
B8.3 Mathematical Models for Financial Derivatives

Hilary Term 2019

Problem Sheet Four Solutions

Your grade will be determined from the best five answers to the first seven
questions.

1. The price of a share evolves according to

dSt
St

= µdt+ σ dWt, S0 > 0,

which implies that the share does not pay any dividends. There is a
constant, risk-free, continuously-compounded interest rate r. A non-
standard European derivative security is written on this share; in ad-
dition to paying the up-front price of the derivative the holder of the
claim must also pay an amount β Sαt dt over each interval [t, t + dt)
during the life of the derivative.1 Let the derivative security’s price
function be V (S, t), for S > 0 and t ≤ T .2 By suitably adapting either
the delta-hedging or the self-financing replication argument, show that
V (S, t) must satisfy the partial differential equation

∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ r S

∂V

∂S
− r V = β Sα.

Delta-hedging argument: Form a portfolio long one option and

short ∆t shares. The market value of the portfolio is Mt = Vt −∆t St
and the change in the hedging cost is

dΠt = dVt −∆t dSt − β Sαt dt

the extra term (in red) being because the holder of the derivative
security has to pay β Sαt dt during the interval [t, t+ dt). Itô’s lemma
for Vt = V (St, t) gives

dVt =

(
∂V

∂t
(St, t) + 1

2σ
2 S2

t

∂2V

∂S2
(St, t)

)
dt+

∂V

∂S
(St, t) dSt.

Substituting into the expression for dΠt gives

dΠt =

(
∂V

∂t
(St, t) + 1

2σ
2 S2

t

∂2V

∂S2
(St, t)− β Sα

)
dt+

(
∂V

∂S
(St, t)−∆t

)
dSt

1Here α is a real number and β has dimensions of [price]1−α/[time].
2This means that if St is the share’s price then the derivative’s price is Vt = V (St, t).
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and at time t the only random term here is dSt. If we set

∆t =
∂V

∂S
(St, t)

the change in the hedging cost becomes deterministic (i.e., not ran-
dom). At this point we could either hold the portfolio until time t+dt
or we could sell it for the market price, put the money in the bank and
earn interest. As both of these strategies are risk-free, we must have

dΠt = rMt dt

or there would be an arbitrage opportunity. Written out in full this
becomes(
∂V

∂t
(St, t) + 1

2σ
2 S2

t

∂2V

∂S2
(St, t)− β Sαt

)
dt = r

(
V (St, t)− St

∂V

∂S
(St, t)

)
dt.

Cancelling the the dt term and rearranging gives

∂V

∂t
(St, t) + 1

2σ
2 S2

t

∂2V

∂S2
(St, t) + r St

∂V

∂S
(St, t)− r V (St, t) = β Sαt .

Now recall that viewed from time zero, say, we have

St = S0 e
(r−σ2/2)t+σWt

so it follows that St could take any positive value (because Wt can
take any real value). Thus we way as well drop the subscript on St
and just write S, in which case we have the (extended) Black-Scholes
equation

∂V

∂t
(S, t) + 1

2σ
2 S2 ∂

2V

∂S2
(S, t) + r S

∂V

∂S
(S, t)− r V (S, t) = β Sα,

which holds for all S > 0 and t < T .

Self-financing replication argument:

Let St denote the price of a share and Bt the price of a bond. We have

dSt
St

= µdt+ σ dWt,
dBt
Bt

= r dt.

The solution of the bond-pricing equation is simply Bt = B0 e
rt and

so any function of the bond price can just as easily be written as
a function of t (which is what we will do). Construct a portfolio
consisting of φt = φ(St, t) shares and ψt = ψ(St, t) bonds. The value
of the portfolio at time t is

Φt = ψt St + ψtBt,
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which could also be written as

Φt = Φ(St, t) = φ(St, t)St + ψ(St, t)B0 e
rt.

We find, from definition, that

dΦt = Φt+dt − Φt

= (φt + dφt)(St + dSt) + (ψt + dψt)(Bt + dBt)− φt St − ψtBt
= φt dSt + ψt dBt + (St + dSt) dφt + (Bt + dBt) dψt.

The self-financing condition is now

(St + dSt) dφt + (Bt + dBt) dψt = +β Sαt dt,

the term in red being because we have to pay out β Sαt dt if we hold the
derivative security and we fund this by the difference between what
we sell in shares and what we buy in bonds. Thus we have

dΦt = φt dSt + ψt dBt + β Sαt dt

=
(
r ψtBt + β Sαt

)
dt+ φt dSt.

Next we note that we can also write Φt = Φ(St, t) and use Itô’s lemma
to deduce that

dΦt =

(
∂Φ

∂t
(St, t) + 1

2σ
2 S2

t

∂2Φ

∂S2
(St, t)

)
dt+

∂Φ

∂S
(St, t) dSt.

Viewing these equations at time t, the only random term is dSt and
so we must have

φt =
∂Φ

∂S
(St, t)

and then, from the dt terms, we must also have

∂Φ

∂t
(St, t) + 1

2σ
2 S2

t

∂2Φ

∂S2
(St, t) = r Bt ψt + β Sαt .

From the definition Φt = φt St + ψtBt we have

ψtBt = Φt − φt St

= Φ(St, t)− St
∂Φ

∂S
(St, t)

and so, rearranging slightly, we end up with

∂Φ

∂t
(St, t) + 1

2σ
2 S2

t

∂2Φ

∂S2
(St, t) + r St

∂Φ

∂S
(St, t)− rΦ(St, t) = β Sαt .
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View from, say, time zero this is true for all positive values of St and
so we may as well just write it as

∂Φ

∂t
(S, t) + 1

2σ
2 S2 ∂

2Φ

∂S2
(S, t) + r S

∂Φ

∂S
(S, t)− rΦ(S, t) = β Sα

where S > 0. For t < T this portfolio has exactly the same cash-
flows as the derivative security, namely β Sαt dt. So, if we insist that it
replicates the derivative security’s payoff,

Φ(S, T ) = V (S, T )

then it perfectly replicates the derivative security’s cash-flows for all
time t ≤ T and so (by no-arbitrage) it must have the same value as
the derivative security, i.e, V (S, t) = Φ(S, t) for all S > 0 and t ≤ T .
Thus

∂V

∂t
(S, t) + 1

2σ
2 S2 ∂

2V

∂S2
(S, t) + r S

∂V

∂S
(S, t)− r V (S, t) = β Sα.

(a) Assume first that β = 0. Find all separable solutions of the
form V (S, t) = f(t)Sm where m is a real constant. Assume that
f(T ) = 1.

We have

∂V

∂t
= ḟ(t)Sm, S

∂V

∂S
= mf(t)Sm, S2∂

2V

∂S2
= m(m−1) f(t)Sm.

Substituting into the Black-Scholes equation

∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ r S

∂V

∂S
− r V = 0

gives(
ḟ(t) + 1

2σ
2m (m− 1) f(t) + rmf(t)− r f(t)

)
Sm = 0.

As this has to hold for all S > 0, it follows that

ḟ(t) + λ f(t) = 0,

where
λ =

(
1
2σ

2m+ r
)

(m− 1) .

Given that f(T ) = 1, the solution must be f(t) = eλ(T−t) and
hence

V (S, t) = Sm eλ(T−t), λ =
(
1
2σ

2m+ r
)

(m− 1) .
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(b) Find the steady-state solutions of this equation, that is, find so-
lutions V (S) that only depend on S. Assume here that α 6= 1,
α 6= −2r/σ2 and β 6= 0.

In this case ∂V/∂t = 0 and the equation reduces to

1
2σ

2 S2 d
2V

dS2
+ r S

dV

dS
− r V = β Sα.

The equation is linear so we can write the solution as

V (S) = Vc(S) + Vp(S)

where the complementary function, Vc(S), satisfies

1
2σ

2 S2 d
2Vc
dS2

+ r S
dVc
dS
− r V = 0.

and the particular integral, Vp(S), is one solution of the original
equation. One trick to find the complementary function is to
assume that Vc(S) = Sc for some constant c. This gives

S V ′c (S) = c Sc, S2 V ′′c (S) = c (c− 1)Sc

and so we get (
1
2σ

2 c(c− 1) + r c− r
)
Sc = 0.

The only way this can be true for all S > 0 is if(
1
2σ

2 c(c− 1) + r c− r
)

=
(
1
2σ

2 c+ r
)

(c− 1) = 0

which shows that either c = 1 or c = −2r/σ2. As the equation is
linear, the general solution is3

Vc(S) = AS +B S−2r/σ
2
,

where A and B are constants.

In view of the above, to find a particular integral simply look for
a solution of the form Vp(S) = C Sα. We find that

S V ′p(S) = C αSα, S2 V ′′p (S) = C α(α− 1)Sα

and hence

C
(
1
2σ

2 α(α− 1) + r α− r
)
Sα = β Sα.

3Note that this shows that with no dividends S is a solution of the Black-Scholes
equation. This is actually a reality check as a simple no-arbitrage argument shows that S
must be solution of any equation which purports to price options if there are no dividends.

5



Cancelling the terms Sα this reduces to an equation for C, namely

C
(
1
2σ

2 α+ r
)

(α− 1) = β.

As we assume that α 6= 1 and α 6= −2r/σ2, this can be solved for
C to give

C =
β(

1
2σ

2 α+ r
)

(α− 1)
.

This gives the general solution

V (S) = Vc(S) + Vp(S)

= AS +B S−2r/σ
2

+ C Sα,

where C is as given above.

(c) Without doing the details, briefly explain how you would solve
the problem

∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ r S

∂V

∂S
− r V = β Sα,

V (S, T ) = S3,

assuming again that α 6= 1, α 6= −2r/σ and β 6= 0.

The equation is linear so we can add solutions. Write V (S, t) =
V1(S) + V2(S, t) and use the steady-state solution, V1(S), to deal
with the β Sα term on the right-hand side of the equation. We
may as well just take V1(S) to be the particular solution given in
the previous part of the question (i.e., take A = 0 and B = 0 in
the previous part of the question) as this makes the calculations
easier. Thus

V1(S) = C Sα.

Now observe that V2(S, t) = V (S, t) − V1(S) and, in particular,
that

V2(S, T ) = V (S, T )− V1(S)

= S3 − C Sα.

The solution to this problem (for V2(S, t)) can be written as a sum
of separable solutions using the results given in part (a) above.
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2. Suppose that V (S, t) satisfies the Black-Scholes problem

∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ (r − y)S

∂V

∂S
− r V = 0, S > 0, t < T,

V (S, T ) = Po(S), S > 0.

Use the chain rule to show that if F = S e(r−y)(T−t) (the forward price
of S over the time interval [t, T ]), t′ = t and V̂ (F, t′) = V (S, t) then

∂V̂

∂t′
+ 1

2σ
2 F 2 ∂

2V̂

∂F 2
− r V̂ = 0, F > 0, t′ < T,

V̂ (F, T ) = Po(F ), F > 0.

Put F = S e(r−y)(T−t), t′ = t and V̂ (F, t′) = V (S, t). We have

∂V

∂S
=
∂F

∂S

∂V̂

∂F
= e(r−y)(T−t)

∂V̂

∂F

and hence

S
∂V

∂S
= S e(r−y)(T−t)

∂V̂

∂F
= F

∂V̂

∂F
. (1)

Similarly, we find that

S2 ∂
2V

∂S2
= F 2 ∂

2V̂

∂F 2
. (2)

We also have

∂V

∂t
=
∂t′

∂t

∂V̂

∂t′
+
∂F

∂t

∂V̂

∂F
=
∂V̂

∂t′
− (r − y)F

∂V̂

∂F
(3)

Substituting (1)–(3) into the Black-Scholes equation gives

∂V̂

∂t′
− (r − y)F

∂V̂

∂F
+ 1

2σ
2 F 2 ∂

2V̂

∂F 2
+ (r − y)F

∂V̂

∂F
− r V̂ = 0,

which clearly simplifies to

∂V̂

∂t′
+ 1

2σ
2 F 2 ∂

2V̂

∂F 2
− r V̂ = 0,

and holds for F > 0 and t′ < T . When t = T we have t′ = T and
F = S > 0 and so the terminal condition becomes

V̂ (F, T ) = Po(F ), F > 0.
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3. Consider the following perpetual American option problem. The op-
tion’s payoff is

Po(S) =

{
K − S/3 if 0 < S ≤ K,

0 if S > K.

Assume that the option value satisfies the steady-state Black-Scholes
equation

Lbs[V ] = 1
2σ

2 S2 V ′′(S) + (r − y)S V ′(S)− r V = 0, Ŝ < S,

where 0 < Ŝ ≤ K is the optimal exercise boundary and where σ > 0,
r > 0 and y > 0 are constants. The option satisfies the boundary
conditions

V (Ŝ) = K − Ŝ/3, lim
S→∞

V (S)→ 0.

(a) Give a sketch of the payoff and option price as functions of S
and indicate where Lbs[V ] = 0, where Lbs[V ] < 0, where V (S) >
Po(S) and where V (S) = Po(S).

Ŝ

V (S) = Po(S)

Lbs[V ] < 0

V (S) > Po(S)

Lbs[V ] = 0

S

V
payoff
V(S)

(b) Prove that under the assumptions given above the quadratic

p(m) = 1
2σ

2m(m− 1) + (r − y)m− r

has two distinct real roots and only one of these is strictly nega-
tive.
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It is clear that

lim
m→−∞

p(m)→∞, lim
m→∞

p(m)→∞

and that
p(0) = −r < 0, p(1) = −y < 0.

Given that a quadratic can has only one turning point, these
prove that the quadratic looks like

−r

−y

1

So one root is negative and the other is greater than one.

(c) Assume that we have smooth pasting at Ŝ, i.e., V ′(Ŝ) = −1/3.
Show that this implies that

Ŝ =
3m−

m− − 1
K,

where m− < 0 is the negative root of the quadratic p(m).

First note that if we assume that V (S) = Sm then m satisfies the
quadratic equation

p(m) = 1
2σ

2m(m− 1) + (r − y)m− r = 0

so there are two real roots, m− < 0 and m+ > 1. Thus the
general solution of the ODE for V (S) is

V (S) = ASm
−

+B Sm
+
.
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Second note that V (Ŝ) = K − Ŝ/3 and limS→∞ V (S)→ 0 imply
that

V (S) = (K − Ŝ/3)

(
S

Ŝ

)m−
for S ≥ Ŝ.

If the smooth pasting condition V ′(Ŝ) = −1/3 applies then we
have

V ′(S) = m−

(
K − Ŝ/3

S

)(
S

Ŝ

)m−
and so

V ′(Ŝ) = m−

(
K − Ŝ/3

Ŝ

)
= −1

3
.

When solved for Ŝ this gives

Ŝ =
3m−K

m− − 1
.

(d) Show that smooth pasting only makes sense if −1
2 < m− < 0.

Clearly we need Ŝ > 0 and Ŝ ≤ K. In the first case, the asset
price can never reach S = 0 or S < 0 and so the option would
never be exercised. In the latter case if Ŝ > K then we are
exercising the option when its payoff is zero, i.e., for nothing, and
this is clearly not optimal.

Thus we need

0 <
3m−K

m− − 1
≤ K

and since K > 0 this translates to

0 <
3m−

m− − 1
≤ 1

Given that we know m− < 0 from Part (b) we automatically have

0 <
3m−

m− − 1
.

The other inequality, together with m− < 0, gives

3m− ≥ m− − 1,

which is equivalent to
m− ≥ −1

2 .
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(e) What is the optimal exercise boundary if m− < −1
2? Justify your

answer.

If m− < −1
2 then we must have Ŝ = K, i.e., the optimal exercise

boundary is at the strike.

It is clear that we can’t have Ŝ > K as this implies we exercise
the option when the payoff is zero, which is clearly not optimal.

Suppose that we have 0 < Ŝ < K. Then, as above, we find that

V ′(Ŝ) = m−

(
K − Ŝ/3

Ŝ

)
= m−

(
K

Ŝ
− 1

3

)
≤ 2

3 m
− < −1

3 .

(Note that as K/Ŝ > 1, it follows that K/Ŝ − 1
3 >

2
3 and hence

that m−
(
K/Ŝ − 1

2

)
≤ 2

3 m
−, because m−< 0.) This means that

the option’s value falls below the payoff for S greater than but
close to Ŝ, which is an arbitrage for an American option.

Since both Ŝ < K and Ŝ > K are both impossible, the only
option is Ŝ = K. (When Ŝ = K we have, for S > Ŝ, a non-zero
value for the option which is always above the (zero) payoff.)

(f) Suppose that −1
2 < m− < 0, so that smooth pasting does give the

correct optimal exercise boundary. Suppose also that the holder
of the option decides that they are going to ignore the optimal
exercise boundary Ŝ and simply exercise the option as soon as
S ≤ S̄ where 0 < S̄ < K is chosen by the holder. In this case the
value of the option, V̄ (S, t), satisfies the problem

Lbs[ V̄ ] = 0, S > S̄,

V̄ (S̄) = K − S̄/3, lim
S→∞

V̄ (S)→ 0.

Find V̄ (S) and show that

i. if S̄ > Ŝ then one could increase the value of the option by
decreasing S̄ (hint; differentiate with respect to S̄);

ii. if S̄ < Ŝ then there is a potential arbitrage in the price V̄ (S)
(hint; differentiate with respect to S).

As above the general solution of the ODE is

V̄ (S; S̄) = ASm
−

+B Sm
+
,

where m− < 0, m+ ≥ 1. The condition that limS→∞ V̄ (S) = 0
shows that B = 0, so

V̄ (S; S̄) = ASm
−
.

The condition V̄ (S̄; S̄) = K − S̄/3 gives

A S̄m
−

= K − S̄/3 =⇒ A = (K − S̄/3)/S̄m
−
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and hence

V̄ (S; S̄) = (K − S̄/3)

(
S

S̄

)m−
.

It follows that

∂V̄

∂S
(S; S̄) = m−

(K − S̄/3)

S

(
S

S̄

)m−
∂V̄

∂S̄
(S; S̄), = −

(
1

3
+m−

( K
S̄
− 1

3

))(S
S̄

)m−
.

On the one hand, if S̄ > Ŝ then it follows that K/S̄ < K/Ŝ.
Noting that m− < 0 and that Ŝ satisfies the equation

1

3
+m−

(
K − Ŝ/3

Ŝ

)
=

1

3
+m−

(
K

Ŝ
− 1

3

)
= 0,

it follows that
∂V̄

∂S̄
(S; S̄) < 0.

This implies that by decreasing the value of S̄ we can increase
the value of V̄ .

On the other hand, if Ŝ > S̄ then K/Ŝ < K/S̄. Then we see that

∂V̄

∂S
(S; S̄) = m−

(
K

S̄
− 1

3

)
< m−

(
K

Ŝ
− 1

3

)
(recall m− < 0)

= −1

3
.

This implies that the option’s price falls strictly below the payoff
(to the right of S̄, near to S̄), which is an arbitrage.

4. Let T1 and T2 be given times with 0 < T1 < T2 and let α > 0 be a
given constant. A forward-start put is a European put option written
on an asset whose price is St, but where the strike is not given at time
zero, rather it is set equal to αST1 , where ST1 is the share price at time
T1. Find the option price for T1 < t < T2 and then for 0 ≤ t ≤ T1.
For time T1 < t < T2 we know K = αST1 and so we have a regular
put option. Its Black-Scholes value function is

P (S, t) = K e−r(T2−t) N(−d−)− S e−y(T2−t) N(−d+)
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where

d± =
log(S/K) + (r − y ± 1

2σ
2)(T2 − t)√

σ2(T2 − t)
, K = αST1 .

At time t = T1 we have S = ST1 and K = αS = αST1 by definition.
Thus we have

P (S, T1) = αS e−r(T2−T1) N(−d̂−)− S e−y(T2−T1) N(−d̂+)

where

d̂± =
log(α) + (r − y ± 1

2σ
2)(T2 − T1)√

σ2(T2 − T1)
.

Thus we can write

P (S, T1) = S A(T2, T1, r, y, σ, α)

where

A(T2, T1, r, y, σ, α) = α e−r(T2−T1) N(−d̂−)− e−y(T2−T1) N(−d̂+)

is independent of both S and t.

Solving that Black-Scholes equation backwards from T1 we see that
for t ≤ T1 we have

P (S, t) = S e−y(T1−t)A(T2, T1, r, y, σ, α).

5. An up-and-out barrier put option is an option which has the payoff
of a regular put option provided the share price stays below a barrier,
B > 0, for the life of the option, i.e., provided St < B for all t ∈ [0, T ].
If at any time t ∈ [0, T ] we have St ≥ B the option immediately
becomes worthless.

(a) Write down the Black-Scholes problem for the price function of
this option assuming that the share price has stayed below the
barrier.

∂Puo

∂t
+ 1

2σ
2 S2 ∂

2Puo

∂S2
+ (r − y)S

∂Puo

∂S
− r Puo = 0, 0 < S < B, t < T,

Puo(B, t) = 0, t < T,

Puo(S, T ) = (K − S)+, 0 < S < B.
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(b) Find the Black-Scholes value function for this option in terms of
a vanilla put’s value function assuming that the barrier lies above
the strike, 0 < K < B.

Let

P (S, t) = K e−r(T−t) N(−d−)− S e−y(T−t) N(−d+),

where

d± =
log(S/K) + (r − y ± 1

2σ
2)(T − t)√

σ2(T − t)
,

be the Black-Scholes price function for a European put option.
Using the reflection result, define the reflected value about the
barrier B as

W (S, t) =

(
S

B

)β
P

(
B2

S
, t

)
, β = 1− 2(r − y)/σ2.

We know that both P (S, t) and W (S, t) both satisfy the (same)
Black-Scholes equation and therefore so too does their difference

Puo(S, t) = P (S, t)−W (S, t).

We also see that for any t < T we have

Puo(B, t) = P (B, t)−W (B, t)

= P (B, t)−
(
B

B

)β
P

(
B2

B
, t

)
= P (B, t)− P (B, t) = 0.

Next note that for 0 < S < B we have

Puo(S, T ) = P (S, T )−W (S, T ) = (K − S)+ −W (S, T ).

Therefore, if we can show that W (S, T ) = 0 for 0 < S < B then
we have

Puo(S, T ) = (K − S)+

and thus Puo(S, t) satisfies the problem for the up-and-out put
option.

Now if 0 < S < B then 1 < B/S and hence B < B2/S. We
are also given that K < B and therefore K < B < B2/S, which
implies that if 0 < S < B then

W (S, T ) =

(
S

B

)β (
K − B2

S

)+

= 0,

since K −B2/S < 0.

14



(c) Find the Black-Scholes value function for this option in terms
of the price functions for vanilla and digital puts assuming the
barrier lies below the strike, 0 < B < K.

In the case 0 < B < K we have to truncate the put’s payoff and
reflect the function with payoff

V (S, T ) =

{
K − S if 0 < S < B,

0 if S ≥ B,

about S = B. With the truncated payoff we have

Puo(S, t) = V (S, t)−
(
S

B

)β
V

(
B2

S
, t

)
, 0 < S < B.

As above, we have Puo(S, t) satisfies the Black-Scholes equation
by linearity at S = B we have

Puo(B, t) = V (B, t)−
(
B

B

)β
V

(
B2

B
, t

)
= V (B, t)−V (B, t) = 0.

If we choose 0 < S < B then we have B/S > 1 and hence
B2/S > B, which means that(

S

B

)β
V

(
B2

S
, T

)
= 0

as the V (·, T ) term vanishes. Thus, for 0 < S < B we have

Puo(S, T ) = V (S, T ) = K − S,

as required. Finally note that V (S, T ) is simply a put with strike
B plus (K −B) times a digital put with strike B, i.e.,

V (S, T ) = P (S, T ;K = B) + (K −B)Pd(S, T ;K = B)

and hence

V (S, t) = P (S, t;K = B) + (K −B)Pd(S, t;K = B).

(d) By analogy with the down-and-in call option, define an up-and-in
put and find a formula for its value in the case 0 < K < B.

The up-and-in put comes to life if the barrier is B is crossed,
at which point it turns into a regular put option with strike K
and expiry time T . That is, if there is some t ≤ T with St > B
then the up-and-in put becomes are regular put option with value
P (S, t;K,T ). If there is not such t then the up-and-in barrier put
expires worthless.
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Since ‘the barrier being crossed’ and ‘the barrier not being crossed’
are mutually exclusive events and one or the other must happen,
if we hold an up-and-out and an up-and-in barrier put (with the
same barrier, strike and expiry date) then we must end up with
a regular put option by expiry,

Puo(S, T ;K,T,B) + Pui(S, T ;K,T,B) = P (S, T ;K,T ).

By no arbitrage, this extends to

Puo(S, t;K,T,B) + Pui(S, t;K,T,B) = P (S, t;K,T ).

Thus, if the up-and-in option has yet to come in (so the up-and-
out option has yet to go out) then we have

Pui(S, t;K,T,B) = P (S, t;K,T )− Puo(S, t;K,T,B)

and if B > K > 0 then we can write this as

Pui(S, t;K,T,B) =

(
S

B

)β
P

(
B2

S
, t

)
, 0 < S < B.

6. A down-and-out digital call option is a digital call option which be-
comes worthless if St ≤ B at any time during the options life, [0, T ].
Here B > 0 is called the barrier. If we have St > B for all t ∈ [0, T ]
then the payoff for the option is the unit step function 1{ST≥K}. If the
underlying share pays a constant, continuous dividend yield y, find the
Black-Scholes value of such an option if:

(a) the barrier is less than the strike, 0 < B < K;

In this case we can write the solution in terms of the reflection of
the digital call about S = B and it is

Cddo(S, t;K,T,B) = Cd(S, t;K,T )−
(
S

B

)β
Cd

(
B2

S
, t;K,T

)
for B < S, where β = 1−2(r−y)/σ2. As in the previous question,
it clearly satisfies the Black-Scholes equation by linearity and
Cddo(B, t;K,T,B) = 0. We also have 0 < B < K and so if
0 < B < S then 0 < B/S < 1 and hence 0 < B2/S < B < K,
which means that

Cd

(
B2

S
, T ;K,T

)
=

(
B2

S
−K

)+

= 0.

Therefore

Cddo(S, T ;K,T,B) = Cd(S, T ;K,T ) = (S −K)+

and so Cddo(S, t;K,T,B) satisfies all conditions in the Black-
Scholes barrier problem.
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(b) the barrier is greater than the strike, 0 < K < B.

In this case we have to truncate the payoff so it becomes

V (S, T ) =

{
0 if 0 < S ≤ B,
1 if S > B,

before we reflect about S = B. This is the same thing as changing
the digital call’s strike from K to B. That is, the solution in this
case is

Cddo(S, t;B, T,B) = Cd(S, t;B, T )−
(
S

B

)β
Cd

(
B2

S
, t;B, T

)
.

As above, the solution satisfies the Black-Scholes equation by
linearity, it has the property that

Cddo(B, t;B, T,B) = 0.

For 0 < B < S we have 0 < B/S < 1 and hence 0 < B2/S < B
which means that (

S

B

)β
Cd

(
B2

S
, T

)
= 0

and hence that for S > B > 0 we have

Cddo(S, T ;B, T,B) = Cd(S, T ;B, T ) = 1,

which is the correct payoff.

7. If an option depends on a continuously sampled arithmetic average
of the share price we can write its price as Vt = V (St, Rt, t) where
Rt =

∫ t
0 Su du and at expiry the average share price is AT = RT /T .

The Black-Scholes equation for the function V (S,R, T ) is

∂V

∂t
+ 1

2σ
2 S2 ∂

2V

∂S2
+ (r − y)S

∂V

∂S
+ S

∂V

∂R
− r V = 0.

For t < T , find the solution of this equation if the payoff is

V (S,R, T ) = AS +BR+ C

for constants A, B and C. Assume that r 6= y.

[Hint: try a solution of the form V (S,R, t) = a(t)S + b(t)R+ c(t).]

As suggested, try a linear solution

V (S,R, t) = a(t)S + b(t)R+ c(t).
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At expiry this gives the terminal values

a(T ) = A, b(T ) = B, c(T ) = C.

We have

∂V

∂t
= ȧ(t)S + ḃ(t)R+ ċ(t),

∂V

∂S
= a(t),

∂V

∂R
= b(t),

∂2V

∂S2
= 0.

Substituting into the partial differential equation above and collecting
terms gives(

ȧ− r a+ (r − y) a+ b
)
S +

(
ḃ− r b

)
R+

(
ċ− r c

)
= 0

which simplifies to(
ȧ− y a+ b

)
S +

(
ḃ− r b

)
R+

(
ċ− r c

)
= 0.

Given that this holds for all S > 0 and R > 0 we must have the weakly
coupled terminal value problem

ȧ− y a = −b, a(T ) = A,

ḃ = r b, b(T ) = B,

ċ = r c, c(T ) = C.

Clearly the final two equations give

b(t) = B e−r(T−t), c(t) = C e−r(T−t),

while the first can be written as

d

dt

(
ey(T−t) a(t)

)
= −B e(y−r)(T−t), a(T ) = A.

This then integrates to give

A− ey(T−t)a(t) = −B
∫ T

t
e(y−r)(T−u) du

which (assuming r 6= y) gives

a(t) = Ae−y(T−t) − B

r − y

(
e−r(T−t) − e−y(T−t)

)

Assume now that the payoff is RT = T ×AT . Explain how you could
perfectly hedge such a contract. Is your method independent of the
Black-Scholes equation?
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The solution comes from putting A = 0, B = 1 and C = 0 in the
previous part of the question, in which case

a(t) =
e−y(T−t) − e−r(T−t)

r − y
, b(t) = e−r(T−t)

and so

Vt = V (St, Rt, t) =
(e−y(T−t) − e−r(T−t))St

r − y
+ e−r(T−t)Rt.

If this derivative security is perfectly hedged then we hold

∆t =
∂V

∂S
= a(t) =

e−y(T−t) − e−r(T−t)

r − y

shares. At expiry we have to pay out

RT =

∫ T

0
Su du =

∫ t

0
Su du+

∫ T

t
Su du = Rt +

∫ T

t
Su du.

Clearly the term e−r(T−t)Rt in the derivative security’s price will grow
to Rt at time t = T (assuming it is kept in the bank, which it is) and

so we have only to worry about how we produce the term
∫ T
t Su du.

Over the time interval [u, u + du) ⊂ [t, T ) we sell exactly e−r(T−u)du
shares and put the money in the bank, so e−r(T−u)Su du is banked. At
time t = T this will be worth Su du and so, summing over all u ∈ [t, T ],
our total amount banked is ∫ T

t
Su du

at expiry, as we need.

During the interval [u, u+du) we also receive y∆u Su du in dividends,
allowing us to buy y∆u du new shares. Thus, over this interval we
have the change in ∆u given by

d∆u = y∆u du− e−r(T−u) du

which gives the ordinary differential equation

d∆u

du
= y∆u − e−r(T−u),

and which can be written in terms of an integrating factor as

d

du

(
ey(T−u) ∆u

)
= −e(y−r)(T−u). (4)
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If we integrate (4) subject to the condition that we have no shares left
at T , as we don’t need any shares for the payoff, we get

∆t =
e−y(T−t) − e−r(T−t)

r − y
,

which is exactly how many shares we do hold (if perfectly hedged).

This is a model independent result, it only depends on a constant
interest rate r and a constant continuous dividend yield y. It does not
depend on the model for St. It says that if you want to reproduce∫ T
0 Su du then you start out with enough shares so that if you sell

e−r(T−t) dt of them during each interval [t, t + dt) then you end up
with exactly zero shares at expiry, T .
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Optional questions

8. For t ∈ [0, T ] let St > 0 satisfy the SDE

dSt
St

= (µ− y) dt+ σ dWt, S0 = S > 0,

where µ, y and σ > 0 are constants. Let Mt denote the maximum
value of Su over the interval [0, t],

Mt = max
0≤u≤t

Su,

for all t ∈ [0, T ]. Show that

(a) Mt is a nondecreasing function of t ∈ [0, T ];

This follows from the fact that it is the maximum value of Su
over the interval [0, t]—by definition it can not get smaller as t
increases.

(b) Mt is continuous in t;

It Mt is not continuous then St would have to be discontinuous,
but we know that St is continuous (since

St = S exp
(

(µ− y − 1
2σ

2) t+ σWt

)
and both t and Wt are continuous.)

(c) Mt has finite variation (and hence zero quadratic variation).

Using the above first point above we have

〈M〉t = lim
|π|→0

n−1∑
k=0

|Mk+1 −Mk |

= lim
|π|→0

n−1∑
k=0

(Mk+1 −Mk)

= Mt −M0,

which is finite because Mt is continuous on [0, T ].

Deduce that the covariation 〈S,M〉t, defined as

〈S,M〉t = lim
|π|→0

n−1∑
k=0

(Sk+1 − Sk) (Mk+1 −Mk),

is zero for all t ∈ [0, T ]. [Hint: note that although St has nonzero
quadratic variation, and therefore infinite variation, it is nevertheless
continuous in t.]
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We have

∣∣ 〈S,M〉t ∣∣ =
∣∣∣ lim
|π|→0

n−1∑
k=0

(Sk+1 − Sk) (Mk+1 −Mk)
∣∣∣

≤ lim
|π|→0

n−1∑
k=0

|Sk+1 − Sk | (Mk+1 −Mk)

≤ lim
|π|→0

(
max
π
|Sk+1 − Sk |

n−1∑
k=0

(Mk+1 −Mk)
)

=
(

lim
|π|→0

max
π
|Sk+1 − Sk |

)(
lim
|π|→0

n−1∑
k=0

(Mk+1 −Mk)
)

=
(

lim
|π|→0

max
π
|Sk+1 − Sk |

)
〈M〉t

which vanishes since St is continuous in t, so

lim
|π|→0

max
π
|Sk+1 − Sk | = 0,

and 〈M〉t is finite.

9. Time-dependent parameters

Assume that the price of a share, St, evolves according to the SDE

dSt
St

=
(
µ̄(t)− ȳ(t)

)
dt+ σ̄(t) dWt,

where µ̄(t), ȳ(t) and σ̄(t) > 0 are known functions of time. Assume
also that the risk-free rate is a known function of time, r̄(t).

(a) Derive the Black-Scholes problem, for S > 0,

∂C

∂t
+ 1

2 σ̄(t)2S2∂
2C

∂S2
+
(
r̄(t)− ȳ(t)

)
S
∂C

∂S
− r̄(t)C = 0, t < T,

V (S, T ) = (S −K)+,
(5)

for the value (function) C(S, t) of a European call option written
on the share.

This is exactly the same as the derivation of the Black-Scholes
equation with constant r, y and σ (except, in this case, we write
r(t), y(t) and σ(t)). The payoff follows in exactly the same way
as it does for the constant parameter case.

(b) Use the Feynman-Kǎc theorem to show that

C(S, t) = exp
(
−
∫ T

t
r̄(u) du

)
Et
[

(ST −K)+ |St = S
]
,
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where St evolves as

dSt
St

=
(
r̄(t)− ȳ(t)

)
dt+ σ̄(t) dWt. (6)

Write

C(S, t) = exp
(
−
∫ T

t
r̄(u) du

)
U(S, t)

so that
∂C

∂t
= r(t)C + exp

(
−
∫ T

t
r̄(u) du

) ∂U
∂t

while

∂C

∂S
= exp

(
−
∫ T

t
r̄(u) du

) ∂U
∂S

,
∂2C

∂S2
= exp

(
−
∫ T

t
r̄(u) du

) ∂2U
∂S2

.

Substitute these into the partial differential equation to get

∂U

∂t
+ 1

2 σ̄(t)2 S2 ∂
2U

∂S2
+
(
r̄(t)− ȳ(t)

)
S
∂U

∂S
= 0. (7)

When t = T we see that exp
(
−
∫ T

T
r̄(u) du

)
= 1 and so

U(S, T ) = (S −K)+. (8)

Together with the Feynman Kǎc result, (7) and (8) imply that

U(S, t) = Et
[

(ST −K)+ |St = S
]

where St evolves as

dSt
St

=
(
r̄(t)− ȳ(t)

)
dt+ σ̄(t) dWt.

(c) Deduce that the solution to (6) is

ST = St exp

(∫ T

t

(
r̄(u)− ȳ(u)− 1

2 σ̄(u)2
)
du+

∫ T

t
σ̄(u) dWu

)
.

One way to do this is to use the process log(St). Noting that

d log(S)

dS
=

1

S
,

d2 log(S)

dS2
= − 1

S2
,

we find that

d log(St) =
dSt
St
− 1

2

σ̄(t)2 S2
t dt

S2
t

=
(
r̄(t)− ȳ(t)− 1

2 σ̄(t)2
)
dt+ σ̄(t) dWt.

Integrating from t to T gives the result.
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(d) Hence deduce that for fixed t < T the solution of (5) is

C(S, t) = Cbs(S, t;K,T, r̂, ŷ, σ̂)

where

r̂ =
1

T − t

∫ T

t
r̄(u) du, ŷ =

1

T − t

∫ T

t
ȳ(u) du, σ̂2 =

1

T − t

∫ T

t
σ̄(u)2 du,

and Cbs(S, t;K,T, r, y, σ) is the Black-Scholes formula for a call
with strike K, expiry T , constant risk-free rate r, constant con-
tinuous dividend yield y and constant volatility σ.

If t < T is fixed then we can write

ST = St exp

(∫ T

t

(
r̄(u)− ȳ(u)− 1

2 σ̄(u)2
)
du+

∫ T

t
σ̄(u) dWu

)
as

ST = St exp
((
r̂ − ŷ − 1

2 σ̂
2
)
(T − t) + σ̂ Ŵτ

)
,

where τ = T − t and

r̂ =
1

T − t

∫ T

t
r̄(u) du, ŷ =

1

T − t

∫ T

t
ȳ(u) du, σ̂2 =

1

T − t

∫ T

t
σ̄(u)2 du.

The final term, σ̂ Ŵτ , follows because the Itô integral∫ T

t
σ̄(u) dWu

is normally distributed with zero mean and variance given by∫ T

t
σ̄(u)2 du.

Therefore, we can write∫ T

t
σ̄(u) dWu = σ̂ Ŵτ

where Ŵτ is normally distributed with zero mean and variance
τ = T − t and σ̂ is as defined above.

Thus it follows that we could write

C(S, t) = e−r̂(T−t) Et
[
(ST −K)+ |St = S, dSt/St =

(
r̄(t)− ȳ(t)

)
dt+ σ(t) dWt

]
= e−r̂(T−t) Et

[
(ST −K)+ |ST = S e(r̂−ŷ−

1
2
σ̂2)(T−t)+σ̂ŴT−t

]
= Cbs(S, t;K,T, r̂, ŷ σ̂),

where Cbs(S, t;K,T, r̂, ŷ σ̂) is the Black-Scholes formula for the
price of a call option with constant risk-free rate r̂, constant con-
tinuous dividend yield ŷ and constant volatility σ̂.
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10. A European log-put option has the payoff

VT =
(
− log(ST /K)

)+
(a) Show that if Su evolves as

dSu
Su

= r du+ σ dWu, t < u ≤ T, St = S,

then

prob(ST < K) = N(−d−), d− =
log(S/K) + (r − 1

2σ
2)(T − t)√

σ2 (T − t)
.

As St = S, we can write

ST = S e(r−σ
2/2)τ+σWτ , τ = T − t,

from which we can see that

prob(ST < K) = prob
(
log(ST ) < log(K)

)
= prob

(
log(S) + (r − 1

2σ
2)τ + σWτ < log(K)

)
= prob

(
σWτ < − log(S/K)− (r − 1

2σ
2)τ
)

= prob
((
Wτ/
√
τ
)
< −

log(S/K) + (r − 1
2σ

2)τ
√
σ2 τ

)
= N(−d−),

because (Wτ/
√
τ) ∼ N(0, 1).

(b) Assuming the underlying share pays no dividends, show that the
Black-Scholes value function for the log-put is

V (S, t) = e−r(T−t)
√
σ2 (T − t)

(
d−N(−d−)− e−

1
2
d2−/
√

2π
)
.

The simplest way to do this is to use the formula

V (S, t) = e−r(T−t) EQ
t

[ (
− log(ST /K)

)+ ∣∣St = S
]
,

where for t < u

dSu
Su

= r du+ σ dWu, St = S.

With τ = T − t, we have

ST = S exp
(
(r − 1

2σ
2)(T − t) + σWτ

)
= S exp

(
(r − 1

2σ
2)(T − t) +

√
σ2 τ Z

)
,
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where Z = Wτ/
√
τ ∼ N(0, 1), and so

log(ST /K) = log(S/K) + (r − 1
2σ

2)τ +
√
σ2 τ Z. (9)

Following the same idea as in (a), − log(ST /K) > 0 iff and only
if

0 < − log(S/K) + (r − 1
2)τ −

√
σ2 τ Z

⇐⇒
√
σ2 τ Z < − log(S/K) + (r − 1

2)τ

⇐⇒ Z < −
log(S/K) + (r − 1

2)τ
√
σ2 τ

⇐⇒ Z < −d−.

Regarding log(ST /K) as a function of the random variable Z ∼
N (0, 1), as in (9), we see that

EQ
t

[ (
− log(ST /K)

)+ ∣∣St = S
]

=
1√
2π

∫ ∞
−∞

(
− log(ST /K)

)+
e−z

2/2 dz

= − 1√
2π

∫ −d−
−∞

log(ST /K) e−z
2/2 dz.

Using (9) to express log(ST /K) in terms of Z, we get

EQ
t

[ (
− log(ST /K)

)+ ∣∣St = S
]

= − 1√
2π

∫ −d−
−∞

(
log(S/K) + (r − 1

2σ
2)τ +

√
σ2 τ z

)
e−

1
2
z2 dz

= − 1√
2π

∫ −d−
−∞

√
σ2τ

(
d− + z

)
e−

1
2
z2 dz

= −
√
σ2τ

(
d−N(−d−)− 1√

2π
e−

1
2
z2
∣∣∣−d−
−∞

)
=
√
σ2(T − t)

(e− 1
2
d2−

√
2π
− d−N(−d−)

)
.

Multiplying this by e−r(T−t) gives the result.

11. Let 0 < T1 < T2 and K > 0. A derivative security with the following
properties is written on a share (which does not pay any dividends
between time t = 0 and t = T2. If at time T1 the share price is
greater than or equal to K, ST1 ≥ K, then the derivative security
becomes a European call option with strike ST1 and expiry date T2.
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If ST1 < K, it becomes a European put option with strike ST1 and
expiry date T2. Find the Black-Scholes price function for this security
when T1 < t < T2 and then when 0 ≤ t ≤ T1.
For T1 ≤ t ≤ T2 we know the value of ST1 . If ST1 ≥ K then we have a
call option with strike ST1 so

V (S, t) = Cbs(S, t; strike = ST1)

while if ST1 < K then we have a put option with strike ST1 , so

V (S, t) = Pbs(S, t; strike = ST1).

Thus for T1 ≤ t ≤ T2 we have

V (S, t) =

{
ST1 e

−r(T2−t) N(−d−)− SN(−d+) if ST1 < K,

SN(d+)− ST1 e−r(T2−t) N(d−) if ST1 ≥ K,

where

d± =
log(S/ST1) + (r ± 1

2σ
2)(T2 − t)√

σ2(T2 − t)
.

At time T1, by definition S = ST1 so

V (S, T1) =

{
A(T1, T2)S if S < K,

B(T1, T2)S if S ≥ K

where
A(T1, T2) = e−r(T2−T1) N(−d̂−)−N(−d̂+)

B(T1, T2) = N(d̂+)− e−r(T2−T1) N(d̂−)

and

d̂± =
(r ± 1

2σ
2)(T2 − T1)√

σ2(T2 − T1)
.

If we use the fact that N(x) + N(−x) = 1, we see that

B(T1, T2)−A(T1, T2)

= N(d̂+) + N(−d̂+)− e−r(T2−T1)
(
N(d̂−) + N(−d̂−)

)
= 1− e−r(T2−T1),

which establishes that

B(T1, T2) = A(T1, T2) + C(T1, T2) 1{S≥K},

where C(T1, T2) = 1− e−r(T2−T1). Thus we can write

V (S, T1) = A(T1, T2)S + C(T1, T2)S 1{S<K}.
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As the share pays no dividends, any multiple of S is a solution of the
Black-Scholes equation and so the component A(T1, T2)S of the payoff
leads to a price that is always A(T1, T2)S. The component of the payoff
C(T1, T2)S 1{S≥K} is simply C(T1, T2) gap-calls — S 1{S≥K} is zero
if S < K and S if S ≥ K. Thus if we denote the price function for
a gap-call with strike K by Cg(S, t;K,T1) we find that for t < T1 we
have

V (S, t) = A(T1, T2)S + C(T1, T2)Cg(S, t;K,T1).

Although you were not asked to find a formula for Cg(S, t), it is a
relatively simple thing to do. Recall from lectures that:

• if U(S, t) is a solution of the Black-Scholes equation then so too
is S (∂U/∂S);

• the delta of a call option is given by ∆(S, t) = (∂C/∂S)(S, t) =
N(d+); and

• ∆c(S, t) has the property that ∆c(S, T ) = 1{S≥K}.

It follows that S∆c(S, t) = SN(d+) is a solution of the Black-Scholes
equation with the property that S∆c(S, T ) = S 1{S≥K} and so we
must have

Cg(S, t;K,T ) = SN(d+),

where, as usual,

d+ =
log(S/K) + (r + 1

2σ
2)(T − t)√

σ2(T − t)
.

12. Assume that the USD/GBP exchange rate, Xt, evolves according to
the SDE

dXt

Xt
= µdt+ σ dWt.

(a) Given that today’s exchange rate, at t = 0, isX0 find the expected
USD/GBP exchange rate E[XT ] at time T > 0.

Write dXt = µXt dt+ σXt dWt and integrate

Xt −X0 = µ

∫ t

0
Xu du+ σ

∫ T

0
Xu dWu

then take expectations to get

E
[
Xt

]
−X0 = µE

[∫ t

0
Xu du

]
+ σ E

[∫ t

0
Xu dWu

]
= µ

∫ t

0
E[Xu] du
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and then differentiate with respect to t,

dE
[
Xt

]
dt

= µE
[
Xt

]
.

Solve this for E
[
Xt

]
to find

E
[
Xt

]
= X0 e

µt,

which gives E
[
XT

]
= X0 e

µT .

(b) Find the SDE which the GBP/USD exchange rate, Yt = 1/Xt

follows.

Applying Itô’s lemma to Yt = f(Xt) where f(X) = 1/X gives

dYt = −dXt

X2
t

+
d[X]t
X3
t

= − µ

Xt
dt− σ

Xt
dWt + +

σ2

Xt
dt

= (σ2 − µ)Yt dt− σ Yt dWt,

that is,
dYt
Yt

= (σ2 − µ) dt− σ dWt.

(c) Given that Y0 = 1/X0 today, find the expected GBP/USD ex-
change rate E[YT ] at time T > 0.

The SDE satisfied by Yt has the same form as that for Xt but
with µ replaced by σ2 − µ and σ replaced by −σ. Therefore

E[YT ] = Y0 e
(σ2−µ)T =

1

X0
e(σ

2−µ)T .

(d) Show that, although XT YT = 1 for any T > 0,

E[XT ]E[YT ] = eσ
2T .

By definition, YT = 1/XT so XT YT = 1. From the calculations
above,

E[XT ]E[YT ] = eσ
2T ,

which is strictly greater than one unless T = 0 or σ = 0.

13. An investor has the choice of investing their wealth of 1 unit of currency
in either a risky asset whose price evolves as

dSt
St

= µdt+ σ dWt, t > 0, S0 = 1,
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where σ > 0, or in a risk-free bond whose price evolves as

dBt
Bt

= r dt, t > 0, B0 = 1,

where 0 < r < µ− 1
2σ

2. The investment horizon is [0, T ]. The investor
decides to invest their funds in the risky asset, but is worried that
when they withdraw the funds, at time T , the risk-free bonds may
have outperformed the risky assets. So they consider the possibility of
purchasing a put option with maturity T to protect themselves against
this possibility. (They borrow money to buy the put.)

(a) What is the probability of the risky asset underperforming the
risk-free one, i.e, what is the probability that ST < erT ?

As we start with S0 = 1 we have

ST = e(µ−
1
2
σ2)T+σWT

and we want to know

prob
(
ST < erT

)
= prob

(
(µ− 1

2σ
2)T + σWT < rT

)
= prob

(
σWT < (r − µ+ 1

2σ
2)T

)
= prob

(WT√
T
<

(r − µ+ 1
2σ

2)T
√
σ2 T

)
= N(x ),

since WT /
√
T ∼ N (0, 1) and where

x =
(r − µ+ 1

2σ
2)
√
T

σ
.

(b) What happens to this probability as T →∞?

We have r + 1
2σ

2 < µ and σ > 0, so

(r − µ+ 1
2σ

2)

σ
< 0

and so x → −∞ as T → ∞. This means the probability of
underperformance goes to zero as T →∞.4

4It goes to zero extremely rapidly. To see this consider∫ −z
−∞

e−y
2/2 dy =

∫ ∞
z

e−y
2/2 dy =

∫ ∞
z

y e−y
2/2 dy

y
=
e−z

2/2

z
−

∫ ∞
z

e−y
2/2 dy

y2

which shows that as z →∞, N(−z) ∼ e−z
2/2

√
2π z

.
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(c) What should the strike of the put be in order that the investor is
completely insured against the possibility of underperformance?

K = erT . Then at T if ST < erT the investor can sell the risky
asset for erT by exercising the put and if ST ≥ erT they can let
the put expire worthless. Thus they are guaranteed a final value
of max(erT , ST ).

(d) What happens to the price of the insurance as T →∞?

As S0 = 1 and K = erT , the price of the put at t = 0 is

P (1, 0;T ) = erT e−rT N(−d−)− (− d+)

= N(−d−)−N(−d+)

with

d± =
log(1/erT ) + (r ± 1

2σ
2)T

√
σ2 T

=
±1

2σ
2 T

√
σ2 T

= ±1
2

√
σ2 T .

This shows that

P (1, 0;T ) = N
(√
σ2 T

)
−N

(
−
√
σ2 T

)
=

1√
2π

∫ √σ2T

−
√
σ2T

e−p
2/2 dp ≤ 1,

(10)

and it follows that

lim
T→∞

P (1, 0;T ) = 1,

i.e., the cost of insurance against underperformance tends to the
total value available for investment, even though the probability
of underperformance tends to zero.

More generally, it is clear that the risk of underperformance is
monotonically decreasing in T but the cost of insurance against
underperformance, i.e, the put, is an increasing function of T . If
the investor borrows the money to buy the put at t = 0, they
will owe erTP (1, 0;T ) at time T and they are guaranteed to have
max(erT , ST ) and so their overall position at time T is

max
((

1− P (1, 0;T )
)
erT , ST − erTP (1, 0;T )

)
≥ 0.
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