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Q1 (the complex Landau equation) The complex Landau equation
2 =az — b|z|’z,

for constants a,b € C.
We introduce the ansatz z(t) = r(t)exp(if(t)) for r, # € R and split
a = a1 + iaz and b = by + iby to obtain from (1):

P+ irf = air + iasr — by — ibor?,
which can be separated into two real equations For the system

Fo= air —bird, (1)
) = ag— byr? (2)

Given that a; > 0 from the question, we can rescale time a1t — ¢ so that
(1) depends on a single collection of parameters:

r‘:r<1211r2>. (3)

We note from (3) that equilibria radii occur at r = {0, £4/a1/b1}, with the
former being unstable and the latter two being asymptotically stable. On
the other hand, (2) suggests that 6 = 0 for radii r = + as/bo.

For periodic solutions to exist, we require that a; and b; are of the
same sign; namely, that by > 0, given that we have already assumed that
a1 > 0. For both » > 0 and r < 0, there is a single stable radius, however for
periodic solutions to exist, we additionally must demand that a; /by # aa/bs.
Without this constraint, we would have a fixed point rather than a periodic
orbit. Lastly, we note that as aj/b; — 0T, the three fixed radii will merge
together leading to a supercritical pitchfork bifurcation.



Q2 (the glider) We study the equations of a simple glider:

y = —sinf—ay? (4)
: cos
0 = y— o (5)

For the case of zero drag a = 0, we differentiate the quantity V = y3—3y cos 6
with respect to time and find:

V = 3y2%y — 3y cosd + 3yfsinb = 0,

meaning that V' is conserved.

We note that the fixed points of (4)-(5) are sin = nx for n € ZN{0} and
y? = cosf. The latter solution suggests that there are only fixed points for
even n and every fixed point is a center by linearization, whereby trajectories
rotate anti-clockwise. The phase plot of (4)-(5) with a = 0, together with

invariant sets determined by V = y3 — 3ycos#, is shown in Fig. 1. In the

Figure 1: Phase plot of (4)-(5) with no drag a = 0 and invariant sets
V =y3 —3ycosd for V € [-5, 5] in steps of 0.5 (shown in blue).

center, the glider bobs back and forth with periodic velocity that is always of
a single sign, whilst out of the center, the glider does loop-de-loops with the
same increasing and decreasing velocity that is always in a given direction.

With the inclusion of drag a > 0, the fixed points now occur for tan =
—a and y? = cos#, which suggests y = +1/(1 + a®)'/4. We only consider
the positive solutions in the forthcoming analysis, given that the negative



solutions are dynamically the same by symmetry. The Jacobian in this case
is given by:
—2a 1
pf = | gt e
(1+a2)1/4

which has a trace, determinant, and discriminant given by:

3a
tI'(Df) = —m < O,
det(Df) = 2va?>+1>0,
a®—38

tr(Df)? —4det(Df) = ———.

(D)~ ddet(Df) = ey
Noting that a > 0, we use (8) to determine that the fixed points are stable
spirals for a < 2v/2 and stable nodes for a > 2v/2. We show the phase plots
of (4)-(5) in these respective regimes in Fig. 2.
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Figure 2: Phase plots of (4)-(5) for a = 1 (shown left) and a = 3 (shown right).

Q3 (non-wandering sets) It is important in the definition of the non-
wandering property for a point p that arbitrarily large times ¢ such that
©e(U) NU # B should exist for every possible neighborhood.

(i): Consider § = p — sinf where § € S'. For p > 1, we note that
there are no fixed points in the system with every point on the unit circle



continuously proceeding anti-clockwise around the circle. As such, the non-
wandering set includes all points on the unit circle. For g = 1, there is a
fixed point at §# = 7/2 that is attracting in one direction, but repelling in the
other. All trajectories proceed anti-clockwise around the circle. The small-
est set that is non-wandering is the fixed point as any neighborhood that
contains this fixed point has a non-zero intersection with any evolution of
that neighborhood (i.e. the intersection being the fixed point itself). Lastly,
for 0 < pu < 1, there are two fixed points, one of which is unstable and the
other being asymptotically stable. Both fixed points are non-wandering and
the non-wandering set is the union of both fixed points by similar reasoning.

(i3): Consider now 6 + sinf = 1/2 where § € S'. We note that it is a
conservative system which has a potential given by V() = —cosf — /2 so
that the fixed points occur at § = {7/6, 57/6}. The non-wandering set in
this instance includes all the points that are enclosed by the homoclinic orbit
beginning at 6 = 57/6 and constrained by the potential V' < /3/2 — 57 /12.
Note that, even though # € S!, orbits that starts outside the homoclinic
orbit are never periodic (i.e. their velocity increases after each turn). A
phase plot showing the homoclinic orbit is shown in Fig. 3.

Figure 3: Phase plot of § + sin = 1/2 showing the homoclinic orbit.



Q4 (gradient vector fields) We study the gradient vector field:
& =-VV(zx).

Proof for periodic solutions: In order to have a periodic that starts at tg and
repeats after time ¢1, we demand that:

V(x(t1)) = V(z(to)) = 0. (6)
However, we can rewrite the left hand side of (42) as:
hqv
Vealt) - Viato) = [ e 7)
to
t1
(chain rule) = VV - &dt (8)
t
“
(using system (7)) = / —|#|*dt <0, 9)
to

with the equality only occurring if each point of the periodic orbit is a fixed
point. As such, we have a contradiction with (6).

Proof for homoclinic solutions: By definition a homoclinic loop is an in-
tersection of globally stable W*(z() and globally unstable W*(xy) manifolds
of a saddle fixed point. Therefore one has,

f@&)=V(z(t)) - V(z(-t)) =0 as t— oo. (10)

On the other hand, similar to the argument used in (7)-(9) f(¢) is increasing
function of ¢, because a homoclinic loop doesn’t contain other fixed points.
This fact contradicts to (10).

Q5 (the Lorenz system) We look at the classical Lorenz system:

& = o(y—uw),
= pr—z2—Y,
z = zy-— Pz

We consider a function having spheres as level sets C(z,y,2) = x> + y? +
(z —r — 0)? and differentiate it with respect to ¢ to obtain:

C(I,y,z) = 21’1’—}—2yy+2(z_7n_0_)z
= 2x0(y —2)+2y(re —xz —y) +2(z —r — o) (2y — (2)

2 2
_ —20932—23/2—25(,2—7“;0) +6(T;U). (11)

!



Suppose the spherical surface given by 22 + 32 + (2 — p — 0)? = C has a big
enough C so that it encloses the ellipsoid denoted by:

N
+ + =1, (12)
s e ()

which was obtained by considering C' = 0 from (11).

We note that trajectories starting on the surface with big enough C are
outside of the ellipsoid given by (12), implying that C' < 0 from (11), so
that the trajectories not only enter the sphere, but never escape it for all
time. The spherical surface acts like a trapping region.
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