
Professor Joyce B3.3 Algebraic Curves Hilary Term 2019

Initial problem sheet. Solutions

1. Let [2, 1], [1, 1], [3, 4] be points in the projective line CP
1. Find represen-

tative vectors v1, v2, v3 for these points which satisfy v1+v2+v3=0.

Solution. Each vector vi is a multiple xi of the given vectors. So v1+v2+v3 =
0 gives

2x1 + x2 + 3x3 = 0,

x1 + x2 + 4x3 = 0.

Simple elimination gives x1 = x3 = x, x2 = −5x, so that

v1 = (2, 1), v2 = (−5,−5), v3 = (3, 4)

is a solution.

2. Explain why two photographs taken from the same point, but with the
camera pointed in different directions, are related by a projective transfor-
mation.

A photograph shows four fence posts beside a straight road. On the photo-
graph, the distances between successive fence posts are 4 inches, 3 inches and
2 inches. Is it possible that the fence posts are evenly spaced? Give reasons.

Solution. Think of the camera as a single point at the origin 0 in R
3. Then

points of the projective space P (R3) correspond to lines – paths of light rays
– in R

3 passing through the camera. Taking a photograph maps such lines,
i.e. points in P (R3), to points in the photograph, which we think of as a
subset of R2. So a photograph maps a portion of P (R3) to a portion of R2,
essentially by inhomogeneous coordinates.

Taking two photographs from the same point with the camera pointing in
different directions corresponds to transforming between two different sets of
inhomogeneous coordinates on P (R3), or equivalently, to a projective trans-
formation of P (R3).

The edge of the road corresponds to a line P (R2) in P (R3). The photograph
corresponds to a choice of inhomogeneous coordinates on P (R2), identifying
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P (R2) = R ∪ {∞}. In these coordinates the fence posts appear at points 0,
4, 7, 9 in R ⊂ P (R2).

If they were regularly spaced, we could take a photograph in which the
fence posts appeared at points 0, 1, 2, 3 in R. So there should exist a
projective transformation of P (R2) taking points 0, 4, 7, 9 to points 0, 1,
2, 3, respectively. Using material on points in general position in Lecture 3,
you can show this is impossible.

3. If a line with slope t intersects the circle x2 + y2 = 1 in the points (−1, 0)
and (x, y), show that x and y are both rational functions of t. (A rational
function is one that can be written as the quotient of two polynomials.) By
taking t = p/q to be a rational number, construct the general solution of the
equation x2 + y2 = z2 for which x, y, z are coprime integers.

Solution. We have x2 + y2 = 1 and y = t(x+ 1), so

0 = x2 + t2(x+ 1)2 − 1 = (x+ 1)
(

x− 1 + t2(x+ 1)
)

.

Since x 6= −1, we have x − 1 + t2(x + 1) = 0, so x = (1 − t2)/(1 + t2), and
thus y = 2t/(1 + t2).

When t = p/q this gives x = (q2 − p2)/(p2 + q2) and y = 2pq/(p2 + q2), so
[

q2 − p2

p2 + q2

]2

+

[

2pq

p2 + q2

]2

= 1,

and multiplying up gives

(q2 − p2)2 + (2pq)2 = (p2 + q2)2.

Hence x = q2 − p2, y = 2pq, z = p2 + q2 are solutions to x2 + y2 = z2 in
integers. If p, q are coprime and not both odd then x, y, z are coprime; if p, q
are both odd then we need to pass to x = 1

2
(q2 − p2), y = pq, z = 1

2
(p2 + q2)

to get x, y, z coprime. Since (x/z)2 + (y/z)2 = 1, we must have x/z =
(1− t2)/(1 + t2) = (q2 − p2)/(p2 + q2) and y/z = 2t/(1 + t2) = 2pq/(p2 + q2)
for some t = p/q, so this gives all solutions.

4∗. Suppose p(t), q(t) and r(t) are pairwise coprime, complex polynomials in
t satisfying p(t)3 + q(t)3 + r(t)3 ≡ 0. Let ω = e2πi/3, so that ω3 = 1. Then
the equation p(t)3 + q(t)3 + r(t)3 = 0 may be rewritten as

(

p(t) + q(t)
)(

ω p(t) + ω2q(t)
)(

ω2p(t) + ω q(t)
)

=
(

−r(t)
)3

. (1)
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(i) Show that p(t) + q(t), ω p(t) + ω2q(t) and ω2p(t) + ω q(t) are pairwise
coprime.

(ii) Show that there exist pairwise coprime, complex polynomials α(t), β(t)
and γ(t), such that p(t) + q(t) ≡ α(t)3, ω p(t) + ω2q(t) ≡ β(t)3,
and ω2p(t) + ω q(t) ≡ γ(t)3.

(iii) Deduce that α(t)3 + β(t)3 + γ(t)3 ≡ 0.

[Two polynomials are coprime if they have no nontrivial common factor.]

Solution. (i) If some nontrivial factor s(t) divides p(t) + q(t) and ω p(t) +
ω2q(t) then s(t) divides p(t), q(t) as they are linear combinations of p(t) +
q(t) and ω p(t) + ω2q(t), contradicting p(t), q(t) coprime. So p(t) + q(t) and
ω p(t) + ω2q(t) are coprime; similarly for the other two pairs.

(ii) Let s(t) be an irreducible factor of p(t)+q(t). Then s(t) divides (−r(t))3

by (1), so s(t) divides r(t) as s(t) is irreducible, and thus s(t)3 divides the
l.h.s. of (1). But s(t) does not divide ω p(t)+ω2q(t) or ω2p(t)+ω q(t) by (i).
Hence s(t)3 divides p(t) + q(t).

In this way we see that every irreducible factor of p(t) + q(t) occurs with
multiplicity a multiple of 3, so p(t) + q(t) is a cube, p(t) + q(t) ≡ α(t)3 for
some polynomial α(t). Similarly for ω p(t) + ω2q(t) and ω2p(t) + ω q(t).

(iii) Now we have

α(t)3+β(t)3+γ(t)3 ≡
(

p(t)+q(t)
)

+
(

ω p(t)+ω2q(t)
)

+
(

ω2p(t)+ω q(t)
)

=0

since 1 + ω + ω2 = 0.

5∗. Using your answer to Question 4, prove that p(t), q(t) and r(t) must be
constant.

[Hint: consider the degrees of p, q, r and α, β, γ.]

Solution. Suppose we can find p(t), q(t), r(t) not all constant in Question 4.
Choose such p, q, r of minimal total degree. But then we can replace p, q, r
by α, β, γ, which satisfy the same equation, are not all constant, and have
smaller total degree (as degα = 1

3
deg p, and so on), a contradiction. Thus

p, q, r are constant.

6∗. Using Questions 4 and 5, show that there do not exist nonconstant
rational functions x(t), y(t), such that x(t)3 + y(t)3 + 1 ≡ 0. How does this
compare with Question 3?
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Solution. If we could find such rational functions x(t), y(t), say x(t) =
a(t)/b(t), y(t) = c(t)/d(t) for a(t), . . . , d(t) polynomials with c(t), d(t) not
identically zero, then the polynomials p(t) = a(t)d(t), q(t) = b(t)c(t) and
r(t) = c(t)d(t) satisfy p(t)3 + q(t)3 + r(t)3 ≡ 0. Hence p(t), q(t), r(t) are
constant, so a(t), b(t), c(t), d(t) are constant, and x(t), y(t) are constant.

Thus, from Question 3 we can parametrize the solutions of the equation
x2+ y2 = 1 in C

2 using rational functions, but from Questions 4-6 we cannot
parametrize the solutions of the equation x3 + y3 = 1 in C

2 using rational
functions.

In terms of material later in the course, this is because the curve C defined
by x2 + y2 = z2 in CP

2 has genus zero, so is a sphere S2, and is isomorphic
to CP

1 which is also a sphere S2. So we can find a map CP
1 → C ⊂ CP

2

which parametrizes C using rational functions. But the curve C ′ defined by
x3 + y3 = z3 in CP

2 has genus one, so is a torus T 2, and is not isomorphic to
CP

1. Thus we cannot parametrize C ′ by a map from CP
1, that is, we cannot

parametrize C ′ using rational functions.
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