
Professor Joyce B3.3 Algebraic Curves Hilary Term 2019

Problem Sheet 4

1. Let C be a Riemann surface, and f, g : C → CP
1 = C ∐ {∞} be

meromorphic functions such that f, g 6≡ ∞, and λ ∈ C. Show that fg, f + g
and λf are also meromorphic functions on C (or at least, can be extended
to meromorphic functions). Deduce that the meromorphic functions f on C
with f 6≡ ∞ form a commutative algebra over C.

Note: the issue here is that algebraic operations of addition, multiplication
and scalar multiplication are defined on C, but not on C ∐ {∞}. So, for
example, f(p)g(p) is not well-defined at a point p ∈ C with f(p) = ∞ and
g(p) = 0. You should prove that fg, f + g and λf are well-defined except
at isolated points in C, and they extend uniquely over these points to give
meromorphic functions.

2. Let ℘(z) be the Weierstrass ℘-function. Consider the meromorphic func-
tion ℘′(z) on X = C/Λ. By considering ℘′ as a map to CP

1, determine its
degree and the number and indices of its ramification points.

Is there a meromorphic function f on X such that f ′(z) = ℘(z)?

[Hint: What would its poles look like? ]

3. The ℘-function satisfies ℘′2 = 4(℘− e1)(℘− e2)(℘− e3). Supposing that
none of e1, e2, e3 is zero, show that the equation ℘(z) = 0 has two distinct
solutions z = ±a. For any two distinct points b, c ∈ C/Γ write down a
meromorphic function whose only poles are simple poles at b and c.

4. Let C be a nonsingular cubic curve and let p, q ∈ C be distinct points.
Show using the Riemann–Roch Theorem that ℓ(p + q) = 2. Deduce that
there exists a meromorphic function on C whose only poles are simple poles
at p and q.

5. Let C be a nonsingular quartic curve in CP
2.

(a) Let H be a hyperplane divisor on C. Show that ℓ(H) ≥ 3.

(b) Let D be a divisor on C with degD = 4. Prove using the Riemann–
Roch Theorem that ℓ(D) = 3 if D is a canonical divisor, and ℓ(D) = 2
otherwise.

(c) Deduce that every hyperplane divisor on C is a canonical divisor.
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6. (Optional). Let C be a nonsingular quartic curve in CP
2.

(i) Let HD(C) be the vector space of holomorphic differentials on C.
Show using question 5 that there is an isomorphism HD(C) ∼= C

3 =
〈x, y, z〉, such that if 0 6= ω is a holomorphic differential corresponding
to ax+ by+ cz then the canonical divisor (ω) is the hyperplane divisor
corresponding to the line ax+ by + cz = 0.

(ii) Let p, q ∈ C be distinct points. Show that the vector subspace of ω ∈
HD(C) vanishing at p, q has dimension 1. Deduce that ℓ(κ−p−q) = 1
for a canonical divisor κ.

(iii) Show that ℓ(p+ q) = 1 for all distinct p, q ∈ C.

7. (Optional). Consider the affine nodal cubic Caff in C
2 with equation

y2 = x3 + x2.

Show that the formula
t 7→ (t2 − 1, t− t3)

describes a map from C onto Caff . Describe the fibres of this map (i.e. the
preimages of points in Caff).

What can you deduce about the topology of the projective nodal cubic y2z =
x3 + x2z in CP

2?

8. (Optional). This problem shows how to associate a ring to a divisor on
a curve, and studies this ring in a relatively simple but typical example.

(a) Let C be a projective a nonsingular curve in CP
2, and D a divisor on

C. Show that the vector space

R(D) =
⊕

n≥0

L(nD)

can naturally be given the structure of a (graded, if you know what
that is) ring.

(b) Let C be a nonsingular cubic curve, and D = p for a point p ∈ C.
Compute the dimension ℓ(nD) for each n ≥ 0.
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(c) Using your computations, study the structure of the ring R(D) in this
example in the following terms.

(i) In degree n = 0, we have the constants C.

(ii) In degree n = 1, we have a one-dimensional vector space L(D),
generated by an element we call x ∈ R(D). [This is a confusing
point. As a meromorphic function, x is the constant function 1.
However, as an element of R(D), it is different from the identity
element, hence we need to give it a different name!]

(iii) In degree n = 2, we have a two-dimensional vector space L(2D),
which has a basis element x2 [still represented by the constant
function!] and a new basis element that we call y.

(iv) In degree n = 3, we have a three-dimensional vector space L(3D),
of which we know two elements x3 and xy. Assuming these are
linearly independent, we need one more basis element z.

(v) Show that, making the appropriate linear independence assump-
tions, in degrees n = 4 and 5 there is no need for any further
generators, the known elements of the ring exactly span the vec-
tor spaces L(nD).

(vi) Show however that in degree n = 6, there are too many known el-
ements in L(6D), leading to a linear dependence relation between
expressions in the quantities x, y, z. Show that, after a change of
generators, we can assume this relation to be of the form

z2 = y3 + ax4y + bx6. (1)

(vii) Show that, assuming that the elements x, y, z generate the ring
R(D), relation (1) is the only relation there exists in R(D): the
appropriate combination of x, y, z’s gives a vector space which is
exactly the right dimension for every n.

(d) If you have enjoyed the story so far, repeat the analysis for the divisor
D = 2p on the nonsingular cubic curve C.
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