B5.4 Waves & Compressible Flow Hilary Term

Question Sheet 2

1. Consider an ocean of depth h between a fixed base z = —h and an upper surface z = 0 held at
constant atmospheric pressure p,. The fluid in the ocean is incompressible and starts in a stratified
static state with density p = poF'(z). Show that the corresponding pressure is given by

0
po(2) = pa + pog/ F(¢)dc.

The fluid is perturbed by small-amplitude two-dimensional disturbances, such that the density,
pressure and velocity fields are given by

P:POF(Z)“‘PI(%ZJ); p:p0<z)+p/<x7zat)v u:u(x,z,t)éx—i—w(x,z,t)éz,

and the free surface lies at z = n(x,t) (but remains at pressure p,). Show that w satisfies the

equation
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and write down the boundary conditions that apply at the bottom z = —h and on the free surface
z = 1. Linearise the free surface conditions to z = 0, and write them as a single condition on w.
[Considerable care is required with this linearisation.]

kr—wt

If waves propagate such that w = Re { A(2)e )}, derive an equation for A(z) and show that

the appropriate boundary conditions are
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© (0) — k*gA(0) = 0.

For high-frequency waves, the condition at z = 0 can be approximated by dA/dz = 0. In this case,
and supposing that F(z) = e **, show that the frequency of such waves must satisfy
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2. A barotropic compressible fluid, for which the pressure p and density p are related by p = P(p), is
contained in a rectangular pipe between rigid walls at *t =0, x = a, y = 0, y = b, a rigid end at
z =0 and a free end at z = h maintained at constant pressure p,.

Assuming that gravity is negligible, show that small-amplitude sound waves may be described
using a velocity potential ¢ that satisfies the three-dimensional wave equation with speed c¢q, which
you should define. Also find the boundary conditions for ¢ on each of the boundaries.

Find the natural frequencies of oscillation and show that, if a and b are both very much smaller
than A, then the lowest frequencies are approximately of the form
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Compare with the equivalent result when the end at z = 0 is also maintained at pressure pg, and
hence describe the difference in pitch (the fundamental frequency) between ‘stopped’ and ‘open’
organ pipes of the same length.

for non-negative integer j.



3. Small-amplitude waves disturb a gas contained in a two-dimensional box 0 < x < L, 0 < y < b.
The flow is described by a velocity potential ¢ that satisfies the wave equation with speed cy.

(a) If one side of the box is driven, so that
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5 ae (real part assumed) at x = 0,
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write down appropriate boundary conditions for the other three sides, and obtain the solution

aco cos(w(L — z)/co)
wsin(wl/co)
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For which values of w is this solution invalid? What happens if w takes one of these values?
(b) Now suppose L = oo, and
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is a possible solution provided
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Explain how to determine the constants A and B, distinguishing carefully between the cases
0 <w < me/b and w > wey/b. [Hint: think about what condition must be applied at infinity.|

4. Acoustic waves are generated in a compressible fluid by small oscillations of a cylinder, whose
radius at time ¢ is given in plane polar coordinates by

r=a(l+e™") (real part assumed).

The flow is described by a velocity potential ¢ satisfying the two-dimensional wave equation, with
sound speed ¢y. Assuming € is small, derive the approximate boundary condition

9¢
or

Show that separable radially-symmetric solutions are given by

B(r,t) = et {AJO <ﬂ) + BY, <ﬂ> } ,
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where A and B are constants, and Jo(§) and Y (§) are Bessel functions.

Given that Jo(§) — 1 and Y((§) — —oo as & — 0, and that Jo(£) and Y (§) have the asymptotic

behaviour
Io(€) ~ @5 cos (¢ —7/4), Yol€) ~ @5 sin (€ — 7/4),

as £ — 00, determine the constants A and B for (a) the waves inside the cylinder, and (b) the
waves outside the cylinder. [Hint: think about what condition must be applied at infinity.]

= —ewaie™™  at r = a.



