
B8.3 Week 6 summary 2019

European calls and puts

The Black-Scholes value of a European call option is

C(S, t) = e−r(T−t) Et

[
(ST −K)+ |St = S

]

= S e−y(T−t) N(d+)−K e−r(T−t) N(d−)

where in the expectation in the first line we have

dSt
St

= (r − y) dt+ σ dWt (1)

and in the second line

d± =
log(S/K) + (r − y ± 1

2σ
2)(T − t)√

σ2(T − t)
.

Note that r represents that same risk-free rate in all of these expressions;
the risk-free rate is a property of bank accounts and/or bond prices. The
delta of the call (the number of shares we hold to be perfectly hedged) is

∆c(S, t) = e−y(T−t) N(d+).

Consider the limit t→ T−. In this limit we have

lim
t→T−

d± = lim
t→T−

log(S/K)√
σ2(T − t)

→




−∞ if 0 < S < K,

0 if 0 < S = K,
∞ if 0 < K < S

which implies that

lim
t→T−

C(S, t) =

{
0 if 0 < S ≤ K,

S −K if 0 < K < S,

lim
t→T−

∆c(S, t) =

{
0 if 0 < S < K,
1 if 0 < K < S,

which shows that the option does indeed replicate the payoff and the delta
is zero if the option isn’t going to be exercised but is one if the option is
going to be exercised.

Put-call parity,

C(S, t;K,T )− P (S, t;K,T ) = S e−y(T−t) −K e−r(T−t),

implies that the price and delta of a European put are

P (S, t) = K e−r(T−t) N(−d−)−S e−y(T−t) N(−d+), ∆p(S, t) = −e−y(T−t) N(−d+)

and the analysis above shows that

lim
t→T−

P (S, t) = (K − S)+, lim
t→T−

∆p(S, t) =

{
−1 if 0 < S < K,

0 if 0 < K < S.
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The risk-neutral price process

More generally the price a European option with payoff Po(ST ) is given by

V (S, t) = e−r(T−t) Et

[
Po(ST ) |St = S

]

where St evolves according to (1). The process (1) is called risk neutral for
the following reason.

First note that the −y represents a continuous dividend yield. If this
dividend is reinvested in the asset then the total value of the shares is eyt St.
Itô’s lemma shows that

d(eyt St) = y eyt St dt+ eyt dSt

= eyt St
(
y dt+ (r − y) dt+ σ dWt

)

so if we write the total value as pt = eyt St then

dpt
pt

= r dt+ σ dWt.

Now put qt = e−rtpt so Itô’s lemma implies that

dqt = −r e−rt pt dt+ e−rt dpt = σ e−rt pt dWt = σ qt dWt.

Integrating from s to t ≥ s we have

qt − qs = σ

∫ t

s
qu dWu

and taking expectations (with the information available at time s) gives

Es[ qt ]− qs = Es

[ ∫ t

s
qu dWu

]
= 0.

This implies that Es

[
e−rt pt

]
= e−rs ps or

Es[ pt ] = er(t−s) ps,

that is, the total value of the (risky) portfolio of shares grows at the risk-
free rate r under the process (1). We only use (1) for the purposes of
pricing an option; it comes about because the Black-Scholes equation arises
by eliminating all risk from the option (either by ∆-hedging it or by a self-
financing replication strategy).
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Figure 1: Jump in share price across a discrete dividend date.

Discrete dividends

Suppose that a share pays a deterministic dividend D at time tD. If both
D and tD are known in advance we must have

St−D
= St+D

+D ⇐⇒ St+D
= St−D

−D

otherwise there is an arbitrage opportunity. If we have an option on this
share then we don’t get the dividend and so we must have the jump condition

V
(
St−D

, t−D
)

= V
(
St+D

, t+D
)

= V
(
St−D
−D, t+D

)
.

As this is true for any St−d
and we solve the Black-Scholes equation backwards

in time, we generally write this jump condition as

V (S, t−D) = V (S −D, tD+). (2)

The strategy is to solve the Black-Scholes equation back from expiry, T ,
until the dividend date t+D, then apply (2) to find V (S, t−D) and then solve
the Black-Scholes equation backwards from t−D to the present time, using
V (S, t−D) as a “payoff” at t−D.

Note that D can be a function of S and t. Indeed, if we want the share
price to remain positive, it must be. Modelling discrete dividend payments
for a share price that follows geometric Brownian motion is problematic to
this day.
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Figure 2: General strategy for dealing with a discrete-time event.

Discrete dividend yields

If we assume a discrete dividend of the form

D = dy St−d
,

where the discrete dividend yield dy < 1, i.e., the dividend is proportional
to the share price immediately before the dividend is paid then we find that

St−d
= St+d

+ dy St−d
⇐⇒ St+d

= (1− dy)St−d

and the jump condition for the option becomes

V (S, t−d ) = V
(
(1− dy)S, t+d

)
. (3)

We can then use the fact that if V (S, t) is a solution of the Black-Scholes
equation then so too is V (λS, t), with λ = (1− dy) in this case, to see that
the solution for t < td is simply

V
(
(1− dy)S, t

)
,

as it is a solution of the Black-Scholes equation and obviously satisfies the
“payoff” condition at t−d .
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Jump condition across a discrete dividend yield date
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Figure 3: Jump condition for a call option on a share that pays a discrete
dividend yield.

A call option with one discrete dividend yield

Let Cv(S, t) be the price function for a vanilla call, i.e.,

Cv(S, t) = SN(d+)−K e−r(T−t) N(d−),

d± =
log(S/K) + (r ± 1

2σ
2)(T − t)√

σ2(T − t).

Let the share pay a discrete dividend yield of dy at time 0 < td < T and
let C(S, t) be the price function for a call written on this share. Then for
td < t < T we have

C(S, t) = Cv(S, t).

Across the dividend date td, we apply (3) to get

C(S, t−d ) = Cv

(
(1− dy)S, td

)

and then note that as 1−dy > 0 is a constant, the function Cv

(
(1−dy)S, td

)

is itself a solution of the Black-Scholes equation and so for all t < td we have

C(S, t) = Cv

(
(1− dy)S, t

)
.
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The same reasoning shows that if there are n discrete dividend yields at
times

t < t1 < t2 < · · · < tn < T

between now and expiry with dividend yields

d1, d2, . . . , dn,

where each dk < 1, then

C(S, t) = C
(
αnS, t

)
, where αn =

n∏

k=1

(1− dk).

Clearly this result generalises to any European option, regardless of the its
payoff.
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