
B8.2: Continuous Martingales and Stochastic Calculus (2019)

Problem Sheet 4

Sam Cohen

The questions on this sheet are divided into two sections. Those in the first section are compulsory and
should be handed in for marking. Those in the second are extra practice questions and should not be
handed in.

The questions are not in order of difficulty; if you are stuck on one question, move on to the next.

Section 1 (Compulsory)

1. Let M and N be continuous local martingales and τ a stopping time. We write M τ and N τ for
the stopped processes, M τ

t = Mτ∧t, N
τ
t = Nτ∧t. Show that M τ (N − N τ ) is a continuous local

martingale.
Hint: use the properties of quadratic co-variation

2. Show that if M,N are two martingales in H2,c (that is they are continuous and bounded in L2),
then MN − 〈M,N〉 is a uniformly integrable martingale.

3. Let M be a continuous L2-bounded martingale. Show that

i For every deterministic t ∈ [0,∞), the time Tt = inf{s > t : Ms 6= Mt} is a stopping time
(and similarly with M replaced by 〈M〉)

ii The intervals of constancy for M and 〈M〉 coincide a.s., that is to say, if (S, S′) are random
times with S ≤ S′, then for almost every ω,

Mt(ω) = MS(ω)(ω) ∀t ∈ [S(ω), S′(ω)]

if and only if
〈M〉t(ω) = 〈M〉S(ω)(ω) ∀t ∈ [S(ω), S′(ω)].

Hint: Begin with times (S, S′) = (t, Tt) for t ∈ Q.

4. Let M,N ∈ H2,c, K ∈ L2(M) and F ∈ L2(N). Show that for each t ∈ [0,∞] we have

E

[(
∫ t

0
KsdMs

)(
∫ t

0
FsdNs

)]

= E

[
∫ t

0
KsFsd〈M,N〉s

]

.

5. Suppose that M is a continuous local martingale and K ∈ L2
loc(M). Fix t > 0. Show that if

E

[

∫ t
0 K

2
sd〈M〉s

]

< ∞ then the stopped process (K •M)t is a martingale and

E

[
∫ t

0
KsdMs

]

= 0, E

[

(
∫ t

0
KsdMs

)2
]

= E

[
∫ t

0
K2

sd〈M〉s
]

< ∞.
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6. Let f be a continuous function on [0,∞) and B a standard Brownian motion. Prove that the
process

Xt :=

∫ t

0
f(s)dBs, t ≥ 0,

is Gaussian and compute its covariance function.

(The same result holds true for locally bounded Borel functions f .)
Hint: You may use that the space of centred Gaussian variables is a closed subspace of L2.

7. Suppose that (Bt)t≥0 is standard Brownian motion and f and g are twice continuously dif-
ferentiably real-valued functions. Using Itô’s formula, decompose the semimartingale Xt =
exp

(

f(Bt)−
∫ t
0 g(Bs)ds

)

into a local martingale and a bounded variation part and hence find an
expression relating f and g which guarantees that (Xt)t≥0 is a local martingale.

Section 2 (Extra practice questions, not for hand-in)

A. Use a heuristic argument based on a Taylor expansion to check that for Stratonovich stochastic
calculus the chain rule takes the form of the classical (Newtonian) one.

B. Let B be a standard Brownian motion. Recall that M θ
t := exp(θBt − θ2

2 t) is a local martingale.
Expanding as a Taylor series in θ, around θ = 0, we can write

M θ
t =

∞
∑

k=0

θkHk(t, Bt),

where Hk(t, x) are polynomials.
Find the first four of the Hk(t, x) and show that (Hk(t, Bt) : t ≥ 0), k = 0, 1, 2, 3, 4 are local
martingales. (Hint: you may use the Itô formula to verify the local martingale property)

We now show that in fact for any local martingale M , Hk(〈M〉t,Mt) are local martingales and
deduce a stochastic integral representation for them. Define hk via

∞
∑

k=0

ukhk(x) = exp(ux− u2/2), u, x ∈ R.

Let f(x) = exp(−x2/2) and deduce that

hk(x) =
(−1)k

k!f(x)
f (k)(x).

Note that for a > 0, we have

exp(ux− au2/2) = exp

(

u
√
a

(

x√
a

)

− (u
√
a)2

2

)

and deduce that Hk(a, x) = ak/2hk(x/
√
a). Give the value of Hk(0, x).

Use Itô formula and the above representation to show that if M is a continuous local martingale
then (Hk(〈M〉t,Mt) : t ≥ 0) is a continuous local martingale.

Observe that ∂Hk

∂x (a, x) = Hk−1(a, x). Show by induction that

Hk(〈M〉t,Mt) =

∫ t

0
dMs1

∫ s1

0
dMs2 . . .

∫ sn−1

0
dMsn .
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C. (Brownian local time in zero) Let B be a standard Brownian motion. Let f(x) = |x| and fn be a
sequence of convex C2 functions converging pointwise to f(x) with f ′

n(x) increasing in n to f ′
−(x)

(the left-hand derivative of f which is well defined everywhere).

Such a sequence can be constructed quasi-explicitly. Indeed, take h(x) a non-negative C∞ func-
tion supported on [−1, 0] and

∫ 0
−1 h(x)dx = 1. Put fn(x) := n

∫ 0
−1 f(x + y)h(ny)dy and verify it

satisfies the announced properties.

Apply Itô’s formula to fn(Bt) and denote Ln
t the finite variation term in the resulting semimartin-

gale decomposition of fn(Bt). Observe that Ln
t is a non-decreasing process.

(a) Exhibit the region where f ′′
n(x) is non-zero and hence comment when along the paths of B

the process Ln is increasing and when it is constant and deduce what, if it existed, the limit
would measure?

(b) Define sgn(x) to be 1 for x > 0 and −1 for x ≤ 0. Use stochastic dominated convergence
theorem to show that for any t > 0,

∫ t
0 f

′
n(Bs)dBs converge, in probability and uniformly in

s ≤ t, to
∫ t
0 sgn(Bs)dBs.

(c) Deduce that Ln
t converges in probability to some process Lt which is non-decreasing and in

particular that |Bt| is a semimartingale.
Hint: to deduce monotonicity of L you may want to take a subsequence and pass to a.s.
convergence.

(d) Finally, using Itô on B and |B| for a suitable choice of function show that

∀t ≥ 0

∫ t

0
|Bs|dLs = 0 a.s.

from which you should deduce that L is supported on Z a.s.
(i.e. for any s < t, Lt(ω)− Ls(ω) =

∫ t
s dLu(ω) =

∫

[s,t]∩Z(ω) dLu(ω) a.s.)
The process L is called the local time in zero.

(e) How would you go about defining local time at level a?

(f) Can you see if the above extends to an arbitrary continuous local martingale M?
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