), \quad n = 1, 2, 3, \dots$$

$$u(x,\tau) = \frac{1}{\sqrt{2\pi\tau}} \int_{-\infty}^{\infty} p(\xi) e^{-(x-\xi)^2/2\tau} d\xi$$

is C^{∞} in x for $0 < \tau < 1/2\kappa$.

¹For example, if p(x) is integrable on every compact subset of \mathbb{R} and there are constants C > 0 and $\kappa > 0$ with $|p(x)| < C e^{\kappa x^2}$ for all x ensures that the solution

are also solutions of the Black-Scholes partial differential equation for t < T.

9. Show that if we put

$$v(x,\tau) = e^{\alpha\tau + \beta x} u(x,\tau)$$

in (1) then, for certain values of α and β , which you should determine, we can reduce (1) to the heat equation problem

$$\frac{\partial u}{\partial \tau} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2}, \quad x \in \mathbb{R}, \ \tau > 0$$

$$u(x,0) = q(x), \quad x \in \mathbb{R}.$$
(2)

Suppose that $u(x,\tau)$ is the solution to (2) and set $\hat{u}(x,\tau) = u(2b-x,\tau)$ for some constant b. Show that $\hat{u}(x,\tau)$ is also a solution of the heat equation (but not necessarily the initial condition) in (2). Unwinding the transformations that reduced the Black-Scholes equation to the heat equation it is clear that $u(x,\tau)$ leads back to the solution of the original Black-Scholes problem. Show that unwinding the transformations on $\hat{u}(x,\tau)$ leads to the 'reflected' solution

$$\hat{V}(S,t) = S^{2\alpha} V\Big(\,\frac{B^2}{S},t\,\Big),$$

where $2\alpha = 1 - 2(r - y)/\sigma^2$ and $B^2 > 0$.

10. The covariation of two functions or processes, X and Y, on [0, t] is defined to be

$$[X,Y]_t = \lim_{|\pi| \to 0} \sum_{k=0}^{n-1} (X_{k+1} - X_k)(Y_{k+1} - Y_k).$$

Show that if both X and Y have finite quadratic variation on [0, t]then $[X, Y]_t$ is finite and satisfies $2|[X, Y]_t| \leq [X]_t + [Y]_t$. Assuming $[X]_t$ and $[Y]_t$ are finite, show that

- (a) $[X + Y]_t = [X]_t + [Y]_t + 2 [X, Y]_t$,
- (b) $[X,Y]_t = \frac{1}{4} ([X+Y]_t [X-Y]_t).$
- (c) if X and Y are C^1 functions on [0, t] then $[X, Y]_t = 0$.
- 11. Let $(W_t)_{t\geq 0}$ and $(Z_t)_{t\geq 0}$ be two Brownian motions. They are correlated with correlation $\rho \in (-1, 1)$ if

(a) for all
$$s, t \ge 0$$
, $\mathbb{E}[(W_{t+s} - W_t)(Z_{t+s} - Z_t)] = \rho s$,

(b) for all $0 \le p \le q \le s \le t$, the pair $(W_q - W_p)$ and $(Z_t - Z_s)$ are independent and the pair $(W_t - W_s)$ and $(Z_q - Z_p)$ are also independent.

Show that in this case $[W, Z]_t = \rho t$, in the sense that

$$\mathbb{E}\big[[W, Z]_t - \rho t\big] = 0 \quad \text{and} \quad \mathbb{E}\big[\big([W, Z]_t - \rho t\big)^2\big] = 0.$$

[Hint: first show that if X and Y are random variables with second moments then $|\mathbb{E}[XY]| \leq \frac{1}{2} (\mathbb{E}[X^2] + \mathbb{E}[Y^2])$.]

[Note that if we define a process by $f_t = f(W_t, Z_t, t)$ where f(W, Z, t) is $C^{2,2,1}$, then (the differential version of) Itô's lemma is

$$df_t = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial W} dW_t + \frac{\partial f}{\partial Z} dZ_t + \frac{1}{2} \frac{\partial^2 f}{\partial W^2} d[W]_t + \frac{1}{2} \frac{\partial^2 f}{\partial Z^2} d[Z]_t + \frac{\partial^2 f}{\partial W \partial Z} d[W, Z]_t,$$

where all functions on the right-hand side are evaluated at (W_t, Z_t, t) . The result derived above simplifies this expression.]