B8.3 Week 4 summary 2019

Continuous dividend yields

This is a poor but widely used model for dividend paying shares. Over each
infinitesimal period [t,¢ + dt) the share pays y Sy dt in dividends, where for
our purposes ¥y is a constant known as the continuous dividend yield.

With reinvestment of dividends, one share at time zero grows to e’
shares at time ¢ and the total value at time ¢ is p; = e¥* S;. If we assume

that S; evolves as
dS;

T:(M—Z/)dt—i‘Uth, (1)
t

where p is known as the drift, y is the continuous dividend yield and o > 0
is the volatility, then It0’s lemma shows that

d
Pt _ i dt + o dW,.

bt

If we hold the shares and reinvest the dividends to buy more shares then the
value of the holding at time ¢ is p; and for this reason we write the evolution
of S; as (1), which is equivalent to writing

Sy = Soexp((u— — %02)t+aWt).
For fixed T > 0 the distribution of St is given by

Sr=Soexp((p—y— 30 )T+Vo2TZ), Z~N(0,1).

Delta hedging analysis

Assume an option’s payoff is give by Vi = P,(Sr) and its price V; = V (S, t).
Set up a portfolio of one option and —A; shares, so at ¢ its market price at
time ¢ is

Mt = V;g — At St.

Let II; be the cumulative cost of executing this strategy, so
dHt = d‘/t - At dSt - yAt St dt,

the final term represents payment of the dividend yield to the owner of the
shares. Itd’s lemma applied to V; = V' (S, t) gives
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which we make (instantaneously) risk-free by setting
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A risk-free portfolio must grow at the risk-free rate, or there would be an
arbitrage opportunity, so dIl; = r M, dt, i.e.,
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which gives the Black-Scholes equation
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A-hedged portfolio
This holds for all attainable Sy which, if Sg > 0, is any S; > 0. Thus we
obtain the Black-Scholes equation,
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for S > 0and t <T. At expiry Vr = V(S1,T) = Po(St) implies that

V(S,T) = Py(S), S>0. (3)

Self-financing replication analysis

Here we try to replicate the option’s payoff using a portfolio of shares and
bonds. The bond price, B;, evolves as

—— =rdt. (4)

Let ¢; be the number of shares at ¢ and v; be the number of bonds. The
market value of the portfolio at t is

Dy = ¢ St + Py By (5)
and the change in the portfolio value is
d®;y = ¢r dSy + P dBy + (St + dSt) dgy + (By + dBy) iy + y ¢y St dt,

the final term coming from dividends. If (S; + dS) doy + (By +dBy) dipy = 0
we say the portfolio is self-financing; to buy more shares we have to sell
bonds and vice-versa. The self-financing condition is usually written as

d(I)t = ¢t dSt + wt dBt +vy ¢t St dt.
In our case it reduces to

d®y = ¢y dSy + Yy By dt + y ¢y Sy dt. (6)



If we write ®; = ®(S,t) and apply It6’s lemma we find
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and matching the deterministic and stochastic terms with those in (6) gives
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Eliminating 1y B; using (5) gives
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for any attainable S;, i.e., any S; > 0. Rearranging shows that any self-
financing portfolio’s price function must satisfy
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S,t)—r®(S,t) =0, S>0.(7)

Finally, we apply the replication condition that the value of the portfolio at
T always equals the payoff of the option, i.e.,

B(S,T) = P,(S), S>0. (8)

Then we argue that as the option and the portfolio have exactly the same
cash-flows prior to expiry (in both cases here, no cash-flows) and exactly the
same values at expiry they must have the same values now, i.e.,

V(S,t) = ®(S,1).

Solution of the Black-Scholes problem

The Black-Scholes problem for the price function of a European option with
payoff given by Vi = P,(St) is
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V(S,T) = Py(S), S>0.
If we set V(S,t) = e "(T=Y U(S,t) then
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U(S,T) = P,(S), §>0.



and the Feynman Kac formula shows that
U(S,t) =EZ[Py(St)|S: = S,

where S; evolves according to

ds,

S
Note that this is not the same as the SDE for the actual share price, which
is (1)—the p in (1) has become an r in (10).

= (r—y) dt + o dW;. (10)

This means that the option’s price can be written as

V(S,t) = e "D EL[ P,(ST)| S, = S]. (11)

We know that if S; = S then
Sr=Sexp((r—y-— %UZ)T+O'WT), T=T—1
and we compute the cumulative distribution function for Sy, for x > 0, as
follows
Fr(z) = prob(St <)

= prob(log(Sr) < log(z))

= prob (0 W, <log(x/S)— (r—y— %02)7).
As W, is N(0,7) we can write 0 Wy = Vo271 Z where Z is N(0, 1), which

shows that
Fr(z) = prob(Z < d.) = N(d,),
where
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Differentiating Fip(z) with respect to = gives the probability density function
for S7, conditional on S; = S,

fr(z) =

x\/2n02 (T —1t)
and so we arrive at an explicit formula for the option price,

V(S,t) = eIt x) exp( —%dz) d?x’ (13)

1 o
V2 o2 (T —t) /o Fol

where d, depends on x (as well as S, r —y, o and (T —t), as in (12)).



