B8.3 Week 3 Summary 2019

Brownian motion

A stochastic process is a sequence of random variables indexed by a param-
eter, for example, (W;);>0. For each fixed ¢ > 0, W; is a random variable.

A process (Wy)i>0 is a Brownian motion if (and only if)

1.Vs>0,t>0, (WHS — Wt) is normally distributed with zero mean
and variance s,

E[Wiss — Wil =0, E[(Wips — Wi)*] =s,
2. if 0 <p<q<s<tthen (W, —W,) and (Wy — W) are independent,
3. the map t — W, is continuous, and

4. Wy = 0 (this is really a convention, it saves some writing).

It is not obvious that such a thing exists, but there are a number of ways of
constructing it (see Etheridge §3.1 and §3.2, for example).

Note that if (W;)¢>0 is a Brownian motion then so too are:

LW, = Witt49) — Wi, for any constant to > 0;

2. W, = cWiy/c2y for any constant ¢ > 0.

Brownian motion is almost surely not differentiable

We show that with probability one a Brownian motion is not differentiable.
If Brownian motion were differentiable at the point {5 > 0 then the limit

. W(t+t0) - Wto
lim ——— =
t—0 t t—0 t

would exist, so it is enough to show that with probability one the second
limit does exist. Let A,, and B,, be defined by

W, ! W !
A, = |—t‘>n:forsomet€<0,f} , Bp= M>n:att:f :
, A t n?

Clearly we have B, C A,, and so

prob(A4,) > prob(B,) = prob ’WI/WI‘ >n
"= " 1/n4

A 1
= pr0b<|n2 Wl/n‘l‘ > n)

~ 1
= prob<|W1\ >>.
n

1



As n — 0o we have prob(|W;| > 1/n) — 1. Therefore lim,, .o, prob(4,) = 1
which means that in this limit there is (with probability one) always some
0 < t < 1/n* with |W;|/t > n. This shows that (with probability one) the
limit which defines the derivative of a Brownian motion can not exist.

Quadratic variation
Let 7 be a partition of [0, ],
to=0<t; <ty <---<t,=t,

al ld let
| = max (t —tr).
| ‘ 0<k<n(k 1 k)

The quadratic variation of a function f on [0,¢] — R is defined to be'

n—1
pu— 1' J— 2
[F1e= Hm > (fren = fi)
k=0
where fr, = f(tx). It may or may not exist, depending on f.

1. If f is continuously differentiable on [0, ¢] then [f]; = 0.

As frr1 — fr = [/ (&) (trg1 — ty) for some & € [ty, trq1] We have

n—1 n—1
D k=) = D1 (&) (b — t)”
k=0 k=0
n—1
<m0 F () (trer — )
k=0
and as 7| — 0
n—1 t
> F(6 b — 1)~ [ WP <o,
k=0 0

using Riemann’s definition of an integral (which is equivalent to Lebesgue’s
definition if the function is continuous, as it is in this case).

2. The quadratic variation of a Brownian motion is defined as

n—1

(W] = lim Y (Wit — Wi)?,
|7|—0 .

!Other common notation for quadratic variation include [ £]7 and [ f, f]:.



where W}, = W,,. We find that [W]; = ¢, in the sense that
E[W)—t] =0, E[(W]—t)°|=0.

It follows that Brownian motion is almost surely mot continuously
differentiable in t.

To see this, let dWj, = Wiy — Wy, and 6t = tp41 — t

B[S (w7 - ote)] = 3 (16w - o).
k=0 k=0

which vanishes for any finite n > 0 since E[(§W})?] = 6t1. It therefore
also vanishes in the limit n — oo.

Next, consider

ZE ((6Wk)? — 6ty,) +ZE [(6W;)% — 6t;]E[(6W3)? — 6ty

—Z [(6Wk)*] — 20, E[(W)] + (5t4)?)

n— 1

=2 (6t)°
k=0
< 20w 04 0ty = 2|n|t,

where we use the independence of §W; and dWj, if j # k to get from
the second to the third line.

The It6 integral

The definition of the It6 integral of a function against a Brownian motion is

t n—1
/ fWay,u) dW, = |h|1_1>10 > F(Wi, tk) Wiga — Wa).
0 T k=0



For fixed t this integral is a random variable and as ¢ varies it is a stochas-
tic process. The sum converges to the integral in an L? sense (see, e.g.,
Etheridge pp 78-85).

Using the tower law, and writing dWj, = Wi — Wy, we find that

E{gf(wkatkﬁwk} = {ZEtk f(Wh, tk) 5Wk]}
k=0
- E[Tif(wk,tk)mk[éwk]] ~ 0.
k=0

This establishes that if the Ito integral exists then

E[/Otf(Wu,u)qu} = 0.

The same sort of argument shows that for 0 < s < ¢t

Es[/otﬂwu,u) aw,| = /Osﬂwu,u) aw

If f is a reasonable function of ¢ alone then

[ (S ream)’] = =[S s s
_ _ E:jZEk 2 (5W,) ]+2E[ZkEk 7 (t)sW;0Wi] |
_ E:kzoftk B[ (W) ]+2E[%f Flt)OWEL W] |
E E'§f<tk>2Etk[<6Wk>21} |

k=0
n—1
= > f(tr)?t
k=0
and in the limit || — 0 we obtain Ité’s isometry,

Var[/otf(u)qu} :/Otf(u)zdu

As the integral is simply the limit of a sum of normally distributed random
variables, it is itself normally distributed (proof omitted).



If f depends on W; the same sort of argument shows that

Var[/ot f(Wy,u) qu} = /OtE[f(Wu,u)Q] du,

provided the right-hand side exists. In general, however, the integral itself
t

is not normally distributed. For example, 2 / Wy dW,, = I/Vt2 — t, which
0

has a x? distribution.

Ito0’s lemma
If f(z,7) is C*! then
f(Wi,t) — £(0,0) =

to ty t 92
[ Lt [[Lanmaw,+y [ Sl maw.
1)

Since [W],, = u we can replace d[W], by du, and in practice we always do.
Consider the simpler case where f is independent of 7 and write

n—1

FW) = £(0) =Y (F(Wig) — F(Wi)

k=0

over some partition, 7, of [0,¢]. Taylor’s theorem (with remainders) shows
that for each k

FWit1) — F(Wi) = f(Wi)dWy, + L £ (Vi) (W5)?
for some Vi between Wy and Wy, where 6Wj = Wy — Wj. Thus

n—1 n—1
FOV) = (0) = ' (Wi)oWi + 5 ) f7 (Vi) (6Wi)*.
k=0 k=0

As we refine the partition

n—1 t
lim > " f/(W;,) W, — / f (W) dW,,.
k=0 0

|| =0 “—

For the second sum, it can be shown that

n—1 t
fim 3 S OREWL)? = [ (V) dW,,
k=0 0

|| —=0 “—

establishing that
t t
f(Wt)_f(O):/ f’(Wu)qu+;/ (W) d[W,.
0 0
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It6’s lemma in practice

In practice, we usually write (1) in differential form rather than an integral
form. If f(W,t) is C*! and we define f; = f(W;,t) the differential form of

It0’s lemma is

dfy = <8a{(Wt, t)

o*f

of
+ 2 8W2

(W, )) dt + = (W t) dW,.

This amounts to doing a regular Taylor series expansion of f(W,t) then
pretending that dW? = dt (and ignoring terms of higher order than dt).
To solve the stochastic differential equation

dSt

22— pdt + o dW, (2)
St

we can proceed as follows. If f(W,t) = e®W+b then all its partial derivatives
are multiples of the function, so it makes sense to try

St _ SO eaWtert.

This gives
dS; = (bS; + 2 a® S)) dt + a S, dW,

or

— = (b+ 3 a®) dt + adW,.
If we set a = o and b = p — § 0% we recover (2), i.e., the solution of (2) is
St = SoeXp<(u— %az)t—l—aWt).

The process S; is often called geometric Brownian motion. Note that the
sign of Sy is determined by the sign of Sj.

It0’s lemma for solutions of SDEs

Suppose that X; is a solution of
t t
X — Xo= / w( Xy, u) du —l—/ o ( Xy, u) dWy,
0 0
f(x,t) is a C%! function and we set f; = f(Xy,t). Then
t 8f . 2f
o= [ (B + o w350 ) dut [ St ax,

The proof amounts to showing the quadratic variation [ X |; is given by
t
(X = / o (X, u)? du.
0
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In differential notation, which is how this result is normally used, if
dXt = ,U(Xt, t) dt + O'(Xt, t) th (3)
and ft = f(Xt,t) then

of O f of

i = (1060 + bo 0?5 S0 ) ar+ S ax

ot 012 Ox

This can be obtained from a Taylor series expansion of f(x,t) and pretending
that dX? = o(Xy,t)%dt.

The Feynman Kac formula

Suppose that f(x,t) satisfies the terminal value problem

of | 1 2 O°f of
—+3 1) —5 t)=— =0, t<T R
ot + 20-(:13’ ) Hx2 +1U’($7 )8217 ) <1,z ek, (5)
f(z,T)=F(z), z=eR.
Let X, satisfy the stochastic differential equation
dXt = ,U,(Xt, t) dt + O'(Xt, t) th
Then
f(z,t) =E[F(Xr)| Xy = 2] (6)
To see this, note that 1t6’s lemma implies that
T 8f
f(Xp, T) = f(Xy,t) + / o(Xs,s) %(Xs,s) dWs
t
Trof of o*f
a, Xs Xs a Xs 1 XSa 2= Xs
o (G +(X0) G0 + o002 T (X)) s

By assumption, the integral on the second line vanishes and when we take
expectations the integral on the first line also vanishes. Thus

f(Xta t) = Et[f(XT7 T) ]
and conditioning on X; = x gives

f(.%‘,t) :Et[f(XTvT)‘Xt:x]



