B8.3 Mathematical Models for Financial Derivatives
Hilary Term 2019

Problem Sheet Three

Your grade will be determined from the best five answers to the first seven
questions.

1. Assume a zero interest rate, r = 0, in this problem (to avoid problems
with the time-value of cash payments). Let 0 = t) < t1 < tg < -+- <
tn—1 < t, =t be a partition of the interval [0,¢]. Let S, > 0 be the
price of a share at time u € [0,¢], A, be a number of shares at time u
and abbreviate S, = Sk, Ay, = Ag. At time {9 = 0 we buy Ag shares,
at price Sp, and hold these until time ¢;. At time ¢; we buy (or sell)
enough shares, at price S1, so that we have Ay shares, which we hold
until time ¢y, at which point we buy (or sell) enough shares, at price
S, so that we have Ay shares. We continue this process until time
tn—1, when we end up with A,,_; shares which we hold until ¢, =t at
which point we sell all shares we hold, at price S,,. Show that the cost
of this procedure is

n—1
=285 (Sin = 5)).
j=0

[Hint: at time step tx41 the change from holding Ay shares to holding
A1 shares is equivalent to selling all the Ay shares and then buying
back Ay shares, with both the trades being executed at share price

Sk+1-]
Following the hint, the cost is

AoSo + (A1S1—AgS5h)
+ (A28 — Ay Ss)
+
+ (Ap—1Sn-1—An—2S5,-1)
— Ap_1 5y

which can be rearranged to read
Ao(So—51)+A1(S1—52)+- - Ap2(Sn—2—Sn—1)+An_1(Sn—1—5n)

which can be written more briefly as

n—1

=D Aj(Sj1 = 5j).

J=0



Show that, formally at least, in the limit |7| — 0 the cost becomes

t
Cy = —/ A, dS,
0

where the integral is an It6 integral (with respect to S,) and hence
deduce that
dCy = —Ay dS;.
Formally we have
n—1 t
lim A]’(SjJr]_ - S]) = / Au dSu
0 0

|| —0 4
J:

by analogy with the Ito integral. Putting the — sign back we get

t
Ct:—/ A, dS,
0

and differentiating gives

dCy = —Ay dS;.

. Show that if V(S,t) is a solution of the Black-Scholes equation (for
S >0 and ¢t <T) then so too are:
(a) aV(S,t) with a € R;
Linearity of the Black-Scholes equation.
(b) V(bS,t) with b > 0;
Set $=bS5 > 0 so that the chain rule gives
9 _0809 0
oS 9S8 98 " as’
Multiplying this by S gives
0 0 5
S—==b5—=5—.
o] oS 08
From this we find that

0 0 ~ 0 ~ 0
SaS(Sas>Sag<Sa§>

which, when expanded, reads




Subtracting (1) then gives

82 2

5 2
S 752 =52 EY

Thus, if for S > 0 we have

1°)% 1 9 09 0%V oV B

5 (S,t) + 50 2s 882(5 t)+ (r— )SGS(S t)y—rV(S,t)=

and we set V(S,t) = V(bS,t) then for S = bS > 0 we also have

<

oV
ot

(8,t)—rV(S,t) =0,

PV 5 t)+(r—1)§ 2

——(8,t) + 1% §?
D52 0

>

(c) aV(bS,t) witha € R, b > 0.
Parts (a) and (b) together with linearity of the Black-Scholes
equation.

3. A log-option is an option with the payoff function
Po(St) = log(S1/K),

where the “strike” is positive, K > 0. Find the Black-Scholes value
function for a European log-option. (Such options are not traded,
but they occur in the theory underlying the CBOE’s VIX (variance
index) which measures the S&P500 index’s variance, allowing futures
and options to be written on this variance.)

There are at least two methods to do this.
Method I: reduction to a system of ODEs
Observe that

182 1

0

aS
which implies that

9 L, P

This suggests we try a solution of the form
V(S,t) = a(t) log(S/K) + b(t),
which gives

o : oV 2 2V _
i a(t)log(S/K) + b(t), S% a(t), S 552 = —a(t).



The payoff V(S,T") = log(S/K) gives the boundary conditions

Substituting into the Black-Scholes equation gives

(a(t) — 7 a(t)) 1og(S/K) + (b(t) = rb(t) + (r =y — 30%) a(t)) = 0.
As this has to hold for all S > 0, we must have the IVPs
a(t) —ra(t) = 0, a(T) = 1,
b(t) —rbt) = —(r—y— 10?)a(t), bT) = 0.
The first IVP integrates to give
a(t) = e~

and, with the aid of an integrating factor, the second one then becomes

(T 000)) =~y %), BT =0,

which, when integrated from ¢ to T, gives

T
b(T) — e T8 p(t) = —/t (r—y—s30?)du= (r—y—30°) (T —1).

Thus
bt)=e " TV (r -y~ Lo?) (T — 1)

and so
V(S,t) = e T (log(S/K) + (r —y — 302) (T — 1))
Method II: use the Feynman-Kac representation
Write the solution as
V(S,t)=e TR, [bg(ST/K) | Sy = 5]7

where S; evolves as

ds
?t =(r—y)dt+odW;.

t
Setting 7 =T —t, S; = S and integrating the SDE gives

St =85 exp ((r— — %UQ)T—i-O'WT)



from which it follows that
log(Sr/K) =log(S/K) + (r —y — %02) T+0oW;.
Taking expectations gives

By log(Sr/K) | S = S|

Ee| log(S/K) + (r =y — $o*) 7+ o W, |
= log(S/K)+ (r—y— 2107+ oK [ W, ]

= log(S/K)+ (r—y—30%) (T —t).
Therefore
V(S,t) = e T (log(S/K) + (r —y — 30*) (T — 1))

. Find the Black-Scholes price function of a European digital call option,
i.e., an option whose payoff function is

0 if0<Sr<K,

S :1 =
J(51) = Hsrzr) {1 if Sp > K.

There are numerous ways to do this. Here are three.
Method I: use the Feynman-Kac representation

The Feynman-Kéc representation of the solution is
Ca(S,t) = e " TV Ey [ 1(5,557 | St = 5]

where S; evolves as

ds
== (r —y)dt + o dW;.
St
Note that K, [ lig,> K}] is also the probability that Sp > K.
Integrating the SDE from ¢ to T" with 7 =T — t and Sy = S gives
Sp=Sexp((r—y—io )T+UW)
and so we can write
Ei[L{s,>xy|Se=S] = prob(Sr=K)
= prob(Sexp —%UQ)T—I-O'WT) ZK)
= prob(logS+ (r—y— %02)7'—# oW, > logK)
= prob(aW > log(K/S)—(r—y— %02)7')
= prob(\/ TZ >log(K/S)— (r y—%02)7')7



where Z ~ N(0,1). Therefore we have

log(K/S) — (r —y — 50)7 )

o’r

Et[l{STZK}|St = S] == pI’Ob(Z >

This is the same thing as

_z< log(S/K) + (r —y — 302)1 )

o2t

Et[l{STZK} | St == S] = pI‘Ob(

and since if Z ~ N(0,1) then —Z ~ N(0,1) (normal distributions are
invariant under reflection about the mean, which in this case is zero)
we see that

log(S/K) + (r —y — 502)7 )

Ei[1{sr>k)|S:=8] = prob(Zg -
Z

o’T
= prob( < d_)
= N(d-)
where, as usual,
_ log(S/K) + (r —y — 50°) (T — t)
T o2(T —t) ‘

Multiply this by e~"(T—) gives the option price as
Ca(S,t) = e " THIN(d_).

Method II: differentiate minus a call with respect to strike

The Black-Scholes price of a standard call option is
Cps(S,t) = S e VTIN(d) — Ke T~ N(d_),

where as usual

_log(S/K) + (r—y =+ $0%)(T —t)
a o2(T —t) '

+

It follows that

2log(S/K) 4 2(r —y)(T —t)
e 02(T—t)y

and
%(di — d%) =log(S/K)+ (r —y)(T —t)



or, equivalently,

G e YTt p=5d% _ | o~r(T—1) g—5d>
od ad_
Note that dy — d_ = \/o?(T —t) implies that a—f; K

From these it follows that

8Cbs
0K

(S5,t) = —e"T"ON(d)
od_
0K

ad.,.

+ S E_y(T_t) N,(dJr) 87

_ Ke—r(T—t) N,(d,)

_ 76—T(T—t) N(d,)

1 152 12\ Od
—y(T—t) —5d5 —r(T—t) ,—5d* +
+ T (Se e 2% —Ke e 2 ) K

= —e"T=UN(d_).
Differentiating the payoff, Cps(S,T) = max(S — K, 0), gives

OChs _ 0 f0O<S<K
0K (S’T)_{ -1 if0<K <S,

which is minus the digital call’s payoff.
Note that K does not explicitly occur in the Black-Scholes equation
so we find that

0 (0Cks 1 » g 0Chs 9Ch
8K< ot 5 gz T =995

2 —rC’bs> =0

and hence, swapping the order of differentiation (0Cys/0K is clearly
sufficiently differentiable for ¢ < T')

0 (0Ch L 22 0% [0Chs 0 [ 0Chs OChs\
ot ( oK )*2 S o5 o )T 9555 o )7 Lo ) =
This shows that 9Cps/0K is a solution of the Black-Scholes equation

(for t < T). In order to get the payoff of the digital call we simply
take —0Chs/OK. That is, the function

8Cbs

Cd(Svt) == BYS

(S,t) =e " T=IN(d)

satisfies the Black-Scholes problem for the digital call option.



—C(K — dK)/dK
——C(K) /dK

C(K — dK) — C(K)

dK

Method III: market practice

Typically what a trader will do to synthesise a digital call is first go
long a call with strike K — dK and short a call with strike K, both
with the same expiry 7. The payoff is

0 if $ < K — dK,
Chs(S, T; K—dK)—Cps(S, T; K)={ S—K+dK it K-dK <S8 <K,
dK if S > K.

To scale this up so the payoff varies between 0 and 1 (rather than 0
and dK), they take 1/dK in each of the calls to get the continuous
piecewise linear function

0 it S < K —dK,
CbS(SvTaK_dK)_CbS(S7TaK) S—K .
T =S 1+ 8528 i K 4K < S <K,
1 it S > K.

They then choose dK as small as possible. (If K —dK < Sy < K they
make a profit of 1 + (St — K)/dK so this is an arbitrage—this is one
way traders make their money.)

The value of the position before expiry is simply

C(S,t; K —dK)—C(S,t; K)
dK

and in the limit that dK — 0 this gives

. C(S K —dK)-C(S,t,K)  0C .
d}?go dK B _3K(S’t’K)

as above.



A European digital put option has the payoff f(S7) = 1{5,<x}. Use a
no arbitrage argument to establish a digital put-call parity result and
hence find the Black-Scholes price function for a digital put.

Let Cq4(S,t) be the price of the digital call and P4(S,t) be the price of
the digital put, both having the same strike K > 0 and expiry date T'.
At expiry we either have

0<Sr<K o 0<K<Sr.

The two events are mutually exclusive and one or the other must
happen. In the first case, Cq(S7p,T) = 0 and Py(S7,T) = 1. In the
second case Cq(St,T) =1 and Py(St,T) = 0. Thus we always have

Cd(ST,T) + Pd(ST,T) =1.

That is, if we hold both we are guaranteed one unit of currency at
time 7. The present value of one unit of currency at 7' at some time
t < Tis e T and so digital put-call parity is

Ca(S7,t) + Py(Sp,t) = e 70,

Therefore we have
Py(S,t) = e T —(Cy(S,1t)

— o r(T—t) _ o—r(T-1) N(d_)
= (T (1 - N(d_))

= e "TUN(-d_).

. Show that if V'(S, t) is a sufficiently differentiable solution of the Black-
Scholes equation (for S > 0 and ¢ < T') then so too is

oV
W(S,t) =5 — t).
We have
ow o0 [0V ow 0 ov
07§_S85<6t)’ Sas_sas( as)
and e o 5
w Vv Vv
2 — 9g29 V. 307V
S 052 s 052 5 083
RV LBV
= S<256S2+S a53>
Y Y
595 (S as2>



Therefore, substituting W into the Black-Scholes equation gives

ow O*W ow

2715242 _ 7
5 +50°8 852—1—(7“ y)S(?S rW
L0 (OV | 5 n PV oV

By induction, conclude that if V' (.9, ¢) is sufficiently differentiable then

8 " nanv
<SaS> V(S,t), S"oer(S1), n=234,...

are also solutions of the Black-Scholes equation.

Let V(S,t) satisfy the Black-Scholes equation and let

) o0\?2 a\*
Wi =82V, W2—<Sas> v, W3_<585> V...

We have just shown that (assuming sufficient differentiability) W1 (.S, t)
is a solution of the Black-Scholes equation. It is clear that

oW

and so (assuming sufficient differentiability) Ws(S, ) is also a solution.
Suppose that W1 (S, t) through to W,,,(S,t) are all solutions. Then we

have oW,
m 7t = — 7t
Winy1(S,t) =S 95 (S,1)

which is, by the previous part of the question, also a solution (assuming
enough differentiability). Thus if V(S,t) is a solution so too is

(s2) viss

for n =1, 2, 3,... (assuming sufficient differentiability of V' (5,t)).

Now observe that both of
oV

Sﬁ’

and

8 \? o (. 0V , 2V OV
<Sas) V(S,t)—SaS<58S) =55+ S5

10



are both solutions of the Black-Scholes equation. Since the Black-
Scholes equation is linear it follows that the difference of these two
solutions,
5282l
052
is a solution. Thus the second result is true for n = 1 and n = 2.
Suppose it is true up to and including n, so
o, o*V

S%’ S 352"

are all solutions. Then observe that

O (VN OV Y
SasC;a%>"SzMn+S FXaal

7

5 S 59"

but we know that
oV
asm

a(Wav

535 ERR

55 > and nS

are solutions and so, by linearity,

n+1 n n
S"“a v _ 6<5”ZS‘;>—7’LS”8V

osn+l oS

is also a solution.
See Question 8 for another, possibly simpler, way to do this question.
. Let Cyws(S,t; K, T,r,y,0) denote the solution of a Black-Scholes call

value problem with strike K, expiry date T, risk-free rate r, continuous
dividend yield y and volatility . Consider the Black-Scholes problem

OV | o OV oV B
o + 30% 5 w+(r y)S% rV =0, S§>0t<T
1
V(S, T) = ﬁmax(sg — KS,O), S > 0.
Show that

1
V(Sv t) = ﬁCbs(SB,t; K37T7 T?ﬁ? 6)

where § = 3y — 2r — 302 and 6 = 30.

[Hint: either write S = S% and do a change of variables in the terminal
value problem or think about the payoff and risk-neutral process for

Sy = S}.]
As the hint suggests, there are (at least) two ways to do this question.

Method I: change of variables in the Black-Scholes equation

11



Put $ = §3, K = K3 and V(S,t) = V(S,t) in the Black-Scholes
problem. The chain rule gives

0 _ 089 _ 00

aS ~ 89S 9% 08
and so 9 5
— = —. 2
S(?S 3585 (2)

Applying this to itself we get

0? 0 ey 07 o,
2 2
— — = - 95—
SaSQ—l—SaS 95 852+ Y,
and subtracting (2) gives
0? y 07 0
2 07 _ga2
¥ o5 = e a8
Thus we have
. 2y 2 (7 a7
W _V GOV _ a0V o0V _ 500"
ot ot a8 oS’ 852 — 052 85
and so, in terms of V and S , the Black-Scholes equation becomes
oV PV LIV LSOV
— + 95% = + 3(r — ~ =0
ot 30 ( 052 as) =953
or . be .
N ~ OV A
%—‘;%—%(30)2528—V+3(r—y+02)5ﬁ —rV =0
Setting
6 = 3o, r—149 = 3r—3y+ 30>
§ = 3y—2r—307

ot 1277 per TV 2%

which is the standard Black-Scholes equation for V (S, t), but with &
and g replacing o and y. The payoff becomes

max(S — K,0).



Thus V(S,t) is 1/K? regular calls, but with volatility 6 and dividend
yield g, i.e.,

V(5.1) = g Coa(8,1: K. T, 9,0).

Reverting to the original variables, this gives
1 L
V(Sa t) = ﬁ Chs (53’ L K3a T,ry, J)a

with & = 30 and § = 3y — 2r — 302,
Method II: change of variables in the Feynman-Kac solution
In this case we go back to the Feynman-Kac solution
T e
V(S,t)zﬁe (T t)Et[(S%*KS)WSt:S]a (3)
where S; evolves as

dsS;

— = (r—y)dt+odW,. (4)
St

If S; evolves according to (4) then It6’s lemma tells us that S; = S
evolves as

dS; = 352dS;+35;0%52dt
= 3(r—y)SPdt+30S;dW, +30%S} dt
= 3(r—y+0?) Sedt+30 S, dW;.

If weset 6 =30 and r —§ = 3r — 3y + 302, ie., § = 3y — 2r — 302,
then we can write this as
ds
St:(r—g})dt—i—&th. (5)
t

Now if we set K = K3 and note that if Sy = S then S“t = 53, we can
write (3) in the form

V(S.1) = g e TR Sy~ K)F| = 5°),

where S evolves according to (5). This is precisely the formula for
1/K? call options with initial price S3, strike K = K3, expiry T, risk-
free rate r, dividend yield § = 3y — 2r — 302 and volatility 6 = 30.
Thus 1

V(S7t) = ﬁ CbS(Sgat;KgaTv T,@,é’)

13



7. Show that if V(S,¢) is a solution of the Black-Scholes equation (for
S>0andt<T)and B >0 then

S\ (B?
t)=| = —,t
where 20 = 1 — 2(r — y)/0?), is also a solution of the (same) Black-
Scholes equation.

[Hint: put ¢ = B?/S and note that V(¢,t) satisfies the Black-Scholes
equation in £ > 0 and t < T'.]

As the hint suggests, write

S B2

wisn=(8) ven. =2

where 8 =2a =1—2(r —y)/o?, and note that

ot B ¢

s~ 52 5
Clearly we have
oW S\* ov
W(Sa t) = <B> E(&t)- (6)

The chain rule gives

MW 51y = (S)B (Gvien+ g5 g

o ) |5 95 ¢
_ % (Z)B (ﬁv(f,t)—f?g(&t))
e 5%(5, t) = (g)ﬂ (BV(é,t) —E%‘g(&ﬂ) (7)

‘We then find that

92w  B-1(8\ ov

s = 22 (3) (svien-eSien)
B

; ;(g) m“%<BV@®—£%Z@ﬂ)

e (w&zw —éav(&t)> -

e
¢ <(B -5 —é‘z)g(f,w)

14



from which it follows that

92w
S? 552 (S,1)
S\? [, 0%V
= (3) (¢3een-

(5—1)5*(5, t)+6(8 -

23

1)

vien)

(8)

Substituting (6)—(8) into the Black-Scholes equation for W (S, t) gives

8W 2 oy OPW ow
( OV
v | B (g e~ P DES 4503 -
()
+ (r— )<5V €%>_Tv
(§>) + 307 f@(f t)
S\7”
- <B> - (02 (B-1)+ ()€ o
+ (B B-1)+(-y) —r) V) |
Now observe that f — 1 = —2(r — y)/o? so that
~(@PB-D+(r-y)=—-y), 30°B-D+@-y=
which means that
ow 0*wW ow
8t 1 252 6S2+( )Sg—?”w
52 20 4
~(5) (G e ronege )
=0.

o)

You might look at Question 9 to see one way to derive this result.

15



Optional questions

8. Let V(5,1t) satisfy the Black-Scholes problem

2
+§025225¥+(r—y)52‘§—rv:0 S>0,t<T,

V(S,t) = P)(S), S>0.

av
ot

For some fixed reference price, Sy > 0, set the dimensionless variables
r =10g(S/So), T = o*(T —t) and v(z,7) = V(S,t)/Sy. Show that

ow 0% ov
Eziwﬁ‘kl%—]@v, reR, 7>0, (9)

v(z,0) =p(z), x€R,
where k; and ko are constants which you should find (in terms of r, y

and o) and p(x) is a function which you should also find (in terms of

Bo(5))-

With
x =log(S/Sy), 7= 02(T —t), wv(x,7)=V(S,t)/So
we have
9 _0xr 9 190
98  9S dr S Ox
and hence
g9 _ 9
oS  Ox’

Applying this formula to itself gives

o2 0 0 , 02 0
aaﬂ_sas<sas>_5652+sas

and subtracting the previous equation gives

e _ 0 9
052 0x? Oz
Thus

Sal_ @ 5282V_ @_%
2SS ~ "Yor’ 082 ~ "9\ oz2 oz )

We also have

9 _9r 9 5,0

ot ot or  °C or
and so oy 9
ov. _ 2 9V

o~ 7 g



Substituting these expressions into the Black-Scholes equation gives

v v Ov ov
P T Z - _ _ - -
o SoaT+20 So <8x2 8x>+(r y)Sgax rSov =20
and cancelling the common factor of Sy, dividing by 0% and rearranging
gives

v _, 0 ((""_y)_l)@_iv
or 2 0x2 o2 2) 0x o2
With the constants ki and ko defined as

kl_(r_y) 1 k‘Q_T

2 27

o o
this reduces to 5 o2 5
v 0% v

— =5—+k — — k. 10

or 2 0x2 i ar 27 (10)

Clearly t = T translates to 7 = 0 and so the terminal condition

switches to an initial condition
Sov(z,0) = Py(S) = PO(SO em)

and so

v(x,0) = ;PO<SO ex> = p(x). (11)

Assuming that p(z) is a “reasonable” function!, it can be shown that
the solution of (9) is infinitely differentiable in x and 7 for 7 > 0.
Hence deduce that

871
vp(z,7) = TmZ(x,T), n=123,...
are also solution of the partial differential equation in (9) for 7 > 0.

If v is infinitely differentiable in x and 7 for 7 > 0 then we have

o™ Ov B 0 0™ a" Ov B 0 0™ o 9% B 9% 9w

dzn dr ~ Or 9z’ Gz dx dx dx™’  dxm dx? Oz dam’

and so taking 0"/0x"™ of the partial differential equation for v gives

ﬁ @ _ﬁ l@+k @—k
oxn \or )  Ozn \ 2 Ox2 1o 2

'For example, if p(z) is integrable on every compact subset of R and there are constants

C > 0and k> 0 with |p(z)| < C'e"*” for all & ensures that the solution
1 - —(a-€)2/27
u(x,7) = — e d
@r) == [ n© ;

is C* in z for 0 < 7 < 1/2k.

17



and hence interchanging the order of differentiation we have

O (O _y O (O 0 (0 0
or \9an) ~ 2922 \9an) " " 0z \0am) " Gam
showing that
0"
n(T,t) = (2,1
on(ar 1) = 0 (a1
is also a solution of the partial differential equation (for 7 > 0).

Infer that if P,(S) is a “reasonable” function then

Vio(S, 1) = (5885)"1/(5,@, n=1,2,3,...

are also solutions of the Black-Scholes partial differential equation for
t<T.

Reasonable here means that V (S, ¢) is infinitely differentiable in S and

t for t <T'. Since

0 0
235

it follows that

o" o\"

and as the constant coefficient equation in z and 7 is equivalent to the
Black-Scholes equation in S and ¢, it follows that if V'(S,¢) satisfies
the Black-Scholes equation then

V(S t) = <S a?g)n V(S,t)

also satisfies the Black-Scholes partial differential equation (for t < T').

. Show that if we put

€A7—+C:c u(:z:, 7_)’

v(,7) =
in (9) then, for certain values of A and C, which you should determine,
we can reduce (9) to the heat equation problem

ou | 0%u

T_128 L eR >0
ar  29z2 7 g (12)

u(z,0) =q(x), zeR

If we set

eATJer u(

v(z,T) = x,T)

18



we find that

Ov = ATHCe <Au + 8u> )

or or

@ _ At+Cx 87“’

% = € (Cu + 8:70) ;
&% Ar+Ca [ 2 du  Ou

and substituting this into (10) and cancelling the common term e47+¢#

gives

ou L 0% ou

O —i—(%CQ—i—le—kg) U.

By choosing
C=—ki, A=31C*+kC—ky=—-3ki—ke

this reduces to the heat equation

ou 4 0*u

or 2 9a2 (13)
The initial condition (11) becomes
¢“u(w,0) = p(x)
and so
u(z,0) = e % p(x). (14)

Suppose that u(z, ) is the solution to (12) and set u(z,7) = u(2b —
x,7) for some constant b. Show that @(z,7) is also a solution of the
heat equation (but not necessarily the initial condition) in (12).

Assume that u(z, 7) satisfies (13) and set u(x,7) = u(&,7) where & =
2b — z and b is a constant. It follows from (13) that

ou , . o T
E(x,T) =3 8:2‘2 (ﬂ:,T)
Clearly
0 o 0 @ 2
or Ox 0 03 0x2 032
and so

ot ou , . 924, T
E(x‘)T) = E(xaT)a W(xaT) - w(x77—)~
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Therefore

ou , . TR ol 024
E(‘T77—) = % aiz (5657-) — 5(1”77—) = % ch?T)?

that is @(z, 7) = u(2b — x, 7) also satisfies the heat equation.

Unwinding the transformations that reduced the Black-Scholes equa-
tion to the heat equation it is clear that wu(x,7) leads back to the
solution of the original Black-Scholes problem. Show that unwinding
the transformations on u(z,7) leads to the ‘reflected’ solution

. S 2 B2
V(S,t) = (B> V<§,t>,
where 2a = 1 — 2(r — y)/o? and B > 0.

Set
V(s,t) = SoeAT+C$u(:E,T),

V(S,t) = SpeTrCT (2 — 2, 7),

where

T = log(S/So), S = Spe”.
From the first and third of these expressions we have
u(x,7) = e~ AT—Cx V( Spe”, t)/So
and hence
w(2b —x,7) = e ATTROTOTY (G2 1) /).
Therefore
V(S,t) = SpedTHeT u(2b — z,7)
= G eATHCE —AT=20b+Cx V(Soe%_x,t)/So

o2C (z—b) V(Spe?7 1),

If we now put b = log(B/Sy) for some B > 0 then

S

20
e2¢@=b) — exp(2C log(S/B) ) = <B>

and as
2C = —2k; =1—2(r —y)/o? = 8,

(as earlier, set 5 = 2a) we can write this as

S\"
2C(z—=b) _ [ X
e ( B> .
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10.

We also have
2

B
Soe®*™* = Sy exp(2log(B) — log(S) — log(Sp) ) = 5

and thus we have

where 8 =1—2(r — y)/o?.

The covariation of two functions or processes, X and Y, on [0,¢] is
defined to be

n—1

[X,Y]; = lim Z(Xk+1 — X3) (Yip1 — Ya).
k=0

|7r|—0 “—

Show that if both X and Y have finite quadratic variation on [0, ¢]
then [X,Y]; is finite and satisfies 2’ (X, Y], } < [X]¢ + [Y]s-

Since (z +y)? > 0 and (x — y)? > 0, it follows that 2 |zy| < 22 + ¢2
for any real numbers z and y.

So, with X = (Xk—i-l - Xk) and 0Y;, = (Yk+1 — Yk),

2[6X5, 0V, | < (6X3)° + (6%3)?

and hence
n—1 n—1
2> oXeoYi| < 2 ) [6Xkavi]
k=0 k=0

1

3
|

(]

((6X%)* + (6Y3)?)

_ (::1(5Xk)2) n (2(5}@)2).

In the limit || — 0 this shows that

2| [ X, V]| < [X]e + [Y]e

Assuming [X]; and [Y]; are finite, show that

(&) [X +Y]e=[X]e + [Y]: +2[X, Y],
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> (0Xk +0Yr)
= nz_:l( (6Xk)” + (0Y2)° + 20Xy, 5Yk>
- (Somr) = (o) +2( S )

and taking the limit |7| — 0 gives the result.
(b) (X, Y] =3 ([X + Y] — [X - Y]),
From their definitions [-Y]; = [Y]; and [X, -Y]; = —[X, Y], so
(X+Y] = [X]i+[Y] +2[X,Y],
(X -Y], = [X]e+[Y]—2[X,Y]

Subtracting the second from the first then dividing by 4 gives the
result. As a bonus, adding the two shows that

(X +Y+[X =Y =2[X]s +2[V].

(c) if X and Y are C! functions on [0,#] then [X,Y]; = 0.
If X and Y are C! then so too are X +Y and X — Y. But we

know that the quadratic variation of a C'' function is zero, hence
[X+Y]; =0and [X —Y]; =0 and so the result follows from (b).

11. Let (W3)¢>0 and (Z¢)¢>0 be two Brownian motions. They are correlated
with correlation p € (—1,1) if

(a) for all s,t > 0, E[(Wiprs — Wi)(Zigs — Z4)] = p s,

(b) for all 0 < p < ¢ < s < t, the pair (W, — W)) and (Z; — Z)
are independent and the pair (W; — W) and (Z, — Z,) are also
independent.

Show that in this case [W, Z]; = pt, in the sense that
E[[VV, 2 — ,Ot] =0 and E[([W, Z) — pt)z} =0.

[Hint: first show that if X and Y are random variables with second
moments then |E[ XY ]| < (E[X?] + E[Y?]). ]

As in the previous question, |zy | < %xQ + %yz for any real variables x
and y. Therefore for any real random variables X and Y with second
moments

|E[XY]| <E[|XY|] <3E[X*+Y?] = IE[X?] +iE[Y?].
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First consider

n—1

E[ (§5Wk52k> —pt} = E[Y (6Wi 62 — péty) ]

= E E[éWkézk—p5tk]
k=0
n—1

- Z(E[5Wk5zk] —pdty) = 0.

This is true for any nontrivial partition 7 and so it is true in the limit
|| — 0. Next consider

|
—

E[g(@m 82, — pétk)ﬂ _ E{n (6W; 62; — pot;) (W 624, — p5tk)]
k=0 0

S
T =
L

- E[k: (Wi 82, — pots)” |,

o

using the independence of 0W;, 6W}, dZ; and §Z;, for j # k. Thus

n—1

E[Z((awkézk—patk)ﬁ

k=0

n—1
= B[ (W) (924)° — 28t 0Wi 624 + (p 1)’
k=0

n—1

_ Z(E[@Wk)z(wkﬁ —2p0t, E[6W, 6Z;] + (p5tk)2)

- S stomrenr)- o).

k=0

Now observe that
|E[(0W3)*(02:)°] | < SE[(0Wi) "] + 3E[(520) "] = 3 (6t0)*,

and so, since p € (—1,1) implies 3 — p? > 2,

0 < E[kz;o((awkazkpatk)ﬂ < kz;o(gpz) (6t4)°
< B-Pn S o
k=0
= (3=p%)In|t.
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Taking the limit |7| — 0 gives the result.

[Note that if we define a process by f; = f(Wy, Zy,t) where f(W, Z,t)
is 0221 then (the differential version of) It6’s lemma is

_ of of of
dfy = Sodt+ oo AW + > dZ,
o°f o*f o’ f
1 1974 1 W.
gy AWt 257 A2t Gy AV 2

where all functions on the right-hand side are evaluated at (W3, Z, t).
The result derived above simplifies this expression. ]

This is simply a comment.
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