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Q1 To determine the subspaces of the matrix

A =

 0 2 0
−2 0 0
2 0 6

 , (1)

we find its eigenvalues and eigenvectors, which are:

λ1 = 6 v(1) = (0, 0, 1)T ,

λ2 = 2i v(2) = i(0, 10,−1)T + (10, 0,−3)T ,

λ3 = −2i v(3) = −i(0, 10,−1)T + (10, 0,−3)T .

Therefore, the stable Es, unstable Eu, and center Ec subspaces of (1) are:

Es = ∅,
Eu = span{(0, 0, 1)T },
Ec = span{(0, 10,−1)T , (10, 0,−3)T };

that is, the empty set, the z-axis, and the plane specified by
z = −3x/10− y/10.

Q2 (invariant set) For the system:

ẋ = −x, (2)
ẏ = −y + x2, (3)
ż = z + x2 (4)

we define a quantity Q(t) = z + x2/3 and find, upon differentiating:

Q̇ = z + x2/3,
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which vanishes only if z = −x2/3. Therefore, z = −x2/3 is an invariant set
of the system. The other invariant set is the fixed point at (0, 0, 0), which,
by linearization, is a saddle node because it has eigenvalues and eigenvectors
given by:

λ1 = 1 v(1) = (0, 0, 1)T ,

λ2 = −1 v(2) = (1, 0, 0)T ,

λ3 = −1 v(3) = (0, 1, 0)T .

The phase portrait of the system is shown in Fig. 2.

Figure 1: Phase portrait of (2)-(4) on the planes x = y = 0 and z = −x2/3.

Q3 (attracting set) We consider the system:

ẋ = −y + x(1− z2 − x2 − y2), (5)
ẏ = x+ y(1− z2 − x2 − y2), (6)
ż = 0 (7)

We introduce the radius in cylindrical coordinates r2 = x2 + y2 and differ-
entiate with respect to time:

rṙ = xẋ+ yẏ, =⇒ ṙ = r(1− r2 − z2),

which suggests r = 0 (i.e z-axis) is the α-limit set (asymptotically unstable
in this case) whilst r =

√
1− z2 is the ω-limit set (asymptotically stable in

this case). Each circle is a level set in z ∈ [−1, 1], which together form a
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unit sphere that is an attracting set (i.e. the orbits within a shell of radius
ρ =

√
1− r2 − z2 ∈ [1 − ε, 1 + ε] ∀ε > 0 will tend to the unit sphere as

t → ∞). Defining the unit sphere as S1, the domain of attraction would
be D(S1) = R 2 × [−1, 1] \ {0}, given that ż = 0. In turn, the domain of
attraction of the part of z-axis with |z| > 1 is given by R 2 \D(S1).

We note that there does not exist a dense orbit Γ on the unit sphere such
that, ∀ Γ also on the unit sphere, there are points x ∈ Γ and x̃ ∈ Γ satisfying
|x − x̃| < ε ∀ε > 0. Orbits on the unit sphere are confined to circles at a
particular z and will, therefore, never come arbitrarily close together.

Q4 (attracting set) We study the system:

ṙ = r(1− r), θ̇ = sin2 θ

2
, (8)

We note that fixed points occur at r = {0, 1} and θ = 2πn for n ∈ Z ∪ {0},
which correspond to two fixed points in Cartesian coordinates, (x, y) =
(0, 0) and (1, 0). The radius r = 0, or the fixed point (0, 0), is the α-limit
set whilst r = 1 is asymptotically stable. Due to (8), the trajectories pro-
ceed around the unit circle in an anti-clockwise direction and asymptotically
approach (1, 0). Therefore, (1, 0) is the ω-limit point in the system for all
initial conditions except the fixed point at the origin (i.e. x0 6= 0).

Despite this, however, θ = 0 is unstable according to (8). Perturbing
the state by θ = ε > 0 for ε � 1 will result in the trajectory proceeding
anti-clockwise around the unit circle until it reaches (1, 0) again.

The unit circle is an attracting set because it is an invariant set and all
trajectories that are within the radius r ∈ [1−ε, 1+ε], for ε > 0, will end up
within the set. The fixed point (1, 0) is also an attracting set since the same
neighborhood as above satisfies the definition. The domain of attraction for
both the unit circle and (1, 0) is D(r = 1) = D((1, 0)) = R 2 \ {0}.

Q5* (the variational equation and its adjoint): (i) We are asked to
show that u(t) = ˙̄x(t) is a solution of the linear equation

ẏ = Df(x̄)y, (9)

where x̄(t) is a particular solution of ẋ = f(x). We note that:

˙̄x = f(x̄),
=⇒ ¨̄x = Df(x̄) ˙̄x,
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which is (9) for y = u = ˙̄x, as required. The vector ˙̄x(t) is tangential to the
flow by construction and is analogous to the velocity of a particle traveling
on a curve whose position is given by x̄(t).

(ii) For planar flows, we require two linearly independent solutions to (9).
From (i) we know that one of this solutions is u(t) = ˙̄x(t). To determine the
other solution, which we will call v(t), we suppose it has the general form:

v(t) = g(t)τ(t) + h(t)n(t), (10)

where τ(t) = ˙̄x(t) is a vector tangential to the flow traced out by x̄(t) and
n(t) = τ(t)⊥ is the corresponding normal. Note that, for a prescribed x̄(t),
both τ(t) and n(t) are known and they are orthogonal to each other. Given
that v(t) is a solution to linear system (9), we differentiate (10) with respect
to t to obtain:

ġτ + gτ̇ + ḣn+ hṅ = Df(x̄)gτ +Df(x̄)hn, =⇒ ġτ + ḣn+ hṅ = Df(x̄)hn,
(11)

where the latter step results from the definition of τ(t) = ˙̄x(t) and (9).
Multiplying (11) by n, we use orthogonality to obtain:

ḣ =
h

|n|2
(nDf(x̄)n− ṅn) = K1(t)h, =⇒ h(t) = c1 exp

(∫
K1(t) dt

)
,

(12)
for c1 ∈ R . Note that K1(t) is completely known for a given x̄(t). Taking
(11) and multiplying through by τ , we now obtain:

ḣ =
h

|τ |2
(τDf(x̄)n− ṅ · τ) = K2(t)h, =⇒ h(t) =

∫
K2h dt+ c2, (13)

for c2 ∈ R . Similarly, K2(t) is completely known. We obtain the explicit
form of v(t) by combining (10), (12) and (13) above, so that the complete
solution of (9) is

y(t) = a1u(t) + a2v(t)

for a1, a2 ∈ R .
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