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Q1 (Hopf bifurcation and bifurcation diagram) We consider the
equation

ẍ+ (µ+ x2)ẋ+ νx+ x3 = 0.

It can be split into two equations:

ẋ = y, (1)
ẏ = −(µ+ x2)y − νx− x3, (2)

which has fixed points at (x, y) = {(0, 0), (±
√
−ν, 0)} and the corresponding

eigenvalues:

λ|(0,0) =
−µ±

√
µ2 − 4ν

2
, (3)

λ|(±√−ν,0) =
−(µ− ν)±

√
(µ− ν)2 + 8ν

2
. (4)

We observe that the case of a simple zero eigenvalue and interchange of
stability happens for (3) and (4) when ν = 0, µ ∈ R. In turn ,the case of
two imaginary eigenvalues (corresponding to the Hopf bifurcation points)
appears when µ = 0 and ν > 0 in (3) or µ = ν and ν < 0 in (4).

(i) : Analysis of the Hopf bifurcations in the case µ = 0 and ν > 0. In
this case, system (1)-(2) takes the form

ẋ = y, (5)
ẏ = −x2y − νx− x3. (6)

The linearisation at the origin gives:

DF (0, 0) =
[

0 1
−ν 0

]
(7)
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and two corresponding eigenvalues

λ± = ±i
√
ν,

with the corresponding eigenvectors

v± =
(

0
1

)
∓ i
(

1/
√
ν

0

)
.

If we introduce the new variables u = y and v =
√
νx the system (5)-(6)

transforms into the diagonal form:

v̇ =
√
νu, (8)

u̇ = −
√
νv − 1

ν
v2u− 1

ν3/2
v3, (9)

for which the Hopf theorem can be applied. In this case,

f(u, v) = −1
ν
v2u− 1

ν3/2
v3, g(u, v) = 0,

and the corresponding Lyapunov coefficient

a =
1

16
√
ν
{(fuuu + fuvv + guuv + gvvv)

√
ν + fuv(fuu + fvv)

−guv(guu + gvv)− fuuguu + fvvgvv}|u=v=0 = − 1
8ν
. (10)

From (3) we can also calculate the coefficient d:

d = Re
(

1
2

(
−1± µ

µ2 − 4ν

)
|µ=0

)
= −1

2
, (11)

From (10)-(11) we obtain the normal form for this bifurcation:

ṙ = −µ
2
r − r3

8ν
,

ϕ̇ =
√
ν.

We note from it that there are two fixed radii at r = {0,
√
−4µν} for µ < 0

and r = 0 for µ ≥ 0. The origin is asymptotically stable for µ ≥ 0, while it is
unstable for µ < 0 and the trajectories asymptotically tend to r =

√
−4µν,

meaning the Hopf bifurcation is supercritical. Plots of (1)-(2) in these two
respective regimes are given in Fig. 1.

2



Figure 1: Plots of (1)-(2) for ν = 1 and µ = 0.5 (left) and µ = −0.5 (right).

(ii) : Analysis of the Hopf bifurcations at the fixed points (±
√
−ν, 0) in

the case µ = ν and ν < 0. In this case, system (1)-(2) can be written as

ẋ = y, (12)
ẏ = −(µ̃+ ν + x2)y − νx− x3, (13)

where we introduced the shifted parameter µ̃ = µ − ν. Let us first analyse
the bifurcation at (

√
−ν, 0). For µ̃ = 0 the eigenvalues λ± = ±i

√
−2ν are

imaginary conjugate. We shift the fixed point to the origin via a linear
change of variables:

x̃ = x−
√
−ν, ỹ = y.

The system (12)-(13) transforms into

˙̃x = ỹ, (14)
˙̃y = 2νx̃− (x̃2 + 2x̃

√
−ν)ỹ − 3x̃2

√
−ν − x̃3, (15)

We observe that (14)-(15) is in almost diagonal form and introduce further
linear change of variables:

u = ỹ, v =
√
−2νx̃.

Accordingly, system (14)-(15) transforms into

v̇ =
√
−2νu, (16)

u̇ = −
√
−2νv +

1
2ν
v2u− 3

2
√
−ν

v2 +
1

2ν
√
−2ν

v3 −
√

2vu, (17)
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for which the Hopf theorem can be applied. In this case,

f(u, v) =
1

2ν
v2u− 3

2
√
−ν

v2 +
1

2ν
√
−2ν

v3 −
√

2vu, g(u, v) = 0,

and the corresponding Lyapunov coefficient

a =
1

16
√
−2ν
{(fuuu + fuvv + guuv + gvvv)

√
−2ν + fuv(fuu + fvv)

−guv(guu + gvv)− fuuguu + fvvgvv}|u=v=0 = − 1
32ν

> 0. (18)

Next, d coefficient can be calculated using (4) as

d = Re
d

dµ̃

[
−µ̃±

√
µ̃2 + 8ν

2

]
|µ̃=0 = −1

2
. (19)

Finally, combining (18) with (19) one obtains the normal form of the Hopf
bifurcation for the case µ̃ = µ− ν = 0 and ν > 0:

ṙ = −1
2

(µ− ν)r − 1
32ν

r3,

ϕ̇ =
√
−2ν

In this case, the bifurcation is subcritical. For µ > ν the fixed point r = 0 is
stable, while the bifurcated limit circle r = 4

√
−(µ− ν)ν is unstable. For

µ ≤ ν the unique fixed point r = 0 is unstable.
The analysis of the Hopf bifurcation for the fixed point (−

√
−ν, 0) pro-

ceeds similarly.
(iii) : Finally, for ν = µ = 0, there is a zero eigenvalue which is doubly

degenerate. To find out the stability of the origin, we look for a Lyapunov
function for it of the form:

V = cxm + yn,

where c,m, n ∈ R are constants to be determined. By differentiation one
obtains

V̇ = mcxm−1y − nx2yn − nx3yn−1,

which suggests, by balancing the first and last term that m = 4, n = 2 and
c = 1/2. In this case,

V̇ = −2x2y2 < 0 ∀ (x, y) \ (0, 0),
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implying that the origin is asymptotically stable. Furthermore, trajectories
slowly spiral into the center in a clockwise manner, because at the points
(±
√
ε, 0) one has ±ẏ < 0.

(iv) : We collect the results about the number, stability and type of
the fixed points of system (1)-(2) at a bifurcation diagram in (ν, µ) plane
presented in Fig. 2. We note that the curve ν = 0, µ > 0 (ν = 0, µ < 0)
consists of supercritical (subcritical) Pitchfork bifurcation points; the curve
µ = 0, ν > 0 contains supercritical Hopf bifurcation points for the fixed
point (0, 0); and the curve µ = ν, ν < 0 contains subcritical Hopf bifurcation
points for the fixed points (±

√
−ν, 0). The other two curves ν = µ2/4 > 0

and µ = ν±4
√
−2ν, ν < 0 contain the points where the fixed points change

their type from being a node to a focus and vice versa.

Figure 2: Bifurcation diagram for system (1)-(2) in (ν, µ) plane. Plotted are two
Hopf bifurcation curves (in red), the Pitchfork bifurcation line (in green) and two
curves where fixed points change their type (in blue). The curves split the plane into
seven subdomains: I-the unique stable node (0, 0); II-unstable (0, 0) and two stable
(±
√
−ν, 0) nodes; III-unstable node (0, 0) and two stable focuses (±

√
−ν, 0), IV-

unstable node (0, 0) and two unstable focuses (±
√
−ν, 0), V-three unstable nodes

(0, 0) and (±
√
−ν, 0), VI-one unstable node (0, 0), VII-one unstable focus (0, 0),

VIII-one stable focus (0, 0).
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Q3 (Binary expansion map) We consider the map F : [0, 1)→ [0, 1):

F (x) = 2xmod 1, (20)

and for each x ∈ [0, 1] the corresponding binary expansion

x = 0.s1s2... =
∞∑
i=1

si
2i
. (21)

We note that if x < 1/2, then s1 = 0, whilst if x ≥ 1/2, then s1 = 1.
Continuing to the second digit, if x − s1/2 < 1/4, then s2 = 0, whilst if
x− s1/2 ≥ 1/4, one has s2 = 1 and so forth.

(i) : We first prove that F (x) shifts the binary expansion by one digit to
the left and, if necessary, removes 1 from the first digit. Indeed,

F (x) =
∞∑
i=1

si
2i−1

mod 1 = 0.s2s3...

Proving of Fn(x) = 0.sn+1sn+2... for n > 1 proceeds by induction. Suppose
that this is true for n = m,

Fm(x) = 0.sm+1sm+2sm+3...,

then

Fm+1(x) =
∞∑
i=1

sm+i

2i−1
mod 1 = 0.sm+2sm+3...,

as required.
(ii) : We note that the countably infinite number of rational numbers

within the region [0, 1) have binary expansions which are n-periodic for
n ∈ N. As such, applying (20) n times leads to the same rational number,
thus resulting in an n-periodic orbit. Given that there are countably infinite
rational numbers in [0, 1], this implies that (20) allows a countably infinite
number of orbits.

(iii) : We observe that there are an uncountably infinite number of irra-
tional numbers within the region [0, 1) which, by definition, have binary ex-
pansions that are non-periodic. Applying (20) to such x any number of times
will never result in the same original number, given this non-periodicity. As
such, we conclude that (20) allows for an uncountably infinite number of
non-periodic orbits.

(iv) : F has sensitive dependence on initial conditions if ∃δ > 0, such that
for any x ∈ [0, 1) and ε > 0 there exist y ∈ [0, 1) and n > 0 such that |x−y| <
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ε and |Fn(x) − Fn(y)| > δ. To prove this property, we choose 1/2n+1 < ε,
so that, if we have some number x expressed as a binary expansion, then by
changing its (n+ 1)-th binary digit, we obtain y. Mathematically, that is:

|x− y| = 1
2n+1

< ε,

by definition (21).
Applying (20) n times, we find:

|Fn(x)− Fn(y)| = 1
2
,

given that x and y differ in their (n+ 1)-th binary digit. Choosing δ = 1/3,
we note that:

|Fn(x)− Fn(y)| > δ,

implying that the map F has sensitive dependence on initial conditions for
all x ∈ [0, 1).

Q4 (Existence of a homoclinic curve, Melnikov’s integral) We con-
sider system

ẋ = y, (22)
ẏ = x− x3 + ε(αy + βx2y), (23)

For ε = 0, we find the first integral of the unperturbed Hamiltonian system
in the form:

1
2
ẋ2 + V (x) = E = const, (24)

with potential V (x) = x4

4 −
x2

2 . By plotting potential V we determine that
there are three fixed points (±1, 0) and (0, 0) to the unperturbed system
with the former two being centers and the latter a saddle (see Fig. 3). For
the saddle point and two homoclinic curves starting and ending at (0, 0),
one calculates E = V (0) = 0. Using this, we integrate equation (24):

t− t0 =
∫

dx

x
√

1− x2

2

, (25)

to obtain the explicit form of two homoclinic curves ±(x̄(t), ˙̄x(t)).
Using the substitution

s =
√

1− x2/2, dx = −2s
x
ds,
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Figure 3: Sketch of the potential V (x) and the phase plane for system (22)-(23)
with ε = 0.

one calculates ∫
dx

x
√

1− x2

2

= −1
2

log
[

1 + s

1− s

]
s=
√

1−x2/2

. (26)

Assuming x̄(0) =
√

2, i.e. t0 = 0, one deduces from (25) and (26) that

(x̄(t), ˙̄x(t)) = (
√

2sech(t),−
√

2sech(t) tanh(t)). (27)

Next, we consider the perturbed system (22)-(23) with |ε| � 1 and
calculate the corresponding Melnikov’s integral:

M(α, β) =
∫ +∞

−∞
f(x̄0(t)) ∧ g(x̄0(t), α, β) dt,

with

f(x, y) =
(
y
x− x3

)
and g(x, y) =

(
0
αy + βx2y

)
.

Namely,

M(α, β) =
∫ ∞
−∞

[αy2 + βx2y] dt

=
∫ ∞
−∞

[2αsech2(t) tanh2(t) + 4β sec4(t) tanh2(t)] dt

=
4
15

(5α+ 4β), (28)
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where we used the formulae:∫ ∞
−∞

tanhk(t)sech2(t) dt =
2

k + 1
for k ∈ N being even,

sech2(t) = 1− tanh2(t).

To determine when the two homoclinic orbits persist to exist in system (22)-
(23) for all sufficiently small ε, we look for simple zeros of (28) and find that
α = −4β/5 is the necessary constraint to ensure existence.

Figure 4: A sketch of the phase plane for system (22)-(23) with εα < 0 and
α = −4β/5.

For εα < 0 and α = −4β/5 the phase portrait is sketched in Fig. 4.
The set of fixed points is independent of ε. Points (±1, 0) become unstable
focuses while (0, 0) remains being the saddle. The union of the perturbed
homoclinic curves form an attracting set: the trajectories inside and outside
it asymptotically tend to it.

Q5 (Existence of transverse homoclinic points, Melnikov’s inte-
gral) We consider the system

u̇ = v, (29)
v̇ = −ω2

0u− u2 + ε(−µv + δ cos(ωt)). (30)

In the case ε = 0, the unperturbed Hamiltonian system admits the first
integral:

1
2
u̇2 + V (u) = E = const, (31)
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with potential function

V (u) =
u3

3
+ ω2

0

u2

2
.

By determining zeros and extremal points of V one deduces that there exists
a homoclinic curve (ū0(t), ˙̄u0(t)) connecting the saddle (−ω0, 0) with itself
(see Fig. 5). For the saddle point and the homoclinic curve

Figure 5: Sketch of the potential V (u) and the phase plane for system (29)-(30)
with ε = 0.

E = V (−ω2
0) =

ω6
0

6
.

To determine the second root of the level set V (u) = E we write

V (u)− E =
u3

3
+ ω2

0

u2

2
− ω6

0

6
= c(u+ w2

0)2(u− b). (32)

By comparison of the coefficients in the last polynomial one finds c = 1/3 and
the second root b = ω2

0/2. Now, using (32) one can integrate the equation
(31) for the homoclinic curve (ū0(t), ˙̄u0(t)):

u̇ = ± 1√
3

√
(u+ ω2

0)2(ω2
0 − 2u)

as
1√
3

(t− t0) =
∫

du

(u+ ω2
0)
√
ω2

0 − 2u
. (33)
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Employing the change of variables:

s =
√
ω2

0 − 2u, du = −sds,

one obtains∫
du

(u+ ω2
0)
√
ω2

0 − 2u
= − 1√

3ω0

log

[
s+
√

3ω0√
3ω0 − s

]
|
s=
√
ω2

0−2u

Substituting this into (33) and choosing ū0(0) = ω2
0/2, i.e. t0 = 0, one

obtains the explicit solution:

(ū0(t), ˙̄u0(t)) =
(

3
2
ω2

0sech2(ω0t/2)− ω2
0, −

3
2
ω3

0sech2(ω0t/2) tanh(ω0t/2)
)
.

(34)
Next, we calculate the Melnikov’s integral

M(t0) =
∫ +∞

−∞
f(ū0(t)) ∧ g(ū0(t), t+ t0) dt,

with

f(u, v) =
(
v
−ω0u− u2

)
and g(u, v, t) =

(
0
−µv + δ cos(ωt)

)
.

Using (34) one obtains

M(t0) = M1 +M2(t0) = −9µω6
0

4

∫ ∞
−∞

tanh2(ω0t/2)sech4(ω0t/2) dt

−3δω3
0

2

∫ ∞
−∞

tanh(ω0t/2)sech2(ω0t/2) cos(ω(t+ t0)) dt. (35)

Let us calculate the integrals M1 and M2 separately. Using the formulae∫ ∞
−∞

tanhk(τ)sech2(τ) dt =
2

k + 1
for k ∈ N being even,

sech2(τ) = 1− tanh2(τ),

and the change of variables τ = ω0t/2 one calculates

M1 = −6µω5
0

5
. (36)
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For calculation of M2 we again use the change of variables τ = ω0t/2 to
write it as

M2(t0) = −3δω2
0

∫ ∞
−∞

tanh(τ)sech2τ cos(2ωτ/ω0 + ωt0) dτ

= 3δω2
0 sin(ωt0)

∫ ∞
−∞

tanh(τ)sech2(τ) sin(2ωτ/ω0) dτ, (37)

where in the last line we used that tanh(τ)sech2(τ) is an odd function. Next,
using the method of calculating residue in the extended complex plane (see
Perko book, problem 4, pages 430-431), one can calculate:∫ ∞

−∞
tanh(τ)sech2(τ) sin(ατ) dτ =

πα2

2 sinh(πα/2))
.

Using α = 2ωτ/ω0 in the last formula and (37), one calculates:

M2(t0) =
6δω2π sin(ωt0)
sinh(ωπ/ω0)

.

Combining the last formula with (35) and (36) one obtains the expression
for Melnikov’s integral:

M(t0) = −6µω5
0

5
+

6δω2π sin(ωt0)
sinh(ωπ/ω0)

.

Setting M(t0) = 0 is equivalent to

sin(ωt0) =
µω5

0 sinh(ωπ/ω0)
5δω2π

.

Therefore, a necessary condition for a chaotic behaviour of a bubble is given
by the one for which there is a simple zero of the last expression, i.e.∣∣∣µω5

0 sinh(ωπ/ω0)
5δω2π

∣∣∣ < 1

holds. For given fixed µ and δ the optimal frequency ω can be find from the
last inequality.
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