
B5.4 Waves & Compressible Flow Hilary Term

Question Sheet 1

1. Consider barotropic flow, in which the pressure is a known function of the density, p = P (ρ).
Assume also that the body force is conservative, that is g = −∇χ for some potential function χ.
Throughout this question, take care that you do not assume that ρ is constant.

(a) Show that the momentum equation may be written in the form

∂u

∂t
+ (∇× u)× u = ∇ψ

for some scalar function ψ (which you should define). Hence show that the vorticity ω = ∇×u
satisfies

D

Dt

(
ω

ρ

)
=

(ω ·∇)u

ρ
.

Deduce that, in two-dimensional barotropic fluid, ω/ρ is conserved following the flow.

(b) Let C(t) be a simple closed curve that is convected with the fluid. Define the circulation Γ
around C by

Γ =

∮
C

u · dx.

By transforming to Lagrangian variables, or otherwise (e.g. Acheson exercise 5.2), show that
Γ is independent of t; this is known as Kelvin’s Circulation Theorem. Deduce that a flow
which is initially irrotational (i.e. ω = 0 at t = 0) remains irrotational for all time.

(c) Assuming the flow is irrotational, define a velocity potential φ such that u = ∇φ. Deduce
Bernoulli’s equation for unsteady irrotational barotropic flow, namely

∂φ

∂t
+

1

2
|∇φ|2 +

∫
P ′(ρ)

ρ
dρ+ χ = F (t).

Explain carefully how an appropriate definition of φ allows F (t) to be chosen arbitrarily.

2. Show that incompressible flow with constant density ρ relative to axes rotating with constant
angular velocity Ω is governed by the equations

∇ · u = 0,
∂u

∂t
+ (u ·∇)u + 2Ω× u = −1

ρ
∇P,

where the reduced pressure P is to be defined, and body forces (e.g. gravity) have been neglected.
Deduce that small steady perturbations to the steady state u = 0, P = const satisfy

∇ · u′ = 0, 2Ω× u′ = −1

ρ
∇P ′.

Hence explain the following observations (from the Met. Office website):

• the closer the isobars, the stronger the wind;

• the wind blows almost parallel to the isobars;

• the direction of the wind is such that, if you stand with your back to the wind in the northern
hemisphere, the pressure is lower on your left than on your right.
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[Hint: model the earth as the plane z = 0 rotating with angular velocity Ω = Ωêz.]

3. A non-conducting inviscid gas, initially at rest with pressure p0 and density ρ0, is heated internally
at a small rate q(x, t) per unit mass. You may assume that body forces are negligible, and that
the gas obeys the ideal gas law. By linearising the equations for conservation of mass, momentum
and energy, show that the pressure, density and velocity perturbations (denoted with primes)
approximately satisfy

∂ρ′

∂t
+ ρ0∇ · u′ = 0, ρ0

∂u′

∂t
+ ∇p′ = 0,

∂p′

∂t
− c20

∂ρ′

∂t
= ρ0(γ − 1)q,

where γ is the ratio of specific heats and c20 = γp0/ρ0. Deduce that ρ′ satisfies

∂

∂t

(
∂2ρ′

∂t2
− c20∇2ρ′

)
= (γ − 1)ρ0∇2q.

If q = Re
{
Aei(kx−ωt)

}
, show that the oscillations forced in ρ′ are out of phase with q and have

amplitude
(γ − 1)ρ0|A|k2

ω|ω2 − c20k2|
.

What happens when ω → c0k?

4. Incompressible fluid of uniform density ρ1 lies at rest in z < 0, beneath incompressible fluid of
uniform density ρ2 in z > 0 moving with uniform speed U in the x-direction. The interface
between the fluids is subject to surface tension γ.

Small-amplitude disturbances perturb the interface to z = η(x, t) and propagate as waves. If
variables in the lower and upper fluids are denoted by suffices 1 and 2 respectively, derive the
linearised boundary conditions

∂φ1

∂z
=
∂η

∂t
,

∂φ2

∂z
=
∂η

∂t
+ U

∂η

∂x
, ρ1

(
∂φ1

∂t
+ gη

)
− ρ2

(
∂φ2

∂t
+ U

∂φ2

∂x
+ gη

)
= γ

∂2η

∂x2
,

on z = 0. Show that waves with η = Re
{
Aei(kx−ωt)

}
, where k > 0, are possible provided

ρ1(gk − ω2) + γk3 = ρ2
[
(ω − Uk)2 + gk

]
.

Deduce that such a disturbance is unstable if

U2 >

(
ρ1 + ρ2
ρ1ρ2

)(
(ρ1 − ρ2)g + γk2

k

)
.

If ρ1 > ρ2, what is the minimum speed U required for the interface to become unstable? What
is the wavelength λ = 2π/k of the waves that first become unstable? [Hint: think about how the
critical speed just found depends on wave number k]

If ρ2 > ρ1, show that the interface is unstable even at zero speed, but only for wavenumbers smaller
than a critical value k∗, which you should find.
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