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Q1 (the complex Landau equation) The complex Landau equation

ż = az − b|z|2z,

for constants a, b ∈ C.
We introduce the ansatz z(t) = r(t) exp(iθ(t)) for r, θ ∈ R and split

a = a1 + ia2 and b = b1 + ib2 to obtain from (1):

ṙ + irθ̇ = a1r + ia2r − b1r3 − ib2r3,

which can be separated into two real equations For the system

ṙ = a1r − b1r3, (1)
θ̇ = a2 − b2r2. (2)

Given that a1 > 0 from the question, we can rescale time a1t → t so that
(1) depends on a single collection of parameters:

ṙ = r

(
1− b1

a1
r2
)
. (3)

We note from (3) that equilibria radii occur at r = {0, ±
√
a1/b1}, with the

former being unstable and the latter two being asymptotically stable. On
the other hand, (2) suggests that θ̇ = 0 for radii r = ±

√
a2/b2.

For periodic solutions to exist, we require that a1 and b1 are of the
same sign; namely, that b1 > 0, given that we have already assumed that
a1 > 0. For both r > 0 and r < 0, there is a single stable radius, however for
periodic solutions to exist, we additionally must demand that a1/b1 6= a2/b2.
Without this constraint, we would have a fixed point rather than a periodic
orbit. Lastly, we note that as a1/b1 → 0+, the three fixed radii will merge
together leading to a supercritical pitchfork bifurcation.
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Q2 (the glider) We study the equations of a simple glider:

ẏ = − sin θ − ay2, (4)

θ̇ = y − cos θ
y

. (5)

For the case of zero drag a = 0, we differentiate the quantity V = y3−3y cos θ
with respect to time and find:

V̇ = 3y2ẏ − 3ẏ cos θ + 3yθ̇ sin θ = 0,

meaning that V is conserved.
We note that the fixed points of (4)-(5) are sin θ = nπ for n ∈ Z∩{0} and

y2 = cos θ. The latter solution suggests that there are only fixed points for
even n and every fixed point is a center by linearization, whereby trajectories
rotate anti-clockwise. The phase plot of (4)-(5) with a = 0, together with
invariant sets determined by V = y3 − 3y cos θ, is shown in Fig. 1. In the

Figure 1: Phase plot of (4)-(5) with no drag a = 0 and invariant sets
V = y3 − 3y cos θ for V ∈ [−5, 5] in steps of 0.5 (shown in blue).

center, the glider bobs back and forth with periodic velocity that is always of
a single sign, whilst out of the center, the glider does loop-de-loops with the
same increasing and decreasing velocity that is always in a given direction.

With the inclusion of drag a > 0, the fixed points now occur for tan θ =
−a and y2 = cos θ, which suggests y = ±1/(1 + a2)1/4. We only consider
the positive solutions in the forthcoming analysis, given that the negative
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solutions are dynamically the same by symmetry. The Jacobian in this case
is given by:

Df =

[ −2a
(1+a2)1/4 − 1√

1+a2

2 −a
(1+a2)1/4

]
which has a trace, determinant, and discriminant given by:

tr(Df) = − 3a
(1 + a2)1/4

< 0,

det(Df) = 2
√
a2 + 1 > 0,

tr(Df)2 − 4det(Df) =
a2 − 8√
1 + a2

.

Noting that a > 0, we use (8) to determine that the fixed points are stable
spirals for a < 2

√
2 and stable nodes for a > 2

√
2. We show the phase plots

of (4)-(5) in these respective regimes in Fig. 2.

Figure 2: Phase plots of (4)-(5) for a = 1 (shown left) and a = 3 (shown right).

Q3 (non-wandering sets) It is important in the definition of the non-
wandering property for a point p that arbitrarily large times t such that
ϕt(U) ∩ U 6= ∅ should exist for every possible neighborhood.

(i): Consider θ̇ = µ − sin θ where θ ∈ S1. For µ > 1, we note that
there are no fixed points in the system with every point on the unit circle
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continuously proceeding anti-clockwise around the circle. As such, the non-
wandering set includes all points on the unit circle. For µ = 1, there is a
fixed point at θ = π/2 that is attracting in one direction, but repelling in the
other. All trajectories proceed anti-clockwise around the circle. The small-
est set that is non-wandering is the fixed point as any neighborhood that
contains this fixed point has a non-zero intersection with any evolution of
that neighborhood (i.e. the intersection being the fixed point itself). Lastly,
for 0 ≤ µ < 1, there are two fixed points, one of which is unstable and the
other being asymptotically stable. Both fixed points are non-wandering and
the non-wandering set is the union of both fixed points by similar reasoning.

(ii): Consider now θ̈ + sin θ = 1/2 where θ ∈ S1. We note that it is a
conservative system which has a potential given by V (θ) = − cos θ − θ/2 so
that the fixed points occur at θ = {π/6, 5π/6}. The non-wandering set in
this instance includes all the points that are enclosed by the homoclinic orbit
beginning at θ = 5π/6 and constrained by the potential V ≤

√
3/2− 5π/12.

Note that, even though θ ∈ S1, orbits that starts outside the homoclinic
orbit are never periodic (i.e. their velocity increases after each turn). A
phase plot showing the homoclinic orbit is shown in Fig. 3.

Figure 3: Phase plot of θ̈ + sin θ = 1/2 showing the homoclinic orbit.
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Q4 (gradient vector fields) We study the gradient vector field:

ẋ = −∇V (x).

Proof for periodic solutions: In order to have a periodic that starts at t0 and
repeats after time t1, we demand that:

V (x(t1))− V (x(t0)) = 0. (6)

However, we can rewrite the left hand side of (42) as:

V (x(t1))− V (x(t0)) =
∫ t1

t0

dV

dt
dt (7)

(chain rule) =
∫ t1

t0

∇V · ẋ dt (8)

(using system (7)) =
∫ t1

t0

−|ẋ|2 dt ≤ 0, (9)

with the equality only occurring if each point of the periodic orbit is a fixed
point. As such, we have a contradiction with (6).

Proof for homoclinic solutions: By definition a homoclinic loop is an in-
tersection of globally stable W s(x0) and globally unstable W u(x0) manifolds
of a saddle fixed point. Therefore one has,

f(t) = V (x(t))− V (x(−t))→ 0 as t→∞. (10)

On the other hand, similar to the argument used in (7)-(9) f(t) is increasing
function of t, because a homoclinic loop doesn’t contain other fixed points.
This fact contradicts to (10).

Q5 (the Lorenz system) We look at the classical Lorenz system:

ẋ = σ(y − x),
ẏ = ρx− xz − y,
ż = xy − βz.

We consider a function having spheres as level sets C(x, y, z) = x2 + y2 +
(z − r − σ)2 and differentiate it with respect to t to obtain:

Ċ(x, y, z) = 2xẋ+ 2yẏ + 2(z − r − σ)ż
= 2xσ(y − x) + 2y(rx− xz − y) + 2(z − r − σ)(xy − βz)

= −2σx2 − 2y2 − 2β
(
z − r + σ

2

)2

+
β(r + σ)2

2
. (11)
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Suppose the spherical surface given by x2 + y2 + (z− ρ− σ)2 = C has a big
enough C so that it encloses the ellipsoid denoted by:

x2

β
σ

(
r+σ

2

)2 +
y2

β
(
r+σ

2

)2 +

(
z − r+σ

2

)2(
r+σ

2

)2 = 1, (12)

which was obtained by considering Ċ = 0 from (11).
We note that trajectories starting on the surface with big enough C are

outside of the ellipsoid given by (12), implying that Ċ < 0 from (11), so
that the trajectories not only enter the sphere, but never escape it for all
time. The spherical surface acts like a trapping region.
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