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1 Hilbert Spaces

1.1 Inner Product Spaces

Definition 1.1. A linear vector space X over scalar field C (or R) is called
Inner Product Space (ISP) if there exists a function < ·, · >: X × X → C

(or R) having the following properties:
(i) < x, y >= < y, x > (or < x, y >= < y, x >) ∀x, y ∈ X
(ii) < λx, y >= λ < x, y > ∀λ ∈ C (or R) ∀x, y ∈ X
(iii) < x+ y, z >=< x, z > + < y, z > ∀x, y, z ∈ X
(iv) < x, x >∈ R+ := {t ∈ R : t ≥ 0}, < x, x >= 0 ⇔ x = 0.

Function < ·, · > is called inner (scalar) product. Properties (i)-(iv) are
called axioms of inner product.

The inner product generates a norm ‖x‖ =
√
< x, x > called the associ-

ated norm. So, any IPS is a normed space and thus a metric space with the
distance d(x, y) =

√
< x− y, x− y >.

ISP is called a Hilbert space if it is a Banach space with respect to the
associated norm.

1.2 Basic Facts about Inner Product

Let X be a ISP with the inner product < ·, · > and the associated norm ‖ ·‖.
(i) Cauchy-Schwarz inequality

| < x, y > | ≤ ‖x‖‖y‖
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with the equality if and only if x and y are linearly dependent.
(ii) < ·, · > is continuous function from X ×X to the corresponding scalar
field.
(iii) Parallelogram Law

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 ∀x, y ∈ X.

In fact, Parallelogram Law is a sufficient and necessary condition for a norm
‖x‖ to be the associated norm for an inner product on X.
(iv) Polarisation Retrieving the inner product from the norm satisfying
Parallelogram Law:

< x, y >=
1

4
(‖x+ y‖2 − ‖x− y‖2)

for the real scalar field and

< x, y >=
1

4
(‖x+ y‖2 + i‖x+ iy‖2 − ‖x− y‖2 − i‖x− iy‖2)

for the complex scalar field.

1.3 Examples

1. Eucledian Space Cn (Rn) with the inner product

< x, y >=
n

∑

i=1

xiyi, x = (x1, x2, ..., xn) = (xi), y = (yi) ∈ Cn(Rn).

It is a Hilbert space as any finite dimensional normed space is a Banach
space.

2. Space l2 := {x = (x1, x2, ..., xn, ...) = (xi) :
∞
∑

n=1

|xn|2 < ∞}. It is a Hilbert

space with the inner product

< x, y >=
∞
∑

n=1

xnyn.

3. Lebesgue’s space L2(E) consisting of all measurable functions f : E →
C ∪ {∞} such that

∫

E

|f |2dx < ∞, where E is a measurable subset in Rn. It

is an ISP for the inner product

< f, g >:=

∫

E

fgdx.
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The completeness of L2(E) with respect to the associated norm is a particular
case of the Riesz-Fiesher theorem about completeness of Lebesgue’s Spaces
Lp(E), see Integration course.

In fact we have much more general statement. Let (E,Σ, µ) be an arbi-
trary measure space. Then L2(E,Σ, µ) is a Hilbert space. The important
example is the Lebesgue-Stieltjes measure given by µ(A) =

∫

A

pdx, for any

measurable subset A ⊆ E, with a non-negative weight function p. The cor-
responding set is denoted L2(E, pdx). It is a Hilbert space with the inner
product

< f, g >=

∫

E

fgdµ =

∫

E

fgpdx.

4.

Proposition 1.2. A closed subset of a Hilbert space is a Hilbert space.

Proof. It follows from the fact the closed subspace of a complete metric space
is a complete metric space.

Let |E| < ∞ and

L2(E) := {f ∈ L2(E) :
1

|E|

∫

E

fdx = 0}.

Indeed, L2(E) is closed in L2(E). So, L2(E) is a proper closed subset in
L2(E) therefore it is a Hilbert space itself with the inner product

< f, g >=

∫

E

fgdx.

5. Bergman space: let D be the open unit disk in C equipped with area
measure. The subspace A2(D) of L2(D) consisting of those holomorphic (in
D) functions which are in L2(D) is closed so it is a Hilbert space for the
L2-inner product, see Qn 3 in Problem Sheets.
6. The Hardy space: Let Y , sometimes denoted by H2(T), be the space of all

those f ∈ L2(−π, π) with the Fourier series of the form
∞
∑

n=0

ane
int (so an = 0

for all n < 0). Then Y is a closed subspace of L2(−π, π). This example
appears in different, but equivalent, guise later.
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7. Sobolev spaceH1(a, b). We say that u ∈ H1(a, b) if and only if u ∈ L2(a, b)
and there exists a function v ∈ L2(a, b) such that

u(x) = A+

x
∫

a

v(y)dy (1.1)

for a.a. x ∈]a, b[ and for some constant A.
Just from the definition and properties of Lebesgue’s integral (explain

which properties should be used), it follows that u ∈ C([a, b] and

u(x)− u(y) =

x
∫

y

v(s)ds ∀x, y ∈ [a, b].

It is also easy to see that, given u ∈ H1(a, b), there exists the only one
function v, satisfying identity (1.1). Indeed, if not, then we have

x
∫

y

(v1(s)− v2(s))ds = 0 ∀x, y ∈ [a, b].

Since, for a.a. ∈]a, b[,

lim
δ→0

1

2δ

x+δ
∫

x−δ

(v1(s)− v2(s))ds = v1(x)− v2(x).

Thus v1 and v2 belong to the same equivalence class.
If v is a continuous function, then

u′(x) = lim
h→0

u(x+ h)− u(x)

h
= lim

h→0

x+h
∫

h

v(y)dy = v(x).

So, H1(a, b) contains C1([a, b]). Moreover, the above limit exists a.e. in ]a, b[
even if v ∈ L2(a, b). In other words, functions u ∈ H1(a, b) have the usual
derivative a.e. in ]a, b[. It makes sense to call v “weak” or “generalised”
derivative of u in ]a, b[ and use the classical notation letting v = u′.
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H1(a, b) is a real Hilbert space with respect to the following inner product

< u, v >=

b
∫

a

(uv + u′v′)dx.

In order to show that one needs to prove that < ·, · > satisfies all axioms
of IPS (which is obvious) and that H1(a, b) is complete with respect to the
associated norm, see Qn 4 in Problem Sheets.

1.4 Orthogonality

Let be X be an IPS with the inner product < ·, · >. x is orthogonal to y if
< x, y > 0. Obviously, if x is orthogonal to y, then ‖x + y‖2 = ‖x‖2 + ‖y‖2
which is a version of the Pythagoras theorem.

Let Y ⊆ X. Then

Y ⊥ := {x ∈ X : < x, y >= 0 ∀y ∈ Y }
is the orthogonal compliment of Y in X.

Proposition 1.3. Let Y be a subset of IPS X. Then
(i) Y ⊥ is a closed subspace of X.
(ii) Y ⊆ Y ⊥⊥.
(iii) If Y ⊆ Z ⊆ X, then Z⊥ ⊆ Y ⊥.
(iv) (spanY )⊥ = Y ⊥.
(v) If Y and Z are subsets of X such that X = Y + Z and Z ⊆ Y ⊥, then
Y ⊥ = Z.

Proof. Exercise.

1.5 Closest Point Theorem

Theorem 1.4. Let C be a non-empty closed convex subset set of a Hilbert
space X. Let x ∈ X. There exists a unique point y0 ∈ Y such that ‖x−y‖ ≥
‖x− y0‖ for all y ∈ C.

Proof. Let δ := inf{‖x − y‖ : y ∈ C} ≥ 0 and let yn ∈, n = 1, 2, ..., be a
minimising sequence, i.e., ‖x − yn‖ → δ as n → ∞. Let zn = x − yn. By
convexity of C, 1

2
(yn + ym) ∈ C and so

‖zn + zm‖2 = 4‖x− 1

2
(ym + yn)‖2 ≥ 4δ2.
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According to Parallelogram Law

‖zn − zm‖2 = −‖zm + zn‖2 + 2‖zm‖2 + 2‖zn‖2 ≤ 2‖zm‖2 + 2‖zn‖2 − 4δ2 → 0

as m,n → ∞. Hence yn is a Cauchy sequence and so converges. The limit
y0 belongs to C as C is closed, ‖x− y0‖ = δ by continuity of the norm.

Uniqueness follows from Parallelogram Law in the same manner as above.

1.6 Projection Theorem

Theorem 1.5. Let Y be a closed subspace of a Hilbert space X. Then X =
Y ⊕ Y ⊥.

Proof. Certainly, Y ∩ Y ⊥ = {0}. Let us show that X = Y + Y ⊥. Take any
x ∈ X and note that Y is a non-empty and convex as well. Choose y0 ∈ Y
according to Theorem 1.4. We claim that x−y0 ∈ Y ⊥. Indeed, for any y ∈ Y
and any t ∈ R, we have y0 + ty ∈ Y and by the definition of y0

‖y0 − x‖2 ≤ ‖y0 − x+ ty‖2 = ‖y0 − x‖2 + 2tRe < y0 − x, y > +t2‖y‖2.

So, 0 ≤ 2tRe < y0−x, y > +t2‖y‖2 for all t. Dividing the latter inequality by
positive t and then passing t to zero, we conclude that Re < y0 − x, y >= 0
for all y ∈ Y . This completes the proof if X is a real Hilbert space.

If the scalar field is complex, we proceed as before with t replaced by
it.

Corollary 1.6. Let Y be a subspace of a Hilbert space X
(i) The following are equivalent:

(a) Y is closed in X,
(b) X = Y + Y ⊥,
(c) Y = Y ⊥⊥.

(ii) Y ⊥⊥ = Y .
(iii) The following are equivalent:

(a) Y is dense in X,
(b) Y ⊥ = {0}.

Proof. Exercise. You will need the Projection Theorem and also the facts
Proposition 1.3.
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1.7 Projecting onto a closed subspace

Let Y be a closed subspace of a Hilbert space X.
Let PY x = y, where x = y + z is the unique decomposition of x, with

y ∈ Y and z ∈ Y ⊥. Then, by Pythagoras Theorem,

‖x‖2 = ‖PY x‖2 + ‖x− PY x‖2 ≥ ‖PY x‖2.
Hence the linear map PY : X → X is bounded, and of the norm at most
one. So, by definition PY x is the closest point for x to Y and the required
minimum distance is simply ‖z‖.

Here are some examples.
(a) Let X = L2(−π, π), and Y be the space of all f ∈ X such that f(t) = 0
for a.a. t ∈]0, π[. Then Y ⊥ is the space of all f ∈ X such that f(t) = 0 for
a.a. t ∈]− π, 0[, and PY f = fχ]−π,0[.
(b) Let X ∈ L2(Ω,F ,P) be a probability space, G be a sub-σ-algebra of Y =
L2(Ω,G,P). For an F -measurable random variable ξ, PY ξ is the conditional
expectation E(ξ|G) of ξ with respect to G.

2 Linear functionals and linear operators in

Hilbert spaces

2.1 Riesz Representation Theorem

LetX be a Hilbert space, X∗ is dual ofX, i.e., consists of all linear (bounded)
functionals x∗ ∈ X∗ : X → F (R or C). X∗ is a Banach space with respect
to the norm ‖x∗‖∗ = sup

‖x‖≤1

|x∗(x)|.
Obviously, y 7→< y, x > is a linear functional on X. By the Cauchy-

Schwarz inequality, | < y, x > | ≤ ‖y‖‖x‖ and thus it is bounded and
belongs to X∗, i.e., x∗(y) =< y, x > and ‖x∗‖∗ = ‖x‖. Converse is also true.

Theorem 2.1. Given x∗ ∈ X∗, there exists a unique x ∈ X such that
x∗(y) =< y, x > for all y ∈ Y and ‖x∗‖ = ‖x‖.
Remark 2.2. In the case of real Hilbert spaces, the above statement means
that there exists an isometric isomorphism π : X → X∗ such that πx = x∗

is equivalent to x∗(y) =< y, x > for all y ∈ X and ‖x∗‖∗ = ‖x‖. So, spaces
X and x∗ are topologically equivalent, i.e., they are the same up isometric
isomorphism. It is notated as X∗ ∼= X or even just X∗ = X.
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Proof. x∗ = 0, then x = 0. Now, assume that x∗ 6= 0. Let Y = Ker x∗. It
is a closed subspace of X. By Theorem 1.5, X = Y ⊕ Y ⊥. Take non-zero
y⊥ ∈ V ⊥. Then, for any z ∈ X, we have,

z − x∗(z)y⊥

x∗(y⊥)
∈ Y = Ker x∗.

Thus

< z, y⊥ > −x∗(z)‖y⊥‖2
x∗(y⊥)

= 0 ∀z ∈ X.

So,

x = y⊥
x∗(y⊥)

‖y⊥‖2 .

Uniqueness is obvious.
The norm identity ‖x∗‖∗ = ‖x‖ can be proven as follows. By the Cauchy-

Schwarz inequality, x∗(y) =< y, x >≤ ‖y‖‖x‖ which implies ‖x∗‖∗ ≤ ‖x‖.
On the other hand, x∗(x) = ‖x‖2 ≤ ‖x∗‖‖x‖ and thus ‖x‖ ≤ ‖x∗‖∗. This
completes the proof.

2.2 Weak convergence in Hilbert spaces

Definition 2.3. Let X be a Hilbert space and x(n) ∈ X, n = 1, 2, ..., be
a sequence and x ∈ X. x(n) converges to x weakly in X (x(n) ⇀ x) if
< x(n), y >→< x, y > for any y ∈ X.

Proposition 2.4. The following are true:
(i) x(n) → x ⇒ x(n) ⇀ x;
(ii) x(n) ⇀ x and ‖x(n)‖ → ‖x‖ ⇒ x(n) → x;
(iii) x(n) ⇀ x ⇒ x(n) is bounded;
(iv) x(n) ⇀ x ⇒ lim inf

n→∞
‖x(n)‖ ≥ ‖x‖.

Proof. (i) and (ii) is an easy exercise. (iii) will be proven later, see Banach-
Steinhaus Theorem. In order to prove (iv), note that there exists a subse-
quence x(nk) such that

A = lim inf
n→∞

‖x(n)‖ = lim
k→∞

‖x(nk)‖.

Thus we have

A = lim
k→∞

sup{< x(nk), y >: ‖y‖ = 1} ≥ lim
k→∞

< x(nk), y >=< x, y >
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for all ‖y‖ = 1. Taking supremum in RHS, we complete our proof of (iv).

Remark 2.5. The statement inverse to (i) in general in not true. Indeed, let

X = l2. Consider the sequence x(n) with x
(n)
i = 0 if i 6= n and x

(n)
n = 1. This

sequence converges weakly to zero. Indeed, for any ‖y‖ < ∞, < x(n), y >=
yn → 0 as n → ∞. On the other hand, sequence does not converge since
‖x(n) − x(m)‖ =

√
2 if 6= m. For the same reason, this sequence does not

contain a converging subsequence.

The statement below is a version of Bolzano-Weierstrass Lemma in infi-
nite dimensional Hilbert spaces. It is called the Sequential Weak Compact-
ness Theorem.

Theorem 2.6. Any bounded sequence of a Hilbert space contains a weakly
converging subsequence.

Proof. Let X be a Hilbert space and let x(n) be a bounded sequence of X,
i.e.,

M := sup
n≥1

‖x(n)‖ < ∞.

The proof is based on the celebrated diagonal Cantor procedure. Let us de-
scribe it. Consider the sequence {< x(n), x(1) >}n∈N. By the Cauchy-Schwarz
inequality, we have | < x(n), x(1) > | ≤ M‖x(1)‖ and thus the abovesequence is
bounded. By Bolzano-Weiestrass Lemma, there exists a subsequence {n1

j}j∈N
of natural numbers such that lim

j→∞
< x(n1

j ), x(1) > exists. Then we consider

another bounded scalar sequence {< x(n1

j ), x(2) >}j∈N. By the above argu-
ments, there exists a subsequence {n2

j}j∈N of the sequence {n1
j}j∈N such that

lim
j→∞

< x(n2

j ), x(2) > exists and, of course, lim
j→∞

< x(n2

j ), x(1) > exists as well,

since {x(n2

j )} is a subsequence of {x(n1

j )}. Proceeding in the same way, we find
an infinite sequence of nested subsequences {nk

j}j∈N, k = 1, 2, ..., so that, for

any k, {nk
j}j∈N is a subsequence of {nk−1

j }j∈N and

lim
j→∞

< x(nk
j ), x(m) >

exists for all m = 1, 2, .., k. Let y(k) = x(nk
k
). This subsequence of our original

sequence and morever
lim
k→∞

< y(k), x(m) >
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exists for all m. Indeed, let us fix m arbitrarily, then {< y(k), x(m) >}∞k=m is

a subsequence of the converging sequence {< x(nk
j ), x(m) >}∞j=m.

So, we have, for any m,

< y(k) − y(j), x(m) >→ 0

as k and j tend to infinity. This certainly implies

< y(k) − y(j), y >→ 0 ∀y ∈ Y := span({x(n)}∞n=1) (2.1)

as k and j tend to infinity. Let us show that (2.1) is valid for any y ∈ Y .
Indeed, for any y ∈ Y and for any z ∈ Y , we have

| < y(k) − y(j), y > | ≤ | < y(k) − y(j), z > |+

+| < y(k) − y(j), y − z > | ≤ | < y(k) − y(j), z > |+ 2M‖y − z‖.
Now, we can make the second term of RHS to be small by choosing z and
then the first term is going to be small for sufficiently big k and j, see (2.1).

By the Projection Theorem, X = Y ⊕ (Y )⊥. So, for any y ∈ X, we have
y = z + z⊥ with z ∈ Y and z⊥ ∈ (Y )⊥ and thus

< y(k) − y(j), y >=< y(k) − y(j), z >→ 0

as k and j tend to infinity. So, for any y ∈ X, there exists

lim
k→∞

< y(k), y >

and thus
lim
k→∞

< y(k), y > = lim
k→∞

< y, y(k) >=: l(y).

Obviously, l is a linear functional on X. It is bounded since |l(y)| ≤
M‖y‖. By Theorem 2.1, there exists x ∈ X such that l(y) =< y, x >. So,

lim
k→∞

< y(k), y >= < y, x > =< x, y > .
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2.3 Adjoint operators in Hilbert spaces

Let X and Y be two Hilbert spaces and B(X, Y ) be the Banach space of
linear (bounded) operators defined on X with values in Y .

Consider A ∈ B(X, Y ). Then x 7→< Ax, y >Y is a linear bounded func-
tional on X. By the Riesz Representation Theorem, the exists a unique
l(y) ∈ X such that < Ax, y >Y=< x, l(y) >X . It is easy to see that
l : Y → X is a linear operator which is denoted by A∗ and called adjoint
operator of A. So, we have by definition < Ax, y >Y=< x,A∗y >X . The
following is easy to check.
(i) A∗ is unique.
(ii) A∗ ∈ B(Y,X).
(iii) ‖A∗‖ = ‖A‖.
Indeed, (i) is obvious. For (ii), we let x = A∗y and have ‖A∗y‖2X ≤ ‖A‖‖A∗y‖X‖y‖Y
and thus ‖A∗‖ ≤ ‖A‖. To get an opposite inequality, we let y = Ax, which
gives (iii).
(iv) Let T ∈ B(X, Y ) and S ∈ B(Y, Z). Then (ST )∗ = T ∗S∗ (Exercise).
(v) If T ∈ B(X, Y ), then T ∗∗ = T .
Indeed, we have

< Tx, y >Y=< x, T ∗y >X= < T ∗y, x >X = < y, (T ∗)∗x >Y =< T ∗∗x, y >Y

for all x ∈ X and all y ∈ Y .
Consider several simple examples of ajoint operators.

(i) Let T be the following integral operator:

(Tf)(x) :=

1
∫

0

k(x, y)f(y)dy

in spaces X = Y = L2(0, 1;C), assuming for simplicity that the kernel
k :]0, 1[2→]0, 1[ is bounded measurable function. Then, by Tonelli’s theorem.

< Tf, g >=

1
∫

0

(

1
∫

0

k(x, y)f(y)dy
)

g(x)dx =

=

1
∫

0

(

1
∫

0

k(x, y)g(x)dx
)

f(y)dy =< f, T ∗g > .
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So,

(T ∗g)(x) =

1
∫

0

k(y, x)g(y)dy.

(ii) Let X = l2 and R be the right-shift R(xn) = (0, x1, x2, ....). Then R∗ is
the left-shift L(xn) = (x2, x3, ...).
(iii) Let X = L2(R) and h : R → C be a bounded measurable func-
tion. Define Mh(x) = h(x)f(x) (multiplication operator). Mh ∈ B(X) and
(Mh)

∗ = Mh.

2.4 Self-adjoint operators

T ∈ B(X) = B(X,X) is called a self-adjoint operator if T ∗ = T .
The above integral operator is self-adjoint if k(x, y) = k(y, x) for any

x, y ∈]0, 1[.
The statement below is about norm of an operator in a Hilbert space.

Lemma 2.7. Let X be a Hilbert space.
(i) Let T ∈ B(X). Then

‖T‖ = sup{| < Tx, y > | : ‖x‖ = ‖y‖ = 1}.

(ii) Let T ∈ B(X) be self-adjoint. Then

‖T‖ = sup
‖x‖=1

< Tx, x > .

Proof. We start with (i). By the definition of the operator norm,

‖T‖ = sup
‖x‖=1

‖Tx‖.

We also know that
‖z‖ = sup

‖y‖=1

| < z, y > |.

Then
sup
‖y‖=1

| < Tx, y > | = ‖Tx‖.

The result follows.
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(ii): Now, we let K = sup
‖x‖=1

| < Tx, x > | ≤ ‖T‖. Given ε > 0, one can

find a pair x and y so that ‖y‖ = ‖x‖ = 1 and ‖T‖ − ε < | < Tx, y > |.
Replacing y with eiθy does not change ‖y‖ and | < Tx, y > | but one can
find θ so that | < Tx, y > | = Re < Tx, y >. Then

4(‖T‖−ε) ≤ 4Re < Tx, y >=< T (x+y), (x+y) > − < T (x−y), (x−y) >≤

≤ K(‖x+ y‖+ ‖x− y‖) ≤ 4K.

The required result follows.

Proposition 2.8. Let X be a Hilbert space and let T ∈ B(X). Then
(i) ‖T ∗T‖ = ‖T‖2.
(ii) If T is self-adjoint, ‖T 2‖ = ‖T‖2.
Proof. (i): We apply Lemma 2.7, noting that T ∗T is self-adjoint as well,

‖T ∗T‖ = sup
‖x‖=1

< | < T ∗Tx, x > | = sup
‖x‖=1

‖Tx‖2 = ‖T‖2.

(ii) is obvious.

2.5 Further elementary properties of self-adjoint op-

erators

Let X, Y be Hilbert spaces, S, T ∈ B(X, Y ).
(i) (λS + µT )∗ = λS∗ + µT ∗.
(ii) I∗X = IX .
(iii) Assume T ∈ B(X). Then T is invertible if and only if T ∗ is invertible
and in that case (T ∗)−1 = (T−1)∗.

(i) and (ii) are entirely elementary. With regards to (iii), assume that T
is invertible so that there exists S = T−1 ∈ B(X) such that ST = TS = IX .
Then T ∗S∗ = S∗T ∗ = I∗X = IX . This says that T ∗ has inverse, namely
S∗ = (T−1)∗.

The following results are similar to corresponding ones for dual operators,
but easier to work with.

Proposition 2.9. Let X, Y be Hilbert spaces and T ∈ B(X, Y ). Then
(i) KerT = (ImT ∗)⊥;
(ii) KerT ∗ = (ImT )⊥;
(iii) (KerT ∗)⊥ = ImT .
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Proof. (i),(ii): the same as in finite-dimensional case. For (iii), use Corollary
1.6.

Theorem 2.10. Let X be a Hilbert space, X = Y ⊕ Z, where Y and Z are
both closed subspace of X. Let P be the operator P (y + z) = y. Then the
following are equivalent:
(i) Z = Y ⊥;
(ii) P ∗ = P ;
(iii) ‖P‖ ≤ 1. Moreover, for such a projector, ‖P‖ = 1 or P = 0.

Proof. Equivalence of (i) and (ii) as in finite dimensional case, so equivalence
with (iii) is the interesting fact here, see Problem sheets Qn. 11.

2.6 Unitary Operators

An operator between Hilbert spaces is unitary if it isometric and surjective.

Proposition 2.11. Let T, U : X → Y be bounded linear operators between
Hilbert spaces.
(i) The following equivalent:

(a) T is isometric;
(b) < Tx, Ty >=< x, y > for all x, y ∈ X;
(c) T ∗T = IX .

(ii) The following is equivalent:
(a) U is unitary;
(b) U∗U = IX and UU∗ = IY ;
(c) U and U∗ are both isometric.

Proof. Exercise.

Here are some example of unitary operators:
(i) The left shift is unitary on l2(Z).
(ii) A multiplication operator Mh is unitary on L2 if and only if |h| = 1 a.e.

(iii) For measurable, non-negative g, the map f 7→ g
1

2f is isometric from
L2(R, gdt) to L2(R). It is unitary if and only if g > 0 a.e.
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3 The Baire Category Theorem

3.1 Nowhere dense sets

Assume that M is a topological space, let us recall general topological no-
tions:
(i) G ⊆ M is dense if M = G;
(ii) The interior of a subset S of M is

S◦ = ∪(U open : U ⊆ S).

Recall that M \ S = M \ S◦ and that, as a consequence, M \ S is dense
if and only if S◦ = ∅.

Definition 3.1. A subset E of M is nowhere dense if (E)◦ = ∅.

Lemma 3.2. The following are equivalent:
(i) E is nowhere dense:
(ii) M \ E is dense;
(iii) M \ E contains a dense open set.

Proof. Assume E is nowhere dense but M \E is not dense. Then there exists
a closed set F such that M \ E ⊆ F ⊂ M . So, E ⊇ M \ F and thus we get
a contradiction. Implication (i) ⇒ (ii) is proven and so is (i) ⇒ (iii).

Now, assume that (ii) is true but there exists an non-empty open set O
such that (E)◦ ⊃ O. Then M \ (E)◦ ⊆ M \O = F ⊂ M . Since F is close, a
contradiction follows and (ii) ⇒ (i).

Suppose that (iii) is true, i.e., there exists an open set O ⊆ M \ E and
O = M . Then, since M \ O is closed and contains E, it contains E as well.
So, O is a subset of M \E and thus M \E is dense. (iii) ⇒ (ii) is proven.

As an example of a nowhere dense set, consider the Cantor set in [0, 1].
From the construction, it follows that the Cantor set is closed but does not
contain open subsets. Since the Cantor set has Lebesgue’s measure zero, one
may think that it is a necessary condition for a set to be nowhere dense. But
it is not true. Moreover, using a similar construction, one can find a closed
subset of [0, 1] that contains no open subsets and has measure equal to 1− ε
for any given 0 < ε < 1.

It is worthy to notice that although Q ⊂ R has zero measure but it is not
a nowhere dense set, since Q is dense in R.
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3.2 The Baire Category Theorem

In what follows we need Cantor’s Nested Set Theorem.

Theorem 3.3. Let M be a complete metric space and let F1 ⊇ F2 ⊇ ... be
decreasing sequence of non-empty closed sets with diamFn → 0. Then

⋂

n Fn

is a singleton {x}.

Proof. Pick xn ∈ Fn. It is a Cauchy sequence, since, for n > m, d(xn, xm) ≤
diamFm. Let x = lim xn. Then x ∈ ⋂

n Fn since all Fn are closed. Diameter
condition implies the intersection is a singleton.

Definition 3.4. A countable union of nowhere sets is said to be first category
or meager.

Theorem 3.5. Let M be a complete metric space. The following are true
and equivalent.
(A) A countable intersection of dense open subsets of M is dense.
(B) The compliment of a countable union of nowhere sets in M is dense.
(C) A countable union of nowhere dense sets in M has empty interior.

Proof. We starts with the proof of equivalence.
Assume that (A) is true. Now, let Ek, k = 1, 2, ..., be nowhere dense sets.

We know that M \Ek =: Ok is dense, see Lemma 3.2. So, sets Ok open and
Ok = M . By (A),

M =
⋂

k

Ok =
⋂

k

(M \ Ek) = M \
⋃

k

Ek ⊆ M \
⋃

k

Ek ⊂ M.

So, (A)⇒(B).
Now, assume that (B) is true. Consider open sets Ok, k = 1, 2, ..., that

are dense in M . Consider also sets Ek = M \ Ok. By Lemma 3.2, they are
nowhere dense. Then by (B)

M = M \
⋃

k

Ek =
⋂

k

(M \ Ek) =
⋂

k

Ok

So, (B)⇒ (A). Now, take sets Ek that are nowhere dense. Suppose that there
exists a non-empty open set O ⊆ ⋃

k Ek. Then, since M \O is closed and by

(B), M \O = M \O ⊇ M \⋃k Ek = M . This cannot be true. So, (B)⇒(C).
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Now, assume that (C) is true. Take sets Ek that are nowhere dense.
Assume that (B) is not true, i.e., there exists a proper closed subset F of M
such that M \⋃Ek ⊆ F . Therefore, M \ F = O ⊆ ⋃

k Ek. Since O is open,
we get a contradiction. So, (C)⇒(B) and the equivalence of (A), (B), (C) is
proven.

Now, let us prove that (A) is true. Pick open sets Ok, k = 1, 2, ..., that
are dense in M . We need to show that

⋂

k Ok = M . To this end, let us take
an arbitrary open set O. It is clear that it is enough to prove

⋂

k

Ok ∩O 6= ∅. (3.1)

We are going to argue by induction. Since Ok is dense, Ok ∩O′ 6= ∅ for each
k and for any open set O′. Indeed, one may assume that B(x1, r1) ⊂ O ∩O1

for some x1 ∈ X and 0 < r1 < 1. Since B(x1, r1) ∩ O2 6= ∅, we can find a
point x2 ∈ X and 0 < r2 < min{r1, 1/2} such that

B(x2, r2) ⊂ B(x1, r1) ∩O2 ⊂ O ∩O1 ∩O2.

And so on. As a result, we have a sequence

B(xn, rn) ⊂ B(xn−1, rn−1) ∩On ⊂ O ∩O1 ∩O2 ∩ ... ∩On

with 0 < rn < min{rn−1, 1/n}. By Cantor’s Nested Set Theorem, applied to
Fn = B(xn, rn), there exists a point x ∈ O∩O1∩O2∩ ...∩On for all n. Then
(3.1) follows.

It is worthy to mention the following famous example: the subset of
C([0, 1]) of functions which are differentiable at some point is nowhere dense
in C([0, 1]), see web sources for proof. This says that in a strong and precise
sense ‘most’ real-valued continuous functions on [0, 1] are nowhere differen-
tiable.

4 Uniform Boundedness Theorem

4.1 Uniform Boundedness

Consider normed spaces X and Y and the space B(X, Y ) of bounded (=con-
tinuous) linear maps from X to Y .
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Let E ⊆ B(X, Y ). We say that E is point-wise bounded if for each x ∈ X
there exists a constant Mx such that ‖Tx‖Y ≤ Mx for all T ∈ E . We also
say E is uniformly bounded if there exists a constant M such that ‖T‖ ≤
M < ∞ for all T ∈ E . Obviously, uniform boundedness implies point-wise
boundedness. The converse is the famous Banach-Steinhaus Theorem on
Uniform Boundedness.

Theorem 4.1. Let X be a Banach space, Y be a normed space, E ⊆ B(X, Y )
be such that, for each x ∈ X, sup

T∈E
‖Tx‖Y < ∞. Then sup

T∈E
‖T‖ < ∞.

Proof. Consider sets Fn = {x ∈ X : ‖Tx‖Y ≤ n, ∀T ∈ E}. Since T is
continuous, Fn is closed for each n. Obviously, X =

⋃

n Fn, at least some
Fn is not nowhere dense, Theorem 3.5. Since Fn is closed, F ◦

n 6= ∅ and thus
there exists a non-empty ball B(x0, δ) ⊂ Fn. The latter means

sup
B(x0,δ)

‖Tx‖Y ≤ n ∀T ∈ E .

Therefore, letting z = x− x0, we find

sup
B(0,δ)

‖Tz‖Y − ‖Tx0‖Y ≤ n

for the same T and
sup
B(0,δ)

‖Tz‖Y ≤ 2n

for the same T . One easily to conclude that ‖T‖ ≤ 2n/δ for all T ∈ E .

The given proof of UBT is tailored to this particular result. The following
Lemma synthesises the key ingredients, for potential use elsewhere.

Lemma 4.2. Let X be a Banach space. Let C be a non-empty closed, convex
subset of X such that x ∈ C implies −x ∈ C and X =

⋃

n≥1 nC. Then C
contains a ball B(0, ε) for some ε > 0.

A proof of the lemma, and a derivation of UBT from it, is in fact Qn.15
on Problem Sheets.
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4.2 Corollaries of UBT

Corollary 4.3. Let X be a Hilbert space and x(n) ⇀ x. Then sup
n≥1

‖x(n)‖ <

∞.

Proof. Define Tn : X → C (or R) by Tn(y) =< y, x(n) >. It is easy to see
that ‖Tn‖ = ‖x(n)‖. By assumptions, supn≥1| < x(n), y > | < ∞ for each
fixed y ∈ X. The result follows from UBT.

The following corollary of UBT is a good working example.

Corollary 4.4. Let X be a real or complex Hilbert space and E be a subset
of B(X) such that sup

T∈E
| < Tx, y > | < ∞ for each x, y ∈ X. Then there is a

constant C such that ‖T‖ ≤ C < ∞ for all T ∈ E .

Proof. Let us fix x ∈ X. Define KT,x : X → C by KT,x(y) =< y, Tx >. We
know that ‖KT,x‖ = ‖Tx‖ and

sup
T∈E

|KT,x(y)| ≤ sup
T∈E

| < Tx, y > | < ∞

for each x, y ∈ X. By UBT, there exists a constant Mx such that

sup
T∈E

‖Tx‖ ≤ Mx < ∞

for each fixed x ∈. The result follows from UBT.

4.3 Strong convergence of operators

Theorem 4.5. Let X and Y be Banach spaces and a sequence Tn ∈ B(X, Y ).
The following are equivalent:
(i) There exists T ∈ B(X, Y ) such that lim

n→∞
Tnx = Tx for all x ∈ X (Strong

convergence of a sequence Tn of operators to an operator T );
(ii) For each x ∈ X, lim

n→∞
Tnx exists in Y ;

(iii) There is a constant M and a dense subset Z of X such that
(a) ‖Tn‖ ≤ M for all n,
(b) lim

n→∞
Tnx exists for each x ∈ Z.
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Proof. (i) ⇒ (ii) is obvious. To show (ii) ⇒ (i), we observe that by the
property of the limit, T : X → Y defined by T (x) = lim

n→∞
Tnx, is a linear

map. Since ‖Tnx‖Y → ‖Tx‖Y and ‖Tx‖Y ≤ sup
n≥1

‖Tnx‖Y , we have ‖Tx‖Y ≤
sup
n≥1

‖Tn‖‖x‖X for all x ∈ X. By UBT, sup
n≥1

‖Tn‖ < ∞ and ‖T‖ ≤ sup
n≥1

‖Tn‖.
So, T ∈ B(X, Y ).

(ii) ⇒ (iii) and (i) ⇒ (iii) follow from UBT, see the above arguments.
Now, assume (iii) is true. We are going to use the density arguments,

similar to those in the proof of Theorem 2.6. Indeed, take any x ∈ X and
z ∈ Z. Then we have

‖Tnx− Tmx‖Y ≤ ‖(Tn − Tm)z‖Y + ‖(Tn − Tm)(x− z)‖Y ≤

≤ ‖(Tn − Tm)z‖Y + 2M‖x− z‖Y
Given x ∈ X and ε > 0, we find z ∈ Z such that 2M‖x − z‖Y < ε/2
and then a number N such that ‖(Tn − Tm)z‖Y < ε/2 for m,n > N . So,
(iii) ⇒ (ii). Moreover, in the same way as in the proof of (ii) ⇒ (i), we
show that ‖T‖ ≤ M . Uniqueness follows from the identity T1x−T2x = 0 for
any x ∈ X.

4.4 Examples of strong convergence

1. Let L be the left-shift operator on l1. Then lim
n→∞

‖Lnx‖l1 = 0 for each

x ∈ l1, but ‖Ln‖ = 1 for any n and thus Ln does not converges to zero in
B(X). This shows that the strong convergence of operators in general does
not imply the uniform convergence of them.

2. Consider the shift operators Th (h ∈ Rn) on X = Lp(R
n), where 1 ≤ p <

∞:
(Th)f(t) := f(t+ h) (f ∈ Lp(R

n), t ∈ Rn).

Then Th → I strongly as h → 0, i.e.,

‖f(·+ h)− f(·)‖X =
(

∫

Rn

|f(t+ h)− f(t)|pdt
)

1

p → 0 (4.1)

as h → 0 for any f ∈ X. This property is known as integral continuity of
functions from Lp(R

n). To see that it is true, consider a continuous function
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g that is equal to zero outside a bounded set Bg of Rn (it is said that g
is compactly supported in Rn). By Lebesgue’s theorem about dominated
convergence

∫

R

|g(t+ h)− g(t)|pdt → 0

as h → 0. Indeed, t 7→ g(t) and t 7→ g(t+ h) are equal to zero in Rn \ B for
some ball B and for any |h| ≤ 1. So, |g(t + h)− g(t)|p ≤ (2N)pχB(t) for all
t ∈ Rn and |h| ≤ 1, where N = supRn |g(t)|. Let us denoted by Z the set
of all continuous functions g with a compact support in RN (for each g ∈ Z,
there exists a ball Bg such that g = 0 in Rn \Bg). In fact, we have

Theorem 4.6. The set Z is dense in Lp(R
n) provided 1 ≤ p < ∞.

This will follow from the following statements:

Lemma 4.7. Let A ⊂ Rn and ̺(x,A) = inf
z∈A

|x − z|. Then |̺(x,A) −
̺(y, A)| ≤ |x− y|.

Proof. We have for z ∈ A

̺(x,A) ≤ |x− z| ≤ |x− y|+ |y − z|,

which implies ̺(x,A) ≤ |x− y|+ ̺(y, A). Replacing x with y and y with x,
we complete the proof.

Lemma 4.8. Let 1 ≤ p < ∞ and E be a bounded measurable set in Rn.
Given ε > 0, there exists a function g ∈ Z such that ‖χE − g‖Lp(E) < ε.

Proof. Since E is bounded and measurable, there exist a closed set F ⊆ E
and a bounded open set O ⊇ E such that |O \ F | < (ε/2)p. We let

0 ≤ g(x) :=
̺(x,Rn \ O)

̺(x, F ) + ̺(x,Rn \ O)
≤ 1

for x ∈ Rn. Obviously, g is continuous function in Rn. And

‖χE − g‖p,E ≤ 2|O \ F | 1p ≤ ε.

21



Now, the statement of Theorem 4.6 follows from the fact for any f ∈
Lp(R

n) and any ε > 0, one can find finite number of disjoint bounded mea-
surable sets Ej and numbers cj such that ‖f − ∑

j cjχEj
‖Lp(Rn) < ε, see

Integration course.
So, now (4.1) follows from Theorem 4.5, taking M = 1 (explain why).

3. Here, we are going to discuss the approximation of unity in Lp(R
n) with

1 ≤ p < ∞ by convolution. It is also called a mollification. We will see why
later.

Let f ∈ Lp(R
n) and g ∈ L1(R

n). Then the integral

(f ∗ g)(s) :=
∫

Rn

g(s− t)f(t)dt =

∫

Rn

f(s− t)g(t)dt

exists for a.a. s ∈ Rn and thus defines a function which is itself in Lp(R
n) and

satisfies ‖g ∗ f‖p ≤ ‖f‖p‖g‖1. Indeed, by Hölder inequality, for 1 < p < ∞
with p′ = p/(p− 1) (p=1 is easy),

|(g ∗ f)(s)| ≤
(

∫

Rn

|g(s− t)|dt
)

1

p′
(

∫

Rn

|g(s− t)||f(t)|pdt
)

1

p ≤

≤ ‖g‖
1

p′

1

(

∫

Rn

|g(s− t)||f(t)|pdt
)

1

p

.

Hence, by Tonelli theorem,

‖g ∗ f‖pp ≤ ‖g‖
p

p′

1

∫

Rn

(

∫

Rn

|g(s− t)||f(t)|pdt
)

ds =

= ‖g‖
p

p′

1

∫

Rn

(

∫

Rn

|g(s− t)||f(t)|pds
)

dt = ‖g‖p1‖f‖pp.

Let us fix non-negative g ∈ L1(R
n), with

∫

Rn

gdt = 1. In addition, we

assume that g = 0 outside the unit ball B of Rn, centred at zero. Now,
define gj(t) = jg(jt). Then

∫

Rn

gjdt = 1 and ‖gn‖1 = ‖g‖1 = 1. Define

Tj : X = Lp(R
n) → X by Tj(f) = gj ∗ f . We wish to show that Tj → I
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strongly as j → ∞. Repeating more or less the same arguments as above,
we find

|(gj ∗ f)(s)− f(s)| =
∣

∣

∣

∫

Rn

gj(t)(f(t− s)− f(s))dt
∣

∣

∣

≤
(

∫

Rn

gj(t)|f(t− s)− f(s)|pdt
)

1

p

and thus after application of Tonelli’s theorem

‖gj ∗ f − f‖pp ≤
(

∫

Rn

gj(t)
(

∫

Rn

|f(s− t)− f(s)|pds
)

dt.

Making the change of variable t = τ/j, we get

‖gj ∗ f − f‖pp ≤
(

∫

B

g(τ)
(

∫

Rn

|f(s− τ/j)− f(s)|pds
)

dt.

By integral continuity, given ε > 0, we can find N such that, for any |τ | ≤ 1,

‖f(· − τ/j)− f(·)‖p ≤ ε

as j > N . Hence, ‖gj ∗ f − f‖p ≤ ε for j > N .
It is worthy to know that if g is a smooth function, for each n the convo-

lution gj ∗ f has the same smoothness as function g for any f ∈ Lp(R
n).

5 Open Mapping Theorem and its applica-

tions

Let f : X → Y , with X and Y any topological spaces. A map f is open if f
maps open sets onto open sets. Note that, for a bijective map f : X → Y ,
the well-defined map f−1 : Y → X is continuous if and only if f is open.

Lemma 5.1. Let X and Y be normed spaces and T : X → Y be linear. The
following are equivalent:
(i) T open;
(ii) T (BX) open (BX = BX(0, 1));
(iii) T (BX) contains some non-empty ball BY (0, ε)
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Proof. Exercise.

Theorem 5.2. Let X and Y be Banach spaces and T be a bounded linear
mapping of X onto Y . Then T is open.

Proof. Let BX and BY be the unit balls in X and Y .
Step 1 Here, we wish to show that if T (X) = Y and X is normed, Y is
Banach, then T (BX) ⊃ BY (0, ε) for some positive ε. Indeed, it is an exercise
to show that T (BX) is a non-empty closed convex set having the property:
y ∈ T (BX) implies −y ∈ T (BX). Since

T (X) = Y =
⋃

n

nT (BX) ⊆
⋃

n

nT (BX) ⊆ Y,

the statement follows from Lemma 4.2.
Step 2 Now, let us assume that T : X → Y is linear and continuous, X is
Banach and Y is normed, and T (BX) ⊃ BY (0, ε) for some positive ε. Our
aim is to show that there exists δ > 0 such that T (BX) ⊃ BY (0, δ).

Let y ∈ T (BX), then by assumption we can find y1 ∈ T (BX) such that

‖y − y1‖Y < ε/2. Since y − y1 ∈ BY (0, ε/2), then y − y1 ∈ T (1
2
BX) and thus

we can find y2 ∈ T (1
2
BX) such that ‖y− y1 − y2‖Y < ε/4. Proceeding in this

way, we find sequences yn and xn with the following properties:

‖y − y1 − y2 − ...− yi‖Y < ε/2i, yi = Txi, xi ∈
1

2i−1
BX , , i = 1, 2, ...

Since ‖xi‖X ≤ 1
2i−1 and X is Banach, the sequence zn =

n
∑

i=1

xi converges to

z in X. Moreover, ‖zn‖X ≤ ∑n
i=1 1/2

i−1 ≤ 2. Hence, we have ‖y − Tzn‖Y <
ε/2n and passing to the limit we show y = Tz with z ∈ 3BX . This means
that T (3BX) ⊃ BY (0, ε) So, we can take δ = ε/3.

Now, the result follows from the statement of Step 2 and Lemma 5.1, see
(iii).

A direct corollary of OMT is the following theorem called Inverse Mapping
Theorem or Banach’s Isomorphism Theorem.

Theorem 5.3. Let X and Y be Banach spaces and T : X → Y be a bounded
linear bijection. Then T−1 is continuous.
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Now, our aim is to discuss applications of IMT for adjoint operators and
closed images. Recall that for T ∈ B(X) (X is Hilbert space), the image TX
will not in general be closed.

Theorem 5.4. Let X, Y be Hilbert spaces and T ∈ B(X, Y ). Then TX is
closed if and only if T ∗Y is closed.

Proof. Suppose that T ∗Y is closed in X. We let N := TX ⊆ Y . Define,
further, S : X → N by Sx = Tx for x ∈ X. We know that there exists
the adjoint operator S∗ : N → X. By Proposition 2.9, since ImS = N =
(KerS∗)⊥, S∗ is injective. Let P : Y → N be a projection.

Let us prove that S∗(Py) = T ∗(y) for y ∈ Y . Indeed,

< Tx, y >Y=< Sx, y >Y=< Sx, Py >Y=< x, S∗Py >X=< x, T ∗y >X .

It follows from the above that: S∗P = T ∗, S∗N = T ∗Y =: M , and S∗n = T ∗n
for all n ∈ N . So, we can introduce V : N → M by V n = S∗n for all n ∈ N .
So, now V is a bijection, M,N are Banach spaces. By IMT, there exists
continuous V −1 : M → N . Just by simple properties of adjoint operators,
we get (V ∗)−1 = (V −1)∗ ∈ B(N,M).

Now, take any y ∈ Y and any n ∈ N , we know that there exists a unique
m ∈ M such that n = V ∗m. So, we have

< n, y >Y=< V ∗m, y >Y=< V ∗m,Py >Y=< m, V ∗∗Py >X=

=< m, V Py >X=< m,S∗Py >X=< Sm,Py >Y=

=< Sm, y >Y=< Tm, y >Y

for y ∈ Y . Hence, n = Tm and N ⊆ TX. So, TX is closed in Y .
Converse can be proved by observation that T ∗∗ = T

Now, let X and Y be Banach spaces, T : X → Y be a mapping. The set
G(T ) := {(x, y) : x ∈ X, y = T (x)} is called the graph of T .

Define the norm ‖(x, y)‖X×Y on X×Y in one of the following ways: either
‖x‖X + ‖y‖Y , or

√

‖x‖2X + ‖y‖2Y , or max{‖x‖X , ‖y‖Y }. It is easy to see that
if T is continuous then G(T ) is closed in X × Y . Inverse in general is not
true. However, we have (Closed Graph Theorem)

Theorem 5.5. Let T : X → Y is a linear mapping with closed graph. Then
T is continuous (bounded).
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Proof. By assumptions, G(T ) itself is a Banach space as a closed subset of
a Banach space X × Y . Let us introduce two operators π1(x, y) = x and
π2(x, y) = y. Obviously, π1 ∈ B(X ×Y,X) and π2 ∈ B(X ×Y, Y ). Introduce
p = π1|G(T ) (p(x, Tx) = x). It is easy to see that operator p is one-to-one
and and onto. Moreover, it is a continuous operator. By IMT, there exists
p−1 and it is a continuous operator. On the other hand, T (x) = π2(p

−1x).
The result follows.

Let us discuss further applications of our main theorems.
1.

Proposition 5.6. Let X be a Hilbert space and let T : X → X be a linear
mapping. If < Tx, y >=< x, Ty > for all x and y then T is bounded (and
thus self-afoint).

Proof. Suppose that ‖x− xn‖ → 0 and ‖Txn − z‖ → 0. then for any y ∈ X
we have

< z, y >= lim
n→∞

< Txn, y >= lim
n→∞

< xn, T y >=< x, Ty >=< Tx, y > .

So, z = Tx and thus G(T ) is closed and, by CGT, T is bounded.

2. Let us discuss continuity of projection on a Banach space. Let X be
a Banach space, Y and Z be its closed subspaces such that X = Y ⊕ Z.
Define P : X → X by P (y + z) = y. Let us show that P is continuous.
Let ‖xn − x‖ → 0 and ‖Pxn − y‖ → 0. We let yn = Pxn ∈ Y , and
zn = xn − yn ∈ Z. Obviously, y ∈ Y and zn → z = x − y ∈ Z in X. By
uniqueness of decomposition, y = Px. The result follows from CGT.
3. IMT has a simple application to a proof of equivalence norms.

Proposition 5.7. Let X be a Banach space with respect to two norms ‖ · ‖1
and ‖ · ‖2 and suppose that there exists a constant c such that ‖x‖1 ≤ c‖x‖2
for all x ∈ X. Then there exists a constant c′ such that ‖x‖2 ≤ c′‖x‖1.

Proof. This is an immediate consequence of IMT, applied to the Identity
map id(X, ‖ · ‖2) → (X, ‖ · ‖1). This map is continuous by hypothesis and a
linear bijection. Hence, id−1 is continuous too.

4. Now, consider a multiplicative operator on L1(R). Let h be a measurable
function such that fh ∈ L1(R) for each f ∈ L1(R) and considerMh : f → fh.
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Then Mh is well defined as a map from L1(R) to itself. We claim that Mh

has the closed graph and so, by CGT, is continuous.
To prove this assume fn → f and fnh → g in L1(R). Then by passing to

a suitable subsequence, we may assume that that convergence occurs point-
wise a.e. But then fnh → fh a.e., so g = fh a.e. and thus g = Mhf .

Boundedness of Mh implies that there exists a constant K such that
∫

|fh|dx ≤ K
∫

|f |dx for all f ∈ L1(R). We claim that there exists a
Lebesgue measure zero set N such that h is bounded on R\N . Suppose this
fails. Then E = {x : |h(x)| > 2K} is a non-zero measure set. This implies
that there exists n such that |E ∩ [−n, n]| 6= 0. Considering f = χE∩[−n,n],
we get a contradiction.

Now, let us discuss how IMT and CGT conclusions can fail if not all the
conditions from them are met.

1. Consider the map T : X ⊂ l1 → l1 defined by

T (xj) = (jxj)

with

X = {x = (xj) ∈ l1 :
∞
∑

j=1

|jxj| < ∞}.

Obviously, X is a proper subset of l1 since (1/j2) ∈ l1 \ X. X is dense
(consider sequences with only finitely many non-zero coordinates) and thus
X is not complete with respect to l1-norm. Moreover, T is not bounded since
T (e(n)) = n. However, G(T ) is closed in l1× l1, which can be verified directly
using coordinate convergence. Conclusion is that CGT does now works since
X is not a Banach space with l1-norm.

2. Define the operator T : X → C([0, 1]) by Tf = f ′, where X is the
subspace C1([0, 1]) of C([0, 1]) consisting of those f for which f ′ ∈ C([0, 1]).
X is a proper dense subset of C([0, 1]). The operator T is not bounded
as there exists a sequence (fn) in X such that ‖fn‖∞ = 1 and ‖f ′

n‖∞ is
unbounded. Nonetheless, G(T ) is closed in C([0, 1]) × C([0, 1]). Indeed, let
us gn → g and g′n → G in C([0, 1]). It is easy to see that limit functions
satisfy the following identity

g(t)− g(s) =

t
∫

s

G(τ)dτ

for all s, t ∈ [0, 1]. This implies that G = f ′.
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6 Spectral Theory in Hilbert Space

In this section always assume that the scalar field is C.

6.1 Main definitions

We start with some definition and results from B4.1 that we are going to use
in this course.

Definition 6.1. Let X be a complex Banach space and T ∈ B(X). Spectrum
of T is the set

σ(T ) := {λ ∈ C : (λI − T ) has no inverse in B(X)}.

It is known that σ(T ) is non-empty, closed set of C and if λ ∈ σ(T ) then
|λ| ≤ ‖T‖.

Denote by σp(T ) the set of λ ∈ C such that Ker (λI−T ) contains non-zero
vectors called eigenvectors belonging to the eigenvalue λ.

It is said λ ∈ C is an approximate eigenvalue if there exists a sequence
xn ∈ X such that ‖xn‖ = 1 and ‖Txn − λxn‖ → 0 as n → ∞. The set of all
approximate eigenvalues is denoted by σap(T ). It is also known from B4.1
that

σp(T ) ⊆ σap(T ) ⊆ σ(T ). (6.1)

Proposition 6.2. Let X be a Banach space and S ∈ B(X). Assume that
there exists a positive number δ such that ‖Sx‖ ≥ δ‖x‖ for all x ∈ X. Then
S is injective and SX is closed. Moreover, if in addition, we assume that SX
is dense, then S is surjective and has inverse S−1 ∈ B(X), with ‖S−1‖ ≤ 1/δ.

The next statement is easy consequence of Proposition 2.9.

Proposition 6.3. Let X be a complex Hilbert space, T ∈ B(X) and λ ∈ C.
Then
(i) (λI − T )∗ = λI − T ∗;
(ii) λI − T is invertible if and only if λI − T ∗ is invertible;
(iii) Ker (λI − T ) = Im (λI − T ∗)⊥;
(iv) Ker (λI − T ∗)⊥ = Im (λI − T ).

Let us consider an example on the last few results.
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Proposition 6.4. Let X be a complex Hilbert space and let T ∈ B(X), T
is self-adjoint. Then iI + T has an inverse (iI + T )−1 ∈ B(X). Moreover,
(iI + T )−1(iI − T ) is unitary.

Proof. Let S = iI + T and R = iI − T . We have

‖(iI ± T )x‖2 = ±i < Tx, x > + < Tx, Tx > ∓i < x, Tx > + < x, x >=

‖Tx‖2 + ‖x‖2 ≥ ‖x‖2.
Now, apply Proposition 6.2 with iI ± T in place of T (and δ = 1) to get
S and R both injective and SX and RX closed. Moreover, S∗ = −R and
R∗ = −S. Then, by Proposition 2.9,

(SX)⊥ = KerS∗ = KerR = {0}, (RX)⊥ = KerR∗ = KerS = {0}.

So, both S and R are invertible.
Next we let U = S−1R. U is invertible and U−1 = R−1S. We then have

U∗ = R∗(S−1)∗ = R∗(S∗)−1 = SR−1.

Since R and S and thus R−1 and S−1 commute, then, for example,

U∗U = (SR−1)(S−1R) = I.

The result follows.

6.2 Adjoints and spectra

Proposition 6.5. Let X be a Hilbert space, T ∈ B(X), and λ ∈ C. Then
(i) λ ∈ σ(T ) if and only if λ ∈ σ(T ∗);
(ii) If T is normal, i.e., TT ∗ = T ∗T , then Ker (λI − T ) = Ker (λI − T ∗);
(iii) If T is self-adjoint then σp(T ) ∈ R. Eigenvectors belonging to different
eigenvalues are orthogonal.

Proof. (i) come from Proposition 6.3. For (ii), we notice that λI − T is
normal as well and that ‖Sx‖ = ‖S∗x‖ for any x ∈ X provided S is normal.
(iii) is proved as in the finite dimensional case.

The next theorem can be deduced from the course B4.1 but let us give
an independent proof using the notion of weak convergence.
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Theorem 6.6. Let X be a Hilbert space and T ∈ B(X). Then

σ(T ) = σap ∪ σ′
p(T

∗),

where λ ∈ σ′
p(T

∗) if and only if λ ∈ σp(T
∗).

Proof. Assume that λ ∈ σ(T ). Since σp(T ) ⊆ σap(T ), we need to consider
only the case when Ker (λI −T ) = {0}, i.e., the operator λI −T is injective.
Then, there are only two options either Im (λI − T ) is proper closed subset
of X or Im (λI − T ) = X In the first case, by Proposition 6.3, see (iv),
Ker (λI − T ∗) ⊂ X and λ is an eigenvalue of T ∗, i.e., λ ∈ σp(T

∗) and thus
λ ∈ σ′

p(T
∗). In the second case, one find y ∈ X \ Im (λI −T ) and a sequence

yn ∈ Im (λI − T ) such that yn → y in X. Let yn = (λI − T )xn. Let us show
that the sequence xn is unbounded. Indeed, if it is bounded, there exists a
subsequence xnk

weakly converging to x. Now, for any z ∈ X, we have

< ynk
, z >=< (λI − T )xnk

, z >=< xnk
, (λI − T ∗)z > .

Passing to the limit as k → ∞, we show

< y, z >=< x, (λI − T ∗)z >=< (λI − T )x, z > .

The latter implies y ∈ Im (λI − T ), which is wrong, and thus sequence
xn is unbounded. Hence, there exists a subsequence ‖xnk

‖ → ∞. Then,
taking znk

= xnk
/‖xnk

‖, we have ‖(λI − T )(znk
)‖ = ‖ynk

‖/‖xnk
‖ → 0 with

‖znk
‖ = 1, which means that λ ∈ σap(T ).
So, we have proven σ(T ) ⊆ σap(T ) ∪ σ′

p(T
∗). The opposite inclusion is

easy, see (6.1) and Proposition 6.3 (i).

Now, we can prove the following.

Theorem 6.7. Let X be a complex Hilbert space and T ∈ B(X) be self-
adjoint. Then σ(T ) ∈ R.

Proof. By the previous theorem and by Proposition 6.5, the spectrum of a
self-adjoint operator T is reduced to σap(T ). So, let λ is an approximate
eigenvalue, i.e., there exists a sequence xn such that ‖xn‖ = 1 and ‖(λI −
T )xn‖ → 0. Then

λ− λ = (λ− λ) < xn, xn >=

=< Txn − λxn, xn > − < Txn − λxn, xn >=
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=< Txn − λxn, xn > − < xn, T
∗xn − λxn >=

=< Txn − λxn, xn > − < xn, Txn − λxn >→ 0.

We know that, for a self-adjoint operator, acting on a complex Hilbert
space, < Tx, x > is real. We also know that |λ| ≤ ‖T‖ for x ∈ σ(T ) and that
‖T‖ = sup{| < Tx, x > | : ‖x‖ = 1}.

Lemma 6.8. Let X be a complex Hilbert space and T ∈ B(T ) be self-adjoint.
Assume that a unit vector x0 satisfies the condition ‖T‖ = | < Tx0, x0 > |.
Then x0 is an eigenvector of T belonging to a eigenvalue λ0, i.e., Tx0 = λ0x0,
such that ‖T‖ = |λ0|.

Proof. Assume that < Tx0, x0 > is non-negative. Pick any y ∈ Y such that
< y, x0 > 0 and consider a vector x = (x0 + αy)/

√

1 + |α|2‖y‖2 for any
α ∈ C. Obviously, ‖x‖ = 1. Simple calculations show

< Tx, x >=
1

1 + |α|2‖y‖2 (< Tx0, x0 > + < Tx0, αy > + < T (αy), x0 > +

+|α|2 < Ty, y >) =< Tx0, x0 > +α < Tx0, y > +α< Tx0, y >+

+|α|2 < Ty, y >≤< Tx0, x0 > .

The latter inequality implies < Tx0, y >= 0 (explain why).
Now, let Y = span {x0} and then X = Y ⊕ Y ⊥. We have proven Tx0 ∈

(Y ⊥)⊥ = Y . Hence, Tx0 = λ0x0 and < Tx0, x0 >= λ0.

Proposition 6.9. Let X be a Hilbert space and U ∈ B(X) be a unitary. If
λ ∈ σ(U), then |λ| = 1.

Proof. We have proved that U is surjective isometry and U−1 exists and
equal U∗. Indeed, |λ| ≤ ‖U‖ = 1. Assume for contradiction that there exists
λ with |λ| < 1 and λI − U is not invertible. Then λI − U∗ is not invertible.
This implies that (λI − U∗)U = λU − I is not invertible either. This a
contradiction.
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6.3 Example: spectra

1.Consider
T (αj) = (αj/j)

on l2(N). Then σ(T ) = {k−1 : 1, 2, ...} ∪ {0}.
2. Consider a complex Hilbert l2(Z) with inner product

< (αj), (βj) >=
∞
∑

j=−∞
αjβj.

Let U be given by Uα = β where βj = αj−1. Then U is unitary and

σp(U) = ∅, σ(T ) = {λ : |λ| = 1},

see Problem sheet, Qn 22.
3. Let T be the operator on the complex Hilbert space L2(0, 1) given by

Tf(t) = tf(t).

Then T is self-adjoint and σ(T ) = [0, 1] and σp(T ) = ∅.
4.

Definition 6.10. Let X be Y be two normed spaces. K ∈ B(X, Y ) is a
compact operator if, for any bounded set B ∈ X, K(B) is a precompact set
in Y . (Recall from Part A: a set K of a metric space M is called precompact
set if any sequence of K contains a subsequence converging in M).

Simple examples:
(a) if dimY < ∞, then any K ∈ B(X, Y ) is precompact.
(b) Let X = Y = L2(0, 1) and

Kf(t) :=

t
∫

0

f(s)ds

for f ∈ X. Now, let fj is a bounded sequence of X. We can select a
subsequence such that fjm ⇀ f in X. Denoting by χt the characteristic
function of the interval ]0, t[, we have (due to the weak convergence)

Kfjm(t) =

1
∫

0

fjm(s)χt(s)ds →
1

∫

0

f(s)χt(s)ds = Kf(t)
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for all 0 < t < 1. On the other hand, the Cauchy-Schwarz inequality implies:

sup
0<t<1

|Kfjm(t)| ≤
√
t‖fjm‖X ≤ sup

j
‖fj‖X < ∞.

Then, the fact
1

∫

0

|Kfjm(t)−Kf(t)|2dt → 0

as m → ∞ follows from the Dominated Convergence Theorem.
Let K ∈ B(X) be a compact operator in infinite dimensional space X.

Then 0 ∈ σ(K). Indeed, assume that there exists K−1 ∈ B(X). Let B be
the unit ball of X. Since K−1(B) is bounded, the set B = K(K−1B) must
be precompact which is not true.

There are several nice properties of compact self-adjoint operators.

Proposition 6.11. Let K be a compact self-adjoint operator on a complex
Hilbert space X. If λ ∈ σ(T ) and λ 6= 0, then λ ∈ σp(K).

Proof. Since K is a self-adjoint, λ is an approximate eigenvalue, i.e., there
exists a sequence xn ∈ X such that

‖xn‖ = 1, ‖Kxn − λxn‖ → 0.

We know that there exists a subsequence xnj
⇀ x. Since K is compact

Kxnj
→ Kx in X (explain why) and thus (since λ 6= 0) xnj

→ x. Obviously,
‖x‖ = 1, Kx− λx = 0.

Theorem 6.12. Let K be a compact self-adjoint operator on a complex
Hilbert space X. Then there exists at least one eigenvector of K. Moreover,
this eigenvector belongs to an eigenvalue λ0 of K satisfying ‖K‖ = |λ0|.

Proof. Without loss of generality, we may assume that K 6= 0. We know
that for any self-adjoint operator K

‖K‖ = sup{| < Kx, x > | : ‖x‖ = 1},

see Lemma 2.7. Let a sequence xn be such that ‖xn‖ = 1 and | < Kxn, xn >
| → ‖K‖. We also can find a subsequence xnj

⇀ x0 with

1 = lim inf
j→∞

‖xnj
‖ ≥ ‖x0‖,
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see Proposition 2.4, and, since K is a compact operator, Kxnj
→ Kx0 and

thus < Kxnj
, xnj

>→< Kx0, x0 >= ‖K‖ (explain why). Clearly, x0 6= 0 and
in fact, ‖x0‖ = 1. If not, let x′ = x0/‖x0‖, then ‖x′‖ = 1 and

| < Kx′, x′ > | = 1

‖x0‖2
‖K‖ ≤ ‖K‖,

which is wrong if ‖x0‖ < 1. The result follows from Lemma 6.8.

Theorem 6.13. Let K be a compact on a complex Hilbert space X. Let
δ > 0 and introduce the set

Σ = span {x ∈ X : ‖x‖ = 1, Kx = λx, |λ| ≥ δ}.
Then dimΣ < ∞.

Proof. Assume for contradiction that for any n there exist linearly inde-
pendent vectors x1, x2,...,xn such that xi 6= 0, Kxi = λixi, with |λi| ≥ δ,
i = 1, 2, ..., n. We let En = span {x1, x2, ..., xn}. By construction, En−1 is a
proper subspace En.

Now, let y1 = x1/‖x1‖. Our aim is to show that there exists a sequence y2,
y3,..., with the following properties: yn ∈ En, ‖yn‖ = 1, and dist (yn, En−1) >
1/2, n = 2, 3, ... Indeed, by assumptions dist (xn, En−1) = α > 0. Obviously,
there exists x∗ ∈ En−1 such that ‖xn − x∗‖ < 2α. Since α = dist (xn −
x∗, En−1), we can let yn = (xn − x∗)/‖xn − x∗‖. We then have ‖yn‖ = 1,
yn ∈ En, and dist (yn, En−1) = α/‖xn − x∗‖ > 1/2. Notice that

‖yn/λn‖ ≤ 1/δ.

If we can show that sequence K(yn/λn) is not precompact, we get a contra-
diction.

So, we have

yn =
n

∑

j=1

αixi, K(yn/λn) =
n

∑

j=1

λiαixi/λn = yn + zn,

where

zn =
n−1
∑

j=1

(λi/λn − 1)αixi ∈ En−1.

For any n > m, zn − ym − zm ∈ En−1 and thus

‖K(yn/λn)−K(ym/λm)‖ = ‖yn + zn − yn − zm‖ > 1/2.

So, there is no converging subsequence of K(yn/λn).
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7 Orthogonal sequences in Hilbert space

7.1 Orthonormal sequences

Let S be a non-empty set of vectors in an IPS X. Then
(i) S is orthogonal if x, y ∈ S and x 6= y, then < x, y >= 0;
(ii) S is orthogonal if it orthogonal and in addition ‖x‖ = 1 for all x ∈ S.

An orthogonal set of non-zero vectors can be converted to orthonormal
set be replacing each member x by x/‖x‖.

Proposition 7.1. Let X be a Hilbert space, and let en, n = 1, 2, ..., be an
orthonormal sequence in X. Then

∑∞
n=1 αnen converges in X if and only if

(αn) ∈ l2.

Proof. Exerscise.

Proposition 7.2. Let X be a Hilbert space, and let {en} be an orthonormal
sequence X. Let x ∈ X and Y = span {en}.
(i) ‖x−∑m

n=1 < x, en > en‖2 = ‖x‖2 −∑m
n=1 | < x, en > |2;

(ii)
∑∞

n=1 | < x, en > |2 ≤ ‖x‖2 (Bessel’s inequality);
(iii)

∑∞
n=1 < x, en > en = PY x;

(iv) The following are equivalent:
(a)

∑∞
n=1 | < x, en > |2 = ‖x‖2 (Parseval’s identity);

(b) x =
∑∞

n=1 < x, en > en, where the series converges in the norm of X;
(c) x ∈ Y .

Proof. (i) Direct calculations.
(ii) Immediately follows from (i).
(iii) By proposition 7.1, series

∑∞
n=1 < x, en > en converges. Let us

denote its sum by y. By definition of Y , y ∈ Y . Since < x − y, ej >= 0 for
any j ∈ N, one cam claim z = x− y ∈ Y ⊥. So, x = y + z, where y ∈ Y and
z ∈ Y ⊥ and thus PY x = y.

(iv) (a)⇐⇒(b) follows from (i), (b)=⇒(c) is obvious, (c)=⇒(b), since
x−∑∞

n=1 < x, en > en ∈ Y ⊥ ∩ Y .

Given x ∈ X, the converging series
∑∞

n=1 < x, en > en is called the
Fourier series of x.

Now, let us discuss several simple examples of orthonormal sequence in
L2-spaces.
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1. Consider the space of all polynomials, and the sequence 1, t, t2,... and
use the Gram-Schmidt method to obtain orthonormal polynomials pn(t) of

degree n. For the inner product f, g >=
1
∫

−1

fgdx, the resulting orthonormal

polynomials are, up to normalisation, the classical Legendre polynonials.
2. Let X = L2(0,∞; e−tdt), so the inner product given by

< f, g >=

∞
∫

0

f(t)g(t)e−tdt,

the orthonormal polynomials obtained by applying the Gram-Schmidt method
to 1, t, t2,... are the Laguerre polynomials Ln(t).

3. For the inner product

< f, g >=

∫

R

f(t)g(t)e−t2dt,

orthonormal polynomials are, up to normalisation, Hermite polynomial.
4. The last example is the Hilbert-Schmidt Theorem and its not easy.

Theorem 7.3. Let K be a compact self-adjoint operator in a complex Hilbert
space X. There exists an orthonormal sequence {en}Nn=1, N ≤ ∞, consisting
of eigenvectors of K belonging to a non-zero eigenvalue λn of K with the
following property. For any x ∈ X, we have a unique representaion

x =
N
∑

n=1

cnen + x′,

where x′ ∈ KerK. If N = ∞, then λk → 0 as k → ∞.

Proof. As it follows from Theorem 6.13, the set of non-zero eigenvalues is
countable. We list them in the following order

|λ1| ≥ |λ2| ≥ ... ≥ |λn| ≥ ....

Step 1 By Theorem 6.12, we know that

‖K‖ = |λ1| = sup{| < Kx, x > | : ‖x‖ = 1}

and there exists an eigenvector e1 such that ‖e1‖ = 1 and Ke1 = λ1e1.
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Step 2 Now, we argue by induction, assuming that there are eigenvectors
e1, e2,...,en such that ‖ej‖ = 1, Kej = λj, and < ej, em >= 0 for j 6= m and
j,m = 1, 2, ..., n, see Proposition 6.5, (iii). Moreover,

|λj| = sup{| < Kx, x > | : ‖x‖ = 1, < x, em >= 0, m = 1, 2, ..., j − 1}

Consider a closed subspace Mn = span {e1, e2, ..., en}. Then x = Mn ⊕
M⊥

n . Obviously, K is invariant with respect Mn, i.e., K(Mn) ⊆ Mn. Let us
show that M⊥

n is invariant with respect to K, i.e., K(M⊥
n ) ⊆ M⊥

n , as well.
Indeed, assume that there exists y ∈ K(M⊥

n ) \M⊥
n , then y = m+m⊥ = Kx,

with x ∈ M⊥
n , m ∈ Mn, and m⊥ ∈ M⊥

n . Since Mn is invariant with respect
to K, ‖m‖2 =< Kx,m >=< x,Km >= 0 and thus y ∈ M⊥

n . If denote by
Kn : M⊥

n → M⊥
n the restriction of K to Mn, we can repeat arguments of Step

1 replacing X with Mn and K with Kn and get en+1 ∈ M⊥
n with ‖en+1‖ = 1

and Ken+1 = Knen+1 = λn+1en=1 and

|λn+1| = sup{| < Knx, x > | : x ∈ M⊥
n , ‖x‖ = 1} =

= sup{| < Kx, x > | : ‖x‖ = 1, < x, em >= 0, m = 1, 2, ..., n}.
Step 3 Here, we should consider two case. In the first case, after finite steps,
we get < Kx, x >= 0 for all x ∈ M⊥

n0
for some n0. This implies that M⊥

n0
=

KerK. Indeed, since K is self-adjoint, the identity < K(x + y), x + y >= 0
for any x, y ∈ M⊥

n0
implies < Kx, y >= 0 for the same x and y. Since K is

invariant with respect M⊥
n0
, one can let y = Kx and get Kx = 0 for x ∈ M⊥

n0
.

In the second case, < Kx, x > is not identically equal to zero on M⊥
n for

all n. In this case, λn → 0. If not |λn| ≥ δ for all n. Contradiction follows
from Theorem 6.13. Now, let M = span {e1, e2, ..., en, ...} and X = M ⊕M⊥.
Our aim is to show that KerK = M⊥. To this end, we first notice that K
is invariant with respect to M⊥. So, if x ∈ KerK, then 0 =< Kx, en >=<
x,Ken >= λn < x, en > for any n, and thus x ∈ M⊥ and KerK ⊆ M⊥. To
show converse, we first notice that if < Kx, x >≡ 0 onM⊥, then the opposite
inclusion is trivially true by repeating arguments of Step 2. Otherwise, we
have

0 < |λ| = sup{| < Kx, x > | : ‖x‖ = 1, x ∈ M⊥} ≤ |λn| → 0.

Uniqueness is easy.
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7.2 Completeness

Definition 7.4. If an orthonormal sequence {en} in a Hilbert space in X
satisfies X = span {e1, e2, ..., en, ...}, it is said to be a complete orthonormal
sequence or an orthonormal basis.

It is worthy to note that if {ej} is an orthonormal basis in X, then

x =
∞
∑

j=1

< x, ej > ej

for any x ∈ X, see Proposition 7.2.
Consider examples of complete orthogonal sequences.
1. The standard orthonormal set in l2 (easy to check).
2. The trigonometric orthonormal set {en : n ∈ Z} where en(t) =

(2π)−
1

2 eint, where in L2(−π, π) (to be proved later).

3. The functions (n+1
π
)
1

2 zn in A2(D) (see Problem sheet, Qn 25).
4.

Theorem 7.5. Let X be an infinite-dimensional Hilbert space. X is separa-
ble if and only if it has a complete orthonormal sequence.

Proof. Let X be separable and a set {xn} be dense in it. Without loss of
generality we may assume that x1, x2,...,xn are linear independent for any n.
Then we can find a orthonormal sequence {en} using Gram-Schmidt method.
So, xn ∈ span {e1, e2, ..., en}. This implies {en} is an orthonormal basis in
X. Converse is obvious.

5. Now, we can give another version of Hilbert-Schmidt Theorem which
is very important in applications.

Theorem 7.6. Let K be a compact self-adjoint operator in a separable Hilbert
space X. There exists an orthonormal basis of X consisting of eigenvalues
of the operator K.

Proof. Our first remark is that KerK is a separable Hilbert space itself. By
Theorem 7.5, there exists a orthonormal basis {e′n} of KerK which consists
of eigenvectors belonging zero eigenvalue. Now, it remains to use Theorem
7.3. According to it, there exists an orthonormal sequence {e′′n} consisting
of eigenvectors belonging to non-zero eigenvalues such that {e′n} ∪ {e′′n} is
orthonormal basis in X.

38



8 Classical Fourier Series

Given f ∈ L1(−π, π), consider the classical Fourier series of f

∑

k∈Z
fke

ikx (8.1)

for −π < x < π with fk =
π
∫

−π

f(x)e−ikxdx.

Since the system {eikx}k∈Z is orthogonal, series (8.1) can be re-written in
the form

∑

k∈Z
< f, ek > ek, (8.2)

where ek(x) =
1√
2π
e−ikx and < f, g >=

π
∫

−π

fgdx. We can hope that this series

converges in L2(−π, π).
Assume that f is 2π-periodic function on R and f ∈ L1(−π, π). Let us

calculate the nth partial sum of the Fourier series of a fixed function f is
given by

sn(x) =
n

∑

j=−n

fje
ijx =

=
1

2π

π
∫

−π

f(t)
n

∑

j=−n

eij(x−t)dt =

=
1

2π

π
∫

−π

f(u)
sin((n+ 1

2
)(x− u))

sin((x− u)/2)
du =

=
1

π

π
∫

0

(f(x+ t) + f(x− t))

2

sin(n+ 1
2
)t

sin t/2
dt.

By the Riemann-Lebesgue Lemma, part A, see also Qn 8 and Qn 19 for
an independent proof,

1

π

π
∫

δ

(f(x+ t) + f(x− t))

2

sin(n+ 1
2
)t

sin t/2
dt → 0
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as n → ∞ for any positive δ. Therefore, the classical Fourier series (8.1)
converges at point x ∈]− π, π[, if and only if, for some δ > 0, there exists

lim
n→∞

1

π

δ
∫

0

(f(x+ t) + f(x− t))

2

sin(n+ 1
2
)t

sin t/2
dt.

Moreover, the sum of the series is equal to the above limit.
Unfortunately, we need to put more assumptions on f if we wish conver-

gence of the series at least a.e. in ] − π, π[. It follows from the celebrated
Kolmogorov counter-example of f ∈ L1(−π, π) whose the classical Fourier
series diverges a.e. in ]− π, π[.

Assume that our function f is Hölder continuous at point x, i.e. there
exist numbers A > 0, 0 < α ≤ 1 and δ0 > 0 such that

|f(x+ z)− f(x)| ≤ A|z|α, |z| ≤ δ0. (8.3)

Lemma 8.1. Let f be 2π-periodic and f ∈ L1(−π, π). Assume that condition
(8.3) holds at a point −π < x < π. Then

lim
n→∞

sn(x) = f(x).

Proof. We have

|sn(x)− f(x)| =
∣

∣

∣

1

π

π
∫

0

(f(x+ t) + f(x− t))

2

sin(n+ 1
2
)t

sin t/2
dt− f(x)

∣

∣

∣
≤ I1 + I2,

where

I1 =
∣

∣

∣

1

π

π
∫

δ

(f(x+ t) + f(x− t))

2

sin(n+ 1
2
)t

sin t/2
dt
∣

∣

∣
→ 0

for any δ > 0 as n → ∞ (by the Riemann-Lebesgue Lemma) and

I2 =
∣

∣

∣

1

π

δ
∫

0

(f(x+ t) + f(x− t))

2

sin(n+ 1
2
)t

sin t/2
dt− f(x)

∣

∣

∣
≤ J1 + J2,

where

J1 =
∣

∣

∣

1

π

δ
∫

0

(f(x+ t) + f(x− t)− 2f(x))

2

sin(n+ 1
2
)t

sin t/2
dt
∣

∣

∣
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and

J2 = |f(x)|
∣

∣

∣

1

π

δ
∫

0

sin(n+ 1
2
)t

sin t/2
dt− 1

∣

∣

∣
.

Let us show that J2 → 0 as n → ∞. Indeed,

1

π

δ
∫

0

sin(n+ 1
2
)t

sin t/2
dt− 1 =

=
2

π

δ
∫

0

sin(n+ 1
2
)t

t
dt− 1

π

δ
∫

0

sin((n+
1

2
)t)

( 1

t/2
− 1

sin t/2

)

dt = K1 +K2.

Since the function 1
t/2

− 1
sin t/2

is bounded in the interval ]0, δ[, K2 → 0 as

n → ∞. In the integral K1, we make the change of variables s = (n+ 1/2)t
and find

K1 =
2

π

(n+1/2)δ
∫

0

sin s

s
ds → 1

as n → ∞.
For J1, we have, assuming that δ ≤ δ0,

J1 ≤
A

π

δ
∫

0

tα

sin t/2
dt.

Since t/π ≤ sin t/2 if 0 ≤ t ≤ π, J1 ≤ A
α
δα. Passing to the limit as n → ∞,

we find

lim sup
n→∞

|sn(x)− f(x)| ≤ A

α
δα.

After taking the limit as δ → 0, we complete the of the lemma.

Theorem 8.2. The trigonometric sequence {ek}k∈Z is orthonormal basis of
L2(−π, π).

Proof. We going to use standard density arguments. Consider a 2π-periodic
function f ∈ X = L2(−π, π) (and of course belonging to L1(−π, π) as well)
that is differentiable at any point s ∈]− π, π[. We have proved f(x) =

∑

k∈Z
<

41



f, ek > ek(x) for any x ∈]−π, π[. On the other hand, by Proposition 6.5,(iii),
the series converges to PYf in L2(−π, π), where Y = span {en}. Clearly, this
series converges a.e. in ]− π, π[ and thus PYf = f , i.e., f ∈ Y . Our theorem
will be proven if show that Y is dense.

Now, let f ∈ L2(−π, π) be arbitrary. Let f̃ be a 2π-periodic extension f
to the whole R. For example f̃(x) = f(x) if x ∈]−π, π] and f̃(x) = f(x−2πk)
if x ∈]2πk−π, 2πk+π], k ∈ Z. Let us take a cut-off bounded smooth function
ϕ ≥ 0 such ϕ(x) = 1 if |x| ≤ 5π and ϕ(x) = 0 if |x| ≥ 10π. We then let
h = f̃ϕ in R. Obviously, h ∈ L2(R).

In our further arguments, we are going to use mollification described in
Subsection 4.4, see example 3. Take a differentiable non-negative function
g which is equal to zero if |x| > 1 and

∫

R

gdx = 1, let gn(t) = ng(tn) and

consider hn = h ∗ gn. It has been shown that hn → h in L2(R). Moreover,
functions hn are differentiable at each point of R. It remains to consider
h̃n(x), see definition of f̃ . As it has been proven, h̃n ∈ Y and since

‖f − h̃n‖L2(−π,π) = ‖f̃ − h̃n‖L2(−π,π) = ‖f̃ϕ− h̃n‖L2(−π,π) = ‖h− h̃n‖L2(−π,π)

= ‖h− hn‖L2(−π,π) ≤ ‖h− hn‖L2(R) → 0

as n → ∞.
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