Professor Joyce B3.3 Algebraic Curves Hilary Term 2019

Problem Sheet 4

1. Let C be a Riemann surface, and f,g : C — CP' = CII {oo} be
meromorphic functions such that f, g # oo, and A € C. Show that fg,f+g¢g
and Af are also meromorphic functions on C' (or at least, can be extended
to meromorphic functions). Deduce that the meromorphic functions f on C'
with f # oo form a commutative algebra over C.

Note: the issue here is that algebraic operations of addition, multiplication
and scalar multiplication are defined on C, but not on CII {co}. So, for
example, f(p)g(p) is not well-defined at a point p € C' with f(p) = oo and
g(p) = 0. You should prove that fg, f + g and A\f are well-defined except
at isolated points in C, and they extend uniquely over these points to give
meromorphic functions.

2. Let p(z) be the Weierstrass p-function. Consider the meromorphic func-
tion ¢'(z) on X = C/A. By considering ¢’ as a map to CP', determine its
degree and the number and indices of its ramification points.

Is there a meromorphic function f on X such that f'(z) = p(2)?

[Hint: What would its poles look like?|

3. The p-function satisfies p? = 4(p — €1)(p — €2)(p — e3). Supposing that
none of ey, eq,e3 is zero, show that the equation p(z) = 0 has two distinct
solutions z = +a. For any two distinct points b,¢c € C/I" write down a
meromorphic function whose only poles are simple poles at b and c.

4. Let C' be a nonsingular cubic curve and let p,q € C' be distinct points.
Show using the Riemann—Roch Theorem that ¢(p + ¢q) = 2. Deduce that
there exists a meromorphic function on C' whose only poles are simple poles
at p and q.

5. Let C be a nonsingular quartic curve in CP?.

(a) Let H be a hyperplane divisor on C. Show that ¢(H) > 3.

(b) Let D be a divisor on C with deg D = 4. Prove using the Riemann—
Roch Theorem that ¢(D) = 3 if D is a canonical divisor, and ¢(D) = 2
otherwise.

(c) Deduce that every hyperplane divisor on C' is a canonical divisor.

1



6. (Optional). Let C be a nonsingular quartic curve in CP?.

(i) Let HD(C) be the vector space of holomorphic differentials on C'.
Show using question 5 that there is an isomorphism HD(C) = C3 =
(x,y, z), such that if 0 # w is a holomorphic differential corresponding
to ax + by + ¢z then the canonical divisor (w) is the hyperplane divisor
corresponding to the line ax + by 4+ cz = 0.

(ii) Let p,q € C be distinct points. Show that the vector subspace of w €
HD(C') vanishing at p, ¢ has dimension 1. Deduce that {(k—p—q) =1
for a canonical divisor k.

(iii) Show that ¢(p + q) = 1 for all distinct p,q € C.

7. (Optional). Consider the affine nodal cubic C,g in C? with equation
y? = 2® 4 2°.

Show that the formula

tes (2 —1,t—t°)
describes a map from C onto Cyg. Describe the fibres of this map (i.e. the
preimages of points in Cyg).
What can you deduce about the topology of the projective nodal cubic y?z =
2% + 2%z in CP*?

8. (Optional). This problem shows how to associate a ring to a divisor on
a curve, and studies this ring in a relatively simple but typical example.

(a) Let C be a projective a nonsingular curve in CP?, and D a divisor on
C. Show that the vector space

R(D) = @ L(nD)

n>0
can naturally be given the structure of a (graded, if you know what
that is) ring.

(b) Let C be a nonsingular cubic curve, and D = p for a point p € C.
Compute the dimension ¢(nD) for each n > 0.



(c) Using your computations, study the structure of the ring R(D) in this
example in the following terms.

(i) In degree n = 0, we have the constants C.

(ii) In degree n = 1, we have a one-dimensional vector space L(D),
generated by an element we call x € R(D). [This is a confusing
point. As a meromorphic function, = is the constant function 1.
However, as an element of R(D), it is different from the identity
element, hence we need to give it a different namel]

(iii) In degree n = 2, we have a two-dimensional vector space L£(2D),
which has a basis element z? [still represented by the constant
function!] and a new basis element that we call y.

(iv) In degree n = 3, we have a three-dimensional vector space £(3D),
of which we know two elements z® and xy. Assuming these are
linearly independent, we need one more basis element z.

(v) Show that, making the appropriate linear independence assump-
tions, in degrees n = 4 and 5 there is no need for any further
generators, the known elements of the ring exactly span the vec-
tor spaces L(nD).

(vi) Show however that in degree n = 6, there are too many known el-
ements in £(6D), leading to a linear dependence relation between
expressions in the quantities x,y, z. Show that, after a change of
generators, we can assume this relation to be of the form

22 =9 + azx’y + bab. (1)

(vii) Show that, assuming that the elements x,y, z generate the ring
R(D), relation (1) is the only relation there exists in R(D): the
appropriate combination of x,y, z’s gives a vector space which is
exactly the right dimension for every n.

(d) If you have enjoyed the story so far, repeat the analysis for the divisor
D = 2p on the nonsingular cubic curve C.
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