
B5.4 Waves & Compressible Flow Hilary Term

Question Sheet 2

1. Consider an ocean of depth h between a fixed base z = −h and an upper surface z = 0 held at
constant atmospheric pressure pa. The fluid in the ocean is incompressible and starts in a stratified
static state with density ρ = ρ0F (z). Show that the corresponding pressure is given by

p0(z) = pa + ρ0g

∫ 0

z

F (ζ) dζ.

The fluid is perturbed by small-amplitude two-dimensional disturbances, such that the density,
pressure and velocity fields are given by

ρ = ρ0F (z) + ρ′(x, z, t), p = p0(z) + p′(x, z, t), u = u(x, z, t)êx + w(x, z, t)êz,

and the free surface lies at z = η(x, t) (but remains at pressure pa). Show that w satisfies the
equation
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and write down the boundary conditions that apply at the bottom z = −h and on the free surface
z = η. Linearise the free surface conditions to z = 0, and write them as a single condition on w.
[Considerable care is required with this linearisation.]

If waves propagate such that w = Re
{
A(z)ei(kx−ωt)

}
, derive an equation for A(z) and show that

the appropriate boundary conditions are

A(−h) = 0 , ω2dA

dz
(0)− k2gA(0) = 0 .

For high-frequency waves, the condition at z = 0 can be approximated by dA/dz = 0. In this case,
and supposing that F (z) = e−λz, show that the frequency of such waves must satisfy

ω2 <
4λgk2

λ2 + 4k2
.

2. A barotropic compressible fluid, for which the pressure p and density ρ are related by p = P (ρ), is
contained in a rectangular pipe between rigid walls at x = 0, x = a, y = 0, y = b, a rigid end at
z = 0 and a free end at z = h maintained at constant pressure p0.

Assuming that gravity is negligible, show that small-amplitude sound waves may be described
using a velocity potential φ that satisfies the three-dimensional wave equation with speed c0, which
you should define. Also find the boundary conditions for φ on each of the boundaries.

Find the natural frequencies of oscillation and show that, if a and b are both very much smaller
than h, then the lowest frequencies are approximately of the form

ω =

(
j +

1

2

)
πc0
h
,

for non-negative integer j.

Compare with the equivalent result when the end at z = 0 is also maintained at pressure p0, and
hence describe the difference in pitch (the fundamental frequency) between ‘stopped’ and ‘open’
organ pipes of the same length.



3. Small-amplitude waves disturb a gas contained in a two-dimensional box 0 < x < L, 0 < y < b.
The flow is described by a velocity potential φ that satisfies the wave equation with speed c0.

(a) If one side of the box is driven, so that

∂φ

∂x
= ae−iωt (real part assumed) at x = 0,

write down appropriate boundary conditions for the other three sides, and obtain the solution

φ =
ac0 cos

(
ω(L− x)/c0

)
ω sin(ωL/c0)

e−iωt.

For which values of ω is this solution invalid? What happens if ω takes one of these values?

(b) Now suppose L =∞, and

∂φ

∂x
= a cos

(πy
b

)
e−iωt at x = 0.

Show that
φ = cos

(πy
b

)
e−iωt

(
Aeλx +Be−λx

)
is a possible solution provided

λ2 =
π2

b2
− ω2

c20
.

Explain how to determine the constants A and B, distinguishing carefully between the cases
0 < ω < πc0/b and ω > πc0/b. [Hint: think about what condition must be applied at infinity.]

4. Acoustic waves are generated in a compressible fluid by small oscillations of a cylinder, whose
radius at time t is given in plane polar coordinates by

r = a
(
1 + εe−iωt

)
(real part assumed).

The flow is described by a velocity potential φ satisfying the two-dimensional wave equation, with
sound speed c0. Assuming ε is small, derive the approximate boundary condition

∂φ

∂r
= −εωaie−iωt at r = a.

Show that separable radially-symmetric solutions are given by

φ(r, t) = e−iωt
{
AJ0
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ωr

c0

)
+BY0

(
ωr

c0

)}
,

where A and B are constants, and J0(ξ) and Y0(ξ) are Bessel functions.

Given that J0(ξ) → 1 and Y0(ξ) → −∞ as ξ → 0, and that J0(ξ) and Y0(ξ) have the asymptotic
behaviour

J0(ξ) ∼
√

2

πξ
cos (ξ − π/4) , Y0(ξ) ∼

√
2

πξ
sin (ξ − π/4) ,

as ξ → ∞, determine the constants A and B for (a) the waves inside the cylinder, and (b) the
waves outside the cylinder. [Hint: think about what condition must be applied at infinity.]


