
B2.2: COMMUTATIVE ALGEBRA

KONSTANTIN ARDAKOV

All rings in this course will be assumed commutative and containing
an identity element. For a ring R we denote by R[t1, . . . , tn] the poly-
nomial ring in indeterminates ti with coefficients in R. A subset S of
R is said to be multiplicatively closed if 1 ∈ S and whenever x, y ∈ S
then xy ∈ S.

1. Introduction

Examples 1.1. We begin by listing a number of examples of commu-
tative rings, arising from disparate parts of pure mathematics.

(0) Every field F is a ring.
(1) Let X be a set and F a field.

(a) Fun(X,F ) := {f : X → F} is a ring under pointwise addi-
tion and multiplication of functions.

(b) If X is a topological space and we endow F with the discrete
topology, Cont(X,F ) := {f : X → F, f is continuous} is a
subring of Fun(X,F ).

(c) If F = R or C and X is a manifold over F , then Sm(X,F ) :=
{f : X → F : f is smooth} is a subring of Fun(X,F ).

(2) (a) Z ⊂ Q, (b) Z[i] ⊂ Q[i], (c) Z[
√
−3] ⊂ Z[ω] ⊂ Q(

√
−3)

where ω := −1+
√
−3

2
, and more generally, (d) OK ⊂ K for a

finite field extension K of Q, where

OK := {α ∈ K : ∃ monic f(X) ∈ Z[X] such that f(α) = 0}
is the ring of integers of K.

(3) Let F be a field.
(a) The rings of polynomials

F ⊂ F [t1] ⊂ F [t1, t2] ⊂ · · · ⊂ F [t1, . . . , tn].

(b) finitely generated F -algebras; these are the same things as
quotients of polynomial rings F [t1, . . . , tn] by an ideal — see
Definition 2.9 below.
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Examples (1) come from Topology and Analysis ; examples (2) come
from Algebraic Number Theory, and examples (3) come from Algebraic
Geometry.

The main object of study of (Affine) Algebraic geometry are the
affine algebraic varieties (which we will call algebraic sets in this course).

Let F be a field, n ∈ N and let R := F [t1, . . . , tn] be the polynomial
ring in n variables ti, and let F n denote the n-dimensional vector space
of row vectors.

Definition 1.2.

(a) Let S ⊆ R be a collection of polynomials from R. Define

V(S) := {x = (xi) ∈ F n | f(x) = 0 ∀f ∈ S}.
(b) A set U ⊆ F n is an algebraic set if U = V(S) for some S ⊆ R

(equivalently U = V(I) for some ideal I of R).

Thus V(S) is just the subset in F n of common zeroes for all polyno-
mials in S (it may happen of course that this is the empty set). It is
easy to see that V(S) = V(I) where I = 〈S〉 is the ideal generated by
S in R. Here are some examples:

• Every singleton point {a} ⊂ F n is algebraic, because

{a} = {x ∈ F n : x1 = a1, . . . , xn = an} = V({t1 − a1, . . . , tn − an}).
• If f(x, y) = y2−x3+x then V({f}) = {(a, b) ∈ F 2 : b2 = a3−a}
is an example of an algebraic curve.

We may consider an opposite operation associating an ideal to each
subset of F n.

Definition 1.3. Let Z ⊆ F n be any subset. Define

I(Z) := {f(t1, . . . , tn) ∈ R | f(x) = 0 ∀x ∈ Z}.

Thus I(Z) is the set of polynomials which vanish on all of Z. It is
clear that I(Z) is an ideal of R.

Proposition 1.4. Let I ⊆ I ′ ⊆ R be ideals and Z ⊆ Z ′ ⊆ F n subsets.

(1) V(I ′) ⊆ V(I),
(2) I(Z ′) ⊆ I(Z).
(3) I ⊆ I(V(I)),
(4) Z ⊆ V(I(Z)), moreover there is equality if Z is an algebraic set.

Proof. Exercise. �
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Proposition 1.4 shows that I and V are order reversing maps between
the set of ideals of R and the algebraic subsets of F n:

{

algebraic subsets
Z ⊂ F n

} I−→
V←−

{

ideals
I ⊂ F [t1, . . . , tn]

}

.

Moreover, V is surjective because V(S) = V(〈S〉), whereas Proposition
1.4(4) shows I is injective. Understanding the relationship between
an algebraic set Z and the ideal I(Z) is the beginning of algebraic
geometry which we will address in Section 4.

In C2.6 Scheme Theory you will see how appropriate generalisations
of the constructions in Example 1.1(1) gives meaning to the slogan

every commutative ring is a ring of functions on some topological
space.

The Theory of Schemes, underpinned by the solid foundation of Com-
mutative Algebra, allows geometric intuition and techniques to be ap-
plied to Algebraic Number Theory, leading to deep results such as
Wiles’ proof of Fermat’s Last Theorem.

The aim of this course is to study basic structural properties of the
class of Noetherian rings which are commonly found in Algebraic Ge-
ometry and Algebraic Number Theory: the rings appearing in Exam-
ples 1.1(2) and (3) all satisfy the Noetherian condition.

2. Noetherian rings and modules

Let R be a ring and let M be an R-module. Recall that M is said to
be finitely generated if there exist elements m1, . . . ,mk ∈M such that
M =

∑k
i=1Rmi.

Lemma 2.1. The following three conditions on M are equivalent.

(a) Any submodule of M is finitely generated.

(b) Any nonempty set of submodules of M has a maximal element
under inclusion.

(c) Any ascending chain of submodules N1 ≤ N2 ≤ N3 ≤ · · · even-
tually becomes stationary.

Proof. (c) implies (b) is easy.

(b) implies (a): Let N be a submodule of M and let X be the
collection of finitely generated submodules of N . X contains {0} and
so by (b) there is a maximal element N0 ∈ X. We claim that N0 = N .
Otheriwise there is some x ∈ N\N0 and then N0 + Rx is a finitely
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generated submodule of N which is larger than N , contradiction. So
N0 = N is finitely generated.

(a) implies (c): Let N1 ≤ N2 ≤ · · · be an ascending chain of submod-
ules and let N := ∪∞

i=1Ni. Then N is a submodule ofM which is finitely
generated by (a). Suppose N is generated by elements x1, . . . , xn. For
each xi there is some Nki such that xi ∈ Nki . Take k = maxi{ki}. We
see that all xi ∈ Nk and so N = Nk. Therefore the chain becomes
stationary at Nk. �

Definition 2.2. An R-module M is said to be Noetherian if it satisfies
any of the three equivalent conditions of Lemma 2.1.

Proposition 2.3. Let N ≤M be two R-modules. Then M is Noether-
ian if and only if both N and M/N are Noetherian.

Proof. Problem sheet 1, Q4. �

As a consequence we see thatMn :=M⊕M⊕· · ·⊕M is Noetherian
for any Noetherian module M .

Definition 2.4. A ring R is Noetherian if R is a Noetherian R-
module.

Examples of Noetherian rings are fields, Z, PIDs and (as we shall
see momentarily) polynomial rings over fields. An example of a ring
which is not Noetherian is the polynomial ring of infinitely many inde-
terminates Z[t1, t2, . . .].

Proposition 2.5. A homomorphic image of a Noetherian ring is Noe-
therian.

Proof. Let f : A → B be a surjective ring homomorphism with
A Noetherian. Then B ≃ A/ ker f and the ideals of B are in 1 − 1
correspondence with the ideals of A containing ker f . Now A satis-
fies the ascending chain condition on its ideals and therefore so does
A/ ker f ≃ B.

Proposition 2.6. Let R be a Noetherian ring. Then an R-module M
is Noetherian if and only if M is finitely generated as an R-module.

Proof. If M is Noetherian then M is finitely generated as a module.
Conversely, soppose that M =

∑k
i=1Rmi for some mi ∈ M . Then M

is a homomorphic image of the free R-module Rk with basis: Define
the module homomorphism f : Rk → M by f(r1, . . . , rk) :=

∑

i rimi.
Since R and Rk are Noetherian modules so is M ≃ Rk/ ker f . �
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The main result of this section is

Theorem 2.7 (Hilbert’s Basis Theorem). Let R be a Noetherian ring.
Then the polynomial ring R[t] is Noetherian.

Corollary 2.8. Let F be a field. Then every ideal of F [t1, . . . , tn] has
a finite generating set.

Proof of Theorem 2.7. It is enough to show that any ideal I of R[t] is
finitely generated. If I = {0} this is clear. Suppose I is not zero. Let
M be the ideal of R generated by all leading coefficients of all non-zero
polynomials in I. Then M is finitely generated ideal and hence there
are some polynomials p1, . . . , pk ∈ I such that pi has leading coefficient
ci andM = Rc1+Rc2+· · ·+Rck. Let N = max{deg pi | 1 ≤ i ≤ k} and
let K = I ∩

(

R⊕Rt⊕ · · · ⊕ RtN
)

. Note that K is an R-submodule of

the Noetherian R-module RN and hence K is finitely generated as an
R-module, say by elements a1, . . . , as ∈ K ⊂ I. Let J be the ideal of
R[t] generated by a1, . . . , as, p1, . . . , pk. We claim that J = I. Clearly
J ≤ I and it remains to prove the converse. Let f ∈ I and argue by
induction on deg f that f ∈ J . If deg f ≤ N then f ∈ K =

∑

iRai
and so f ∈ J . Suppose that deg f > N . Let a ∈ M be the leading
coefficient of f . We have a =

∑

j rjcj for some rj ∈ R. Consider the

polynomial g := f −∑

j rjt
deg f−deg pjpj and note that deg g < deg f .

Since g ∈ I we can assume from the induction hypothesis that g ∈ J .
Therefore f ∈ J . Hence I = J is finitely generated ideal of R[t].
Therefore R[t] is a Noetherian ring. �

Definition 2.9. Let A ≤ B be two rings.

(1) Given elements b1, . . . , bk ∈ B, A[b1, . . . , bk] denotes the small-
est subring of B containing A and all bi.

(2) We say that B is finitely generated as an A-algebra, or that
B is finitely generated as a ring over A if there exist elements
b1, . . . , bk ∈ B such that B = A[b1, . . . , bk].

This is equivalent to the existence of a surjective ring homomorphism

f : A[t1, . . . , tk]→ B

which is the identity on A and f(ti) = bi for each i.

Corollary 2.10. Let R be a Noetherian ring and suppose S ≥ R is a
ring which is finitely generated as R-algebra. Then S is a Noetherian
ring.

Proof. The above discussion shows that S is a homomorphic image of
the polynomial ring R[t1, . . . , tk] and with Theorem 2.7 and induction
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on k we deduce that R[t1, . . . , tk] is a Noetherian ring. Therefore S is
a Noetherian ring. �

This has the following central application to algebraic geometry.

Corollary 2.11. Let X ⊆ F [t1, . . . , tk] be any subset. Then there is a
finite subset Y ⊆ X such that V(X) = V(Y ).

Proof. Since F [t1, . . . , tk] is a Noetherian ring by Corollary 2.8, the set
of ideals of R satisfies the ascending chain condition by Lemma 2.1. So
〈X〉 = 〈Y 〉 for some finite subset Y of X. We conclude that

V(X) = V(〈X〉) = V(〈Y 〉) = V(Y ). �

3. The Nilradical

Definition 3.1. A prime ideal P of a ring is said to be minimal if P
does not contain another prime ideal Q ⊂ P .

Theorem 3.2. Let R be a Noetherian ring. Then R has finitely many
minimal prime ideals and every prime ideal contains a minimal prime
ideal.

Proof. Let’s say that an ideal I of R is good if I ⊇ P1 · · ·Pk for some
prime ideals Pi, not necessarily distinct. We claim that all ideals of
R are good. Otherwise let S be the set of bad ideals and since R is
Noetherian, by Lemma 2.1 there is a maximal element of S, call it J .
Clearly J is not prime. So there exist elements x, y outside J such that
xy ∈ J . Let S = J+Rx, T = J+Ry, we have ST ⊆ J and both S and
T are strictly larger than J and hence must be good ideals. Therefore
P1 · · ·Pk ⊆ S, P ′

1 · · ·P ′
l ⊆ T for some prime ideals Pi, P

′
i of R. But then

P1 · · ·PkP ′
1 · · ·P ′

l ⊆ TS ⊆ J and so J is good, contradiction. So all
ideals of R are good an in particular {0} is good and so P1 · · ·Pk = 0
for some prime ideals Pi. Let Y be the set of minimal ideals from the
set {P1, . . . , Pk}. We claim that Y is the set of all minimal prime ideals
of R. Indeed if I is any prime ideal, then P1 · · ·Pk ⊆ I and so Pi ⊆ I
for some i, justifying our claim. This also proves the second statement
of the theorem. �

Definition 3.3. Let R be a ring.

(a) Let I be an ideal of R. An ideal P of R is said to be a minimal
prime over I if P is prime, I ⊆ P , and whenever I ⊆ Q ⊆ P with
Q prime, we must have Q = P .

(b) min(I) denotes the set of all minimal primes over I.
(c) x ∈ R is nilpotent if xn = 0 for some n ≥ 1.
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(d) The nilradical of a ring R, denoted by nilrad(R), is the set of all
nilpotent elements of R.

It follows from Theorem 3.2 that if R is Noetherian then min(I) is
finite for every ideal I of R. An easy exercise shows that nilrad(R) is
always an ideal of R.

Proposition 3.4. Let I be an ideal of a ring R consisting of nilpotent
elements (such ideal is called a nil ideal). Suppose that I is finitely
generated as an ideal. Then I is nilpotent.

Proof. Let xi ∈ I be such that I = Rx1+Rx2+ · · ·+Rxk. Let xni

i = 0
for some integers ni ∈ N and take n = n1 + · · ·+ nk. Now

In = (Rx1 +Rx2 + · · ·+Rxk)
n ⊆

∑

s1+···+sk=n

Rxs11 · · · xskk

where the sum is over all tuples si subject to
∑k

i=1 si = n. We must
have at least one j such that sj ≥ nj and then x

sj
j = 0. Therefore the

right hand side above is the zero ideal and so In = 0. �

Corollary 3.5. The nilradical of a Noetherian ring is nilpotent.

In the absence of the Noetherian hypothesis on the ring, the nil-
radical may not be nilpotent: take any field F and consider the ideal

generated by t1, t2, . . . in the ring
∞
⋃

k=1

F [t1, . . . , tk]/〈t1, t22, . . . , tkk〉.

There is another very useful characterization of the nilradical.

Theorem 3.6 (Krull’s Theorem). For any ring R, nilrad(R) is the
intersection of all prime ideals of R.

The proof of this fact uses Zorn’s Lemma. Recall that a partial order
on a set X is a reflexive and transitive relation ≤ on X such that a ≤ b
and b ≤ a implies a = b. If ≤ is a partial order on X, we call the
pair (X,≤) a partially ordered set, or a poset for short. A chain C in
a poset X is a subset C ⊆ X which is totally ordered : for any a, b ∈ C
we have a ≤ b or b ≤ a. If S is any subset of the poset X then an
element b ∈ X is an upper bound for S if s ≤ b holds for all s ∈ S.
The following result is known as Zorn’s Lemma. It is equivalent to the
Axiom of Choice and also to the Well-ordering principle.

Lemma 3.7 (Zorn’s Lemma). Let (X,≤) be a non-empty partially
ordered set such that every chain of elements of X has an upper bound
in X. Then X has a maximal element.
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A typical application of Zorn’s lemma is the existence of maximal
ideals in any non-zero unital ring R: recall that an ideal I of R is said
to be maximal if I is proper (I 6= R) and if J is another ideal of R
with I ⊆ J ⊆ R then either J = I or J = R. Let X be the set of
all proper ideals of R, ordered by inclusion. Note that X is not empty
since {0} ∈ X. If C is a chain in X we easily check that ∪C ∈ X and
so the condition of Lemma 3.7 is satisfied. Therefore X has maximal
elements, i.e. maximal ideals.

Proof of Krull’s Theorem. If x is nilpotent and P is a prime ideal then
xn = 0 ∈ P for some n and so x ∈ P . So nilrad(R) ⊆ J :=
∩{P | P prime ideal of R}. For the converse suppose that x is not
nilpotent. Let S = {xn |n ≥ 0}, then S is a multiplicatively closed
subset of R avoiding 0. By Lemma 3.7, we can find an ideal P of R
which is maximal subject to having P ∩ S = ∅. By problem sheet 1
Q1, this ideal P is prime. So x 6∈ J . Thus J ⊆ nilrad(R) and so
nilrad(R) = J . �

Definition 3.8. Let I be an ideal of R. The radical of I is
√
I := rad(I) := {x ∈ R | xn ∈ I, for some n ∈ N}.

So by definition rad(I)/I = nilrad(R/I). Using Theorem 3.6 and
Theorem 3.2, we obtain the following

Corollary 3.9. Let I be an ideal of a ring R. Then

(a) rad(I) = ∩{P | P prime ideal of R with I ⊆ P}.
(b) If R is Noetherian and min(I) = {P1, . . . , Pk} then

rad(I) = P1 ∩ · · · ∩ Pk.

Connection with algebraic sets. Recall the definitions of the maps
V and I from the Introduction. The following Proposition is an easy
exercise.

Proposition 3.10. Let Ij, j = 1, 2, . . . be ideals of the polynomial ring
R = F [t1, . . . , tk]. Then

(1) V(∑j Ij) = ∩jV(Ij).
(2) V(I1 ∩ I2) = V(I1I2) = V(I1) ∪ V(I2).
(3) rad(I(Z)) = I(Z) for any subset Z ⊆ F k.

When studying algebraic sets it is natural first to express them as
union of ’simpler’ algebraic sets. For example the algebraic set W =
V(t1t2) can be written as W = L1 ∪ L2, a union of the two lines Li =
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V(ti), i = 1, 2. This leads us to consider algebraic sets which cannot be
decomposed further and we make the following definition.

Definition 3.11. A non-empty algebraic setW is said to be irreducible
if wheneverW = W1∪W2 for some algebraic setsW1,W2 thenW1 = W
or W2 = W .

Proposition 3.12. An algebraic set W is irreducible if and only if
I(W ) is a prime ideal.

Proof. Suppose I(W ) is a prime ideal and W = W1 ∪W2 with each
Wi 6= W . Then by Proposition 1.4, I(Wi) is strictly larger than I(W )
and we can find some fi ∈ I(Wi)\I(W ) for i = 1, 2. Then the polyno-
mial f1f2 vanishes on both W1 and W2 hence it vanishes on W and so
f1f2 ∈ I(W ). Thus I(W ) is not a prime ideal, contradiction. Therefore
W must be irreducible.

We leave the converse as an exercise in Problem sheet 2. �

Theorem 3.13. Every algebraic set is a union of finitely many irre-
ducible algebraic sets.

Proof. See Problem sheet 2. �

Lemma 3.14. Let W be a non-empty algebraic set and suppose that
W = V1 ∪ · · · ∪ Vn where Vi are irreducible algebraic sets and n is
minimal possible. Let Pi := I(Vi) for each i = 1, . . . , n. Then

min(I(W )) = {P1, . . . , Pn}.

Proof. Note that Vi 6⊆ Vj for any i 6= j otherwise we may omit Vi from
the union, and hence Pi 6⊆ Pj for any i 6= j. Now I(W ) = ∩ni=1I(Vi).
If P is a prime ideal containing I(W ) then P must contain at least one
of the ideals Pj := I(Vi). It follows that P1, . . . , Pn are precisely the
minimal primes of the ideal I(W ). �

In the setting of Lemma 3.14, it follows from Proposition 1.4 that
the irreducible sets Vi in the minimal decomposition W = V1 ∪ · · · ∪Vn
are determined uniquely byW , as one can recover the Vi from the ideal
I(W ) as the vanishing sets of the minimal primes above I(W ).

Definition 3.15. The Vi are called the irreducible components of the
algebraic set W .

It remains to determine the relationship between the algebraic set
W = V(I) and the ideal I(W ). This is the topic of the next section.
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4. The Nullstellensatz

Theorem 4.1 (weak Nullstellensatz). Let F ⊆ E be two fields such
that E is finitely generated as an algebra over F . Then E/F is a finite
extension.

We postpone the proof in order to first explore the important con-
sequences of this theorem.

Corollary 4.2. Let F be a field and let R be a finitely generated F -
algebra. Let M be a maximal ideal of R. Then dimF R/M is finite.

Proof. R/M is a field which is finitely generated as F -algebra. �

The next corollary describes the maximal ideals of polynomial rings
over algebraically closed fields. First we need some notation.

Let F be a field, let R = F [t1, . . . , tn] be a polynomial ring and let
M denote the set of maximal ideals of R. Define a function

µ : F n →M
by

µ(a1, . . . , an) :=
n

∑

i=1

R(ti − ai) = 〈t1 − a1, . . . , tn − an〉.

It is easy to check the following:

• µ(a1, . . . , an) ∈M,
• the map µ is injective.

Corollary 4.3. Assume that the field F is algebraically closed. Then
µ is bijective.

Proof. It remains to show that µ is surjective. Let M be a maximal
ideal of R. By Corollary 4.2 R/M is a finite field extension of F ,
and since F is algebraically closed, it follows that R/M ≃ F and so
dimF R/M = 1. This implies M + F = R. In particular for each ti
there exists ai ∈ F such that ti − ai ∈ M . Then µ(a1, . . . , an) ⊆ M
and hence M = µ(a1, . . . , an). �

Theorem 4.4 (The Nullstellensatz). Let F be an algebraically closed
field and let I be an ideal of the polynomial ring R = F [t1, . . . , tn].
Then

I(V(I)) = rad(I).

Lemma 4.5. Let R be a polynomial ring over algebraically closed field
F and let I be an ideal of R.
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(a) a ∈ F k belongs to V(I) if and only if I ⊆ µ(a).
(b) V(I) = ∅ if and only if I = R.

Proof. (a) a ∈ V(I) if and only if f vanishes at a for every f ∈ I, if
and only if I ⊆ I({a}). But I({a}) = µ(a).

(b) If R = I then 1 ∈ I and so V(I) = ∅. Conversely if I 6= R, by
Corollary 2.10 and Lemma 2.1, there is a maximal ideal M ∈ M such
that I ⊆ M . Because F is algebraically closed, Corollary 4.3 implies
that M = µ(a) for some a ∈ F k. Hence a ∈ V(I) by part (a). �

So: the points of the algebraic set V(I) correspond bijectively to the
maximal ideals of R which contain I, via a 7→ µ(a).

Proof of Theorem 4.4. Let W = V(I). Let f ∈ rad(I); then fn ∈ I
for some n ∈ N and so fn is zero on W . Hence f vanishes on W and
so f ∈ I(V(I)). Conversely suppose f ∈ I(V(I)). We want to prove
that f ∈ rad(I). If f = 0 this is clear, so assume f 6= 0. Consider the
polynomial ring S := R[z] = F [t1, . . . , tk, z] where we have added an
extra indeterminate variable z. Let J be the ideal of S generated by
I together with the polynomial zf − 1. Observe that V(J) = ∅: if the
tuple (a, y) ∈ F k+1 (with a ∈ F k) belongs to V(J) then a ∈ W but then
f(a) = 0 so (zf − 1)(a, y) = −1 is not zero. Hence by Lemma 4.5(b)
we must have J = S. Therefore there are polynomials g, g1, . . . , gm ∈ S
and f1, . . . fm ∈ I such that

g(zf − 1) + g1f1 + · · ·+ gmfm = 1

This is an identity of polynomials in variables t1, . . . , tk, z. In partic-
ular it remains true when we substitute z = 1/f . Then gi become
polynomials in t1, . . . , tk and 1/f . Bringing everything under a com-
mon denominator fn we reach

g′1f1 + · · · g′mfm
fn

= 1

for some g′i ∈ R. This implies fn =
∑m

i=1 g
′
ifi ∈ I since all fi ∈ I. Thus

f ∈ rad(I) and the Theorem is proved. �

We now start working towards the proof of Theorem 4.1, and start
with a technical result.

Proposition 4.6. Let A ⊆ B ⊆ C be three rings with A Noetherian.
Suppose that C is finitely generated as an A-algebra and also that C
is finitely generated as a B-module. Then B is finitely generated as
A-algebra.
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Proof. Suppose that C =
∑n

i=1Byi for some yi ∈ C. Let x1, . . . , xm
generate C as A-algebra. We have

xi =
n

∑

j=1

bijyj (1 ≤ i ≤ m)

yjyk =
n

∑

l=1

bjklyl (1 ≤ j, k ≤ n)

for some bij, bjkl ∈ B. Let B0 be the subring of B generated by A and
all the elements bij, bjkl. Then B0 is finitely generated as A-algebra and
hence by Corollary 2.10, B0 is a Noetherian ring. We have A ⊆ B0 ⊆
B ⊆ C. Let M = B0 +

∑n
i=1B0yi. By the definition of B0 it follows

that A ⊆M and xiM ⊆M for all i = 1, . . . ,m. Therefore cM ⊆M for
all c ∈ C and since 1 ∈ M we have C = M . So C is finitely generated
as B0-module and in particular C is a Noetherian B0-module. Its B0-
submodule B is therefore finitely generated. In particular there are
elements z1, . . . , zr ∈ B such that B =

∑r
s=1B0zi. Then the set of all

bij, bjkl, zs for all possible i, j, k, l, s generates B as an A-algebra. �

Field extensions. Let F ⊆ E be two fields. By [E : F ] we denote
dimF E, the dimension of E as a vector space over F and we say that
that the extension E/F is finite if [E : F ] is finite. The following is
mostly part A material.

Proposition 4.7. Let E/F be a field extension such that E = F (x) for
some element x ∈ E (meaning that E is the smallest field containing
F and x). The following are equivalent:

(a) x is algebraic over F .
(b) E/F is a finite extension.
(c) E is generated by x as an F -algebra.
(d) E is finitely generated as an F -algebra.

Proof. The equivalence of (a),(b) and (c) is part A material. Clearly
(c) implies (d). It remains to prove that (d) implies (a).

Suppose for a contradiction that x is not algebraic but transcendental
over F . Then E = F (x) is the field of rational functions in the variable
x. Suppose E is generated as F -algebra by the elements gi = pi/qi,

i = 1, . . . , k where pi, qi ∈ F [x] are polynomials in x. Let r =
∏k

i=1 qi
and consider the element a = 1/(xr + 1) ∈ E. Then

a = f(g1, . . . , gk)
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for some polynomial f ∈ F [t1, . . . , tk]. By multiplying by an appropri-
ate power of r to clear the denominators on the right hand side, we
reach the equation a = s/rn for some n ∈ N and polynomial s ∈ F [x].
Thus rn = s(xr+1). Since xr+1 is coprime to rn, by Bezout’s Lemma
we can find α, β ∈ F [x] such that α(xr + 1) + βrn = 1. Therefore
(α + βs)(xr + 1) = 1, and xr + 1 ∈ F [x] is a unit. But no polynomial
of degree ≥ 1 in F [x] is a unit, so we have reached a contradiction. �

Proof of Theorem 4.1. Suppose E = F [x1, . . . , xn] and argue by induc-
tion on n. The case n = 1 is the above Proposition 4.7. Assuming
the result is true for n− 1 consider the sequence of fields F ⊆ F ′ ⊆ E
where F ′ = F (x1). We have that E is finitely generated as F ′-algebra
by n−1 elements and hence by the induction hypothesis E/F ′ is finite.
So E is finitely generated as F ′-module and by Propostion 4.6 F ′ is
finitely generated as F -algebra. Now Proposition 4.7 gives that F ′/F
is finite and therefore [E : F ] = [E : F ′][F ′ : F ] is finite. �

Corollary 4.8. Let F and R be as in Theorem 4.4 and let I be an
ideal of R. Then rad(I) is an intersection of maximal ideals of R.

Proof. Let U be the intersection of all maximal ideals of R which con-
tain I. Clearly rad(I) ⊆ U , since rad(I) is the intersection of all prime
ideals of R which contain I by Corollary 3.9(a).

Suppose now f 6∈ rad(I). By Theorem 4.4 we have f 6∈ I(V(I))
and so there is some a ∈ V(I) such that f(a) 6= 0 and in particular
f 6∈ µ(a). On the other hand I ⊆ µ(a) and so µ(a) is a maximal ideal
of R which contains I. So f 6∈ U . Thus U ⊆ rad(I) and so we have
equality U = rad(I). �

This leads us to the following definition.

Definition 4.9. The Jacobson radical J(R) of a ring R is defined to
be the intersection of all maximal ideals of R.

Clearly nilrad(R) ⊆ J(R).

Definition 4.10. A ring R is said to be a Jacobson ring if J(R/I) =
rad(I)/I = nilrad(R/I) for each ideal I of R. Equivalently R is a
Jacobson ring if each prime ideal of R is an intersection of maximal
ideals.

So in Corollary 4.8 we have proved that F [t1, . . . , tk] is a Jacobson
ring whenever F is an algebraically closed field. In fact more is true:
any finitely generated algebra over a field is a Jacobson ring. We will
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prove this later once we have developed a new tool: the notion of
integral ring extensions.

5. Nakayama’s lemma

Theorem 5.1. Let R be a ring and let M be a finitely generated R-
module. Let I be an ideal of R and φ : M → M be an endomorphism
of M such that φ(M) ⊆ IM . There exist a1, . . . , an ∈ I such that the
module homomorphism

φn + a1φ
n−1 + · · ·+ an = 0

as a map on M .

Corollary 5.2. [Nakayama’s Lemma] Let M be a finitely generated
R-module and let I be an ideal of M such that M = IM . Then there
exists x ∈ I such that (1 + x)M = 0.

Proof. Take φ = IdM in Theorem 5.1. Then there exist ai ∈ I such
that (1 + a1 + · · ·+ an)M = 0 and we can take x =

∑n
i=1 ai. �

Theorem 5.3. [Cayley-Hamilton] Let R be a ring and let A = (aij) ∈
Mn(R) be a square n × n matrix. Let χA(t) := det(tIn − A) be the
characteristic polynomial of A. Then χA(A) = 0 inside Mn(R).

Proof. We begin by re-examining the case studied in Part A Linear
Algebra where R is a field, F say, with the property that χA(t) splits
completely over F . Write χA(t) = (t − λ1) · · · (t − λn) for some λi ∈
F . Let V := F n and let T : V → V be the F -linear map given by
T (v) = Av. Since χA(t) splits completely over F , the matrix of T is
upper triangular with respect to some basis {v1, . . . , vn} of V . Then

(T − λj1)(vj) ∈ Fv1 + · · ·+ Fvj−1 for all j = 1, . . . , n

where v0 := 0. An induction on m ≥ 1 shows that

(T − λ11) · · · (T − λm1)(vj) = 0 for all j = 1, . . . ,m.

Taking m = n shows that χA(T ) = 0 inside EndF (V ). Since χA(A) is
the matrix of χA(T ) with respect to {v1, . . . , vn} we see that χA(A) = 0
in this case.

Let ϕ : R → S be a ring homomorphism. It extends uniquely to
ring homomorphisms ϕ1 : Mn(R) → Mn(S), ϕ2 : R[t] → S[t], and
ϕ3 :Mn(R[t])→Mn(S[t]). Then

χϕ1(A)(t) = det(tIn − ϕ1(A)) = det(ϕ3(tIn − A)) =
= ϕ2(det(tIn − A)) = ϕ2(χA)(t)
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as elements in S[t]. Evaluate this at ϕ1(A) ∈Mn(S) to obtain

(1) χϕ1(A)(ϕ1(A)) = ϕ2(χA)(ϕ1(A)) = ϕ1(χA(A)).

Now consider the case where R is an arbitrary integral domain, with
field of fractions Q. Choose a splitting field F for χA(t) ∈ Q[t], and
consider the embedding j : R →֒ F . Then applying (1), we have

j1(χA(A)) = χj1(A)(j1(A)) = 0

by the first case. Since j1 : Mn(R) → Mn(F ) is still injective, we
conclude that χA(A) = 0 in Mn(R).

Finally, consider the most general case. Let U := Z[xij : 1 ≤ i, j ≤ n]
be the polynomial ring in n2 variables, and let X := (xij) ∈Mn(U) be
the generic matrix. There is a unique ring homomorphism ϕ : U → R
such that ϕ(xij) = aij for all i, j. Hence ϕ1(X) = A. Now U is an
integral domain, so χX(X) = 0 by the above. Applying equation (1)
again, we conclude that

χA(A) = χϕ1(X)(ϕ1(X)) = ϕ1(χX(X)) = ϕ1(0) = 0. �

Proof of Theorem 5.1. Let x1, . . . , xn ∈ M be generators of M . Let
V := Rn be the free R-module with basis {v1, . . . , vn}. There is a
unique surjective R-module homomorphism π : V ։ M such that
π(vi) = xi for all i = 1, . . . , n. Since φ(M) ⊆ IM by assumption, we
can find ci,j ∈ I such that φ(xj) =

∑n
i=1 cijxi. Define an R-linear map

ψ : V → V by ψ(vj) =
∑n

i=1 cijvi. Then ψ lifts φ in the sense that the
diagram

V
π

//

ψ
��

M

φ
��

V π
// M

is commutative: φ◦π = π◦ψ. It follows quickly that p(φ)◦π = π◦p(ψ)
for all p(t) ∈ R[t]. Let C = (ci,j) ∈ Mn(R). By the Cayley-Hamilton
Theorem 5.3, we have χC(C) = 0, so χC(ψ) = 0 in EndR(V ). Hence
χC(φ) ◦ π = 0. Since π : V → V is surjective, we conclude that
χC(φ) = 0 in EndR(M). Finally, note that χC(t) = tn+a1t

n−1+· · ·+an
where ai ∈ I, since ai is a polynomial in the coefficients ci,j of C. . �

The gist of the formal argument above is that φ acts on M as ψ acts
on V , and the same holds true for arbitrary polynomials in φ and ψ.
Corollary 5.2 has an important special case (which is sometimes also
stated as Nakayama’s lemma).
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Corollary 5.4. Let R be a ring and M be a finitely generated R-
module such that M = JM , where J = J(R) is the Jacobson radical of
R. Then M = {0}.

Proof. See Problem sheet 3. �

Corollary 5.5. Let M be a finitely generated R-module and let J =
J(R). Let N be a submodule of M such that M = N + JM . Then
M = N .

Proof. Apply Corollary 5.4 to the module M/N . �

These results is particularly useful for local rings.

Definition 5.6. A ring R is a local ring if R has a unique maximal
ideal.

It is clear that if R is a local ring with maximal ideal I then I = J(R)
is the Jacobson radical of R. We have that the elements of R\I are the
units of R. The last corollary then implies that in order to generate a
Noetherian moduleM over a local ring R is is sufficient to generate the
quotient M/IM . In turn M/IM is a vector space over the field R/I
and the problem of generating M reduces to linear algebra in M/IM .

6. Localization

Now we describe a technique which often helps to simplify arguments
and reduce them to the case of local rings. Let R be a domain, that is
a ring without zero divisors. Let Y be a multiplicatively closed subset
of R which contains 1 and such that 0 6∈ Y . Let E be the field of
fractions of R.

Definition 6.1. We define

S := Y −1R := {ry−1 | r ∈ R, y ∈ Y } ⊆ E.

For an ideal I of R we define e(I) := SI = {y−1x | x ∈ I, y ∈ Y }.

It is easy to check that S = Y −1R is a ring and that e(I) is an ideal
of S, the extension of I.

For example when R = Z and Y = {2k | k = 0, 1, 2 . . .} then Y −1R
is the ring of rational numbers with denominators which are a power
of 2. Now if I = 3Z then e(I) = 3S = {3n

2k
| n ∈ Z, k = 0, 1, 2, . . .}.

For an ideal J of S we define c(J) := R ∩ J , this is an ideal of R,
the contraction of the ideal J .
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Let R and S denote the set of ideals of R and S respectively. We
can regard e : R → S and c : S → R as maps between R and S. Let
Rc denote the set {J ∩R |J ∈ S}, the image of the contraction map c.

Proposition 6.2.

(1) The maps c and e are mutually inverse bijections between S and
Rc. Both c and e respect inclusion and intersection of ideals. In addi-
tion e respects sums of ideals.

(2) The prime ideals in Rc are precisely the prime ideals P of R such
that P ∩ Y = ∅.
(3) e maps prime ideals from Rc to prime ideals of S, c maps prime

ideals of S to prime ideals of R.

Proof. Part (1) is an easy exercise. For part (2), suppose P = c(J) is
a contracted prime ideal of R. If y ∈ P ∩ Y then y ∈ J but y−1 ∈ S
and so 1 ∈ J , giving J = S and P = R ∩ S = R contradiction. So
P ∩ Y = ∅. Conversely if P is a prime ideal of R such that P ∩ Y = ∅
then let J = e(P ) and consider c(J) = P ∩ J . Clearly P ⊆ c(J).
Suppose x ∈ c(J), thus x ∈ R and x = py−1 for some p ∈ P and
y ∈ Y . Hence p = xy with y 6∈ P , hence x ∈ P because P is prime.
Therefore P = c(J) = ce(P ) proving (2).

For part (3): If J is a prime ideal of S then c(J) = J ∩R is a prime
ideal of R.

Now suppose P is a prime ideal of R with P ∩ Y = ∅. We want to
show that e(P ) = SP = Y −1P is a prime ideal of S. Suppose r1, r2 ∈
R, y1, y2 ∈ Y with (r1y

−1
1 )(r2y

−1
2 ) ∈ e(P ). Hence r1r2(y1y2)

−1 = py−1

for some p ∈ P, y ∈ Y . This gives y1y2p = yr1r2 ∈ P and then either
r1 ∈ P or r2 ∈ P since P is prime and y 6∈ P . Hence either r1/y1 ∈ e(P )
or r2/e2 ∈ e(P ). Therefore e(P ) is a prime ideal. �

Corollary 6.3. Suppose Y = R\P for some prime ideal P of R. Let
S := Y −1R. Then S has precisely one maximal ideal, namely e(P ) =
SP . The prime ideals of S correspond bijectively via c to the prime
ideals of R contained in P .

Proof. Let M be a maximal ideal of S. Now M = ec(M) and c(M) =
R ∩M is a prime ideal of R disjoint from Y , hence c(M) ⊆ P . Thus
M = ec(M) ⊆ e(P ) and by maximality M = e(P ). So e(P ) is the
unique maximal ideal of S. The rest of the claims follow from Propo-
sition 6.2 (2) and (3). �

Corollary 6.4. If R is Noetherian then S = Y −1R is also Noetherian.
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Proof. A strictly ascending chain of ideals in S contracts to a strictly
ascending chain of ideals in Rc. �

Definition 6.5. When P is a prime ideal of R and Y = R\P we write
RP for Y −1R and call this the localization of R at P . By Corollary
6.3 RP is a local ring whose prime ideals correspond bijectively to the
prime ideals of R contained in P .

For example when R = Z and P = 2Z then Z2Z is the ring of
rational numbers with odd denominators which has a unique maximal
ideal 2Z2Z.

Proposition 6.6. Let I and J be ideals in a domain R. Suppose that
IRM ⊆ JRM for each maximal ideal M of M . Then I ⊆ J .

Proof. Suppose for the sake of contradiction that there is some a ∈ I\J
and let L := {x ∈ R | xa ⊆ J}. Then L is a proper ideal of R since
1 6∈ L and so there is some maximal ideal M of R with L ⊆ M . Now
a ∈ IRM ⊆ JRM and so a = xy−1 with x ∈ J and y 6∈ M . But then
ay = x ∈ J and so y ∈ L ⊆M , contradiction. Hence I ⊆ J . �

The above proposition is useful when we want to prove equality of
two ideals I and J of a ring R: it is sufficient to show IRM = JRM

for each maximal ideal M and the problem reduces to working in the
local ring RM which is usually much easier to understand.

7. Integrality

Let R ⊆ S be two rings.

Definition 7.1. An element x ∈ S is said to be integral over R if x is
the root of a monic polynomial with coefficients in R, that is

(2) xn + a1x
n−1 + · · ·+ an−1x+ an = 0

for some ai ∈ R.
The ring S is said to be integral over R if every element of S is

integral over R. We also say that R ⊆ S is an integral extension.

Proposition 7.2. Let x ∈ S. Then x is integral over R if and only
if there is a finitely generated R-module M ⊆ S such that 1 ∈ M and
xM ⊆M .

Proof. Suppose x is integral over R and satisfies (2). We can take
M =

∑n−1
j=0 x

jR. Conversely, if M is a finitely generated module with

xM ⊆M by Theorem 5.1 there is a monic polynomial f(t) ∈ R[t] such
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that f(x)M = {0}. Since 1 ∈M we see that f(x) = 0 and x is integral
over R. �

Definition 7.3.

(a) The integral closure of R in S is the set of all elements of S which
are integral over R.

(b) An integral domain R is said to be integrally closed if it is equal to
its integral closure in its field of fractions.

Corollary 7.4. Let C be the integral closure of R in S. Then C is a
subring of S.

Proof. Let x, y ∈ C and let n andm be the degrees of the monic polyno-
mials with roots x and y respectively. We setM :=

∑n−1
i=0

∑m−1
j=0 x

iyjR.

Then 1 ∈ M , xM ⊆ M , yM ⊆ M and so (x + y)M ⊆ M and
xyM ⊆M . Proposition 7.2 now gives that x+ y and xy ∈ C. �

Proposition 7.5. Let R ⊆ S ⊆ T be three rings such that S is integral
over R and T is integral over S. Then T is integral over R.

Proof. Let x ∈ T and let ai ∈ S such that xn+a1x
n−1+· · ·+an = 0. Let

S ′ := R[a1, . . . , an] ⊆ S. Since each ai is integral over R the argument
of Proposition 7.2 gives that S ′ is a finitely generated R-module. Let
B be a finite set of generators of S ′, so S ′ =

∑

b∈B Ra.

Now consider

M := S ′[x] =
n−1
∑

i=0

S ′xi =
n−1
∑

i=0

∑

b∈B

Rbxi.

We have 1 ∈ M , xM ⊆ M and M is generated by the finite set
∪n−1
i=0 x

iB as an R-module. So by Proposition 7.2 x is integral over R.
Therefore T is integral over R. �

When R ⊆ S is an integral extension there is a close relationship
between the prime ideals of S and the prime ideals of R.

Proposition 7.6. Let R ⊆ S be an integral extension and suppose that
S is a domain. Let I be a non-zero ideal of S. Then I ∩R 6= {0}.

Proof. Let x ∈ I\{0} and let x satisfy (2) with n minimal possible. We
can write this as xh(x) = −an where h(x) = xn−1 + · · · + an−1. Then
an 6= 0 because S is a domain and both x and h(x) are not zero. Since
x ∈ I we have an ∈ I ∩R. �
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Proposition 7.7. Let R ⊆ S be an integral extension.

(a) If S is a field then R is a field.

(b) If R is a field and S is a domain then S is a field.

(c) Let P be a prime ideal of S and let Q := R ∩ P . Then P is a
maximal ideal of S if and only if Q is a maximal ideal of R.

Proof. (a) Let x ∈ R\{0} and let x−1 ∈ S satisfy the equation

x−n + a1x
−n+1 + · · ·+ an = 0

with ai ∈ R. This gives x−1 = −(a1 + a2x + · · · + anx
n−1) and so

x−1 ∈ R.
(b) Let 0 6= x ∈ S. Then xS ∩R 6= {0} by Proposition 7.6. Since R

is a field, xS ∩R = R so 1 ∈ xS. Hence x is a unit and S is a field.

(c) We have R/Q = R/(P ∩ R) ≃ (R + P )/P ⊆ S/P . Since S is
integral over R by reducing the equation (2) modulo P we deduce that
S/P is integral extension of R/Q. Note that S/P is a domain since P
is a prime ideal of S. Now by parts (a) and (b) S/P is a field if and
only if R/Q is a field. �

Proposition 7.8. Let R ⊆ S be an integral extension. Let Q be a
prime ideal of R.

(a) There exists a prime ideal P of S such that P ∩R = Q.

(b) Suppose P1 ⊆ P2 are two prime ideals of S such that P1 ∩ R =
P2 ∩R. Then P1 = P2.

Proof. (a) Let Y = R\Q and note that Y is multiplicatively closed
subset of R; hence also of S. Choose an ideal P of S maximal subject
to the condition P ∩ Y = ∅, such an ideal P exists by Lemma 3.7.
Then P is a prime ideal of S by Problem sheet 1. From the choice of
P we have R ∩ P ⊆ Q. Suppose there exists x ∈ Q with x 6∈ P . Then
P + Sx is an ideal strictly bigger than P and therefore there exists
z ∈ (P + Sx) ∩ Y . We can write z = p + sx where p ∈ P, s ∈ S. The
element s is integral over R and therefore sn + a1s

n−1 + · · · + an = 0
for some ai ∈ R. This gives

(xs)n + a1x(xs)
n−1 + · · ·+ anx

n = 0

We have xs ≡ z mod P and and therefore

zn + a1xz
n−1 + · · ·+ anx

n ∈ P ∩R ⊆ Q.

Since x ∈ Q this implies zn ∈ Q but z 6∈ Q and Q is a prime ideal of
R, contradiction. Therefore P ∩R = Q.
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(b) Let Q := P1 ∩ R = P2 ∩ R and consider the integral extension
R/Q ⊆ S/P1. The ring S/P1 is a domain with ideal P2/P1 such that
(P2/P1) ∩ (R/Q) = Q/Q = {0}R/Q. By Proposition 7.6 we must have
that P2/P1 is the zero ideal, hence P1 = P2. �

Theorem 7.9. Let R ⊆ S be an integral extension and let Q1 < Q2 <
· · · < Qk be a chain of prime ideals of R. There exists a chain P1 <
P2 < · · · < Pk of prime ideals of S such that Pi ∩ R = Qi for i =
1, . . . , k.

Proof. We use induction on k, the case of k = 1 being Proposition
7.8(a). For the inductive step it is sufficient to prove the following:

Given prime ideals Q1 ⊆ Q2 of R and a prime ideal P1 of S with
P1∩R = Q1 then there exists a prime ideal P2 ⊇ P1 such that P2∩R =
Q2.

Let R̄ = R/Q1, S̄ = S/P1. Now Q̄2 := Q2/Q1 is a prime ideal of R̄
and S̄ is integral over R̄. By Proposition 7.8(a) there is a prime ideal
P̄2 of S̄ such that P̄2 ∩ R̄ = Q̄2.

There is a prime ideal P2 of S with P2 ⊇ P1 such that P̄2 = P2/P1

and we claim that P2 ∩ R = Q2. From the choice of P̄2 we have
(P2 ∩R) + P1 = P2 ∩ (R + P1) = Q2 + P1. Taking intersection with R
we obtain

P2 ∩R = ((P2 ∩R) + P1) ∩R = (Q2 + P1) ∩R = Q2.

This completes the induction step. �

Theorem 7.9 and Proposition 7.8 (b) together give the following.

Corollary 7.10. Let R ⊆ S be an integral extension. A strictly in-
creasing chain of prime ideals of S intersects R in a strictly increasing
chain of prime ideals of R. Conversely any strictly increasing chain of
prime ideals of R is the intersection of R with some strictly increasing
chain of prime ideals of S.

8. Krull dimension

Let F be an algebraically closed field. We want to define a notion
of dimension to every algebraic set, which generalizes the dimension of
the vector space F k.

Definition 8.1. Let V ⊆ F k be an irreducible algebraic set. The di-
mension dimV of V is the largest integer n such that there is a strictly
increasing chain

(3) ∅ 6= Vn ⊂ Vn−1 ⊂ · · · ⊂ V0 = V
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of irreducible algebraic sets Vi. More generally when V is not necessar-
ily irreducible, we set dimV to be the largest dimension of an irreducible
component of V .

For example if V = {a} is a single point in F k then dimV = 0. We
will prove later that that dimV is always finite and in fact dimV ≤ k
with equality if and only if V = F k.

Let Pi = I(Vi) where Vi are the irreducible sets of (3). Then
P0 ⊂ P1 ⊂ · · · ⊂ Pn is a strictly increasing chain of prime ideals
of the polynomial ring R = F [t1, . . . , tk]. This leads to the following
definition.

Definition 8.2. Let R be a ring. The Krull dimension of R denoted
by dimR is the largest n such that there is a chain

(4) P0 ⊂ P1 ⊂ · · · ⊂ Pn

of prime ideals Pi of R. We set dimR =∞ if no such integer n exists.

Using Proposition 1.4(4) and Proposition 3.12 we see that for an
irreducible algebraic set V ⊆ F k we have

dimV = dimF [t1, . . . , tk]/I(V ).

Proposition 8.3. If R ⊆ S is an integral extension, then

dimR = dimS.

Proof. This follows immediately from Corollary 7.10. �

A word of warning: the dimension of a Noetherian ring does not
have to be finite (see the 2015 Exam paper C2.3, Q3 for an example).

Definition 8.4. Let P be a prime ideal of a ring R. The height ht(P )
of P is defined to be the largest integer n such that there is chain

P0 ⊂ · · · ⊂ Pn = P

of prime ideals Pi terminating at P .

So dimR is the maximum of the heights of its prime ideals. It turns
out that ht(P ) < ∞ for every prime ideal P of a Noetherian ring R
but we won’t prove this here.

Our next goal will be to prove that

dimF [t1, . . . tk] = k.

We will prove a more general result about the dimension of F - algebras.
First we need more definitions.
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Definition 8.5. Let F ⊆ E be a field extension. Elements x1, . . . xk ∈
E are said to be algebraically dependent over F if there is a non-zero
polynomial f ∈ F [t1, . . . , tk] such that f(x1, . . . , xk) = 0.

We say that x1, . . . , xk are algebraically independent (also said to be
transcendental) over F if they are not algebraically dependent.

Definition 8.6. With F ⊆ E as above the set X := {x1, . . . , xn} is
a transcendence basis for E over F if X is a maximal algebraically
independent subset of E.

The notion of transcendence basis is defined even for infinite sets but
we won’t need this here. It is clear that if E = F (c1, . . . , cm) is finitely
generated as a field over F then there is a finite subsetX ⊆ {c1, . . . , cm}
which is a transcendence basis for E/F . What needs proving is the
analogue of fundamental property of bases of a vector space:

Proposition 8.7. Any two transcendence bases for E over F have the
same size.

Proof. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym} be two transcen-
dence bases for E over F , with m ≥ n; thus X and Y are algebraically
independent over F , and E is algebraic over F (X) and F (Y ). We will
prove, by induction on n = min{|X|, |Y |}, that in fact m = n. When
n = 0, E is algebraic over F (X) = F . So no element of E can be
transcendental over F , and thus Y = ∅. So m = 0 in this case.

Suppose that m ≥ n ≥ 1. Now E is algebraic over F (X), so y1 is
algebraic over F (X), so we can find g(t) ∈ F (X)[t] such that f(y1) = 0.
Consider the coefficients of g(t). These cannot all lie in F , since then
y1 would be algebraic over F . Without loss of generality, at least one of
these coefficients involves x1 ∈ X. Clearing the denominators in g(t),
we find some h(t) ∈ F [x1, . . . , xn][t] whose coefficients involve x1 such
that h(y1) = 0. Hence x1 is algebraic over L := F (y1, x2, . . . , xn).

Note that L(x1) contains F (X) and E is algebraic over F (X), so E
is algebraic over L(x1). Since x1 is algebraic over L, we see that E is
algebraic over L.

If f(y1, x2, . . . , xn) = 0 is a non-trivial polynomial relation with coef-
ficients in F , then y1 is algebraic over F (x2, . . . , xn); but then L would
be algebraic over F (x2, . . . , xn) and then E would be algebraic over
F (x2, . . . , xn) which is not the case since X is algebraically indepen-
dent over F . So, {y1, x2, . . . , xn} is algebraically independent over F .

Hence {x2, . . . , xn} and {y2, . . . , ym} are both algebraically indepen-
dent over F (y1), and E is algebraic over both F (y1)(x2, . . . , xn) and
F (y1)(y2, . . . , ym). By the inductive hypothesis applied to the subsets
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{x2, . . . , xn} and {y2, . . . , ym} of the field extension E/F (y1), we con-
clude that m = n. �

Definition 8.8. Let F ≤ E be a field extension. The transcendence
degree tr.degFE of E over F is the cardinality of a transcendence basis
for E over F .

More generally for a domain R which is a finitely generated algebra
over a field F we set tr.degFR = tr.degFE, where E is the field of
fractions of R.

The following result is very useful in simplifying many proofs by
reducing them to polynomial ring.

Theorem 8.9. [Noether Normalisation Lemma] Let R = F [y1, . . . , yn]
be a finitely generated as an algebra over a subfield F . Assume that
R is a domain. There exists a subset {x1, . . . , xk} of R which is alge-
braically independent over F , and such that R is a finitely generated
F [x1, . . . , xk]-module.

Proof. Proceed by induction on n. If n = 0 there is nothing to prove.
It will be enough to show that there is a subring A of R, generated
by n− 1 elements, such that R is a finitely generated A-module: then,
by induction, we can find {x1, . . . , xk} ⊂ A algebraic over F such that
A is finitely generated as an F [x1, . . . , xk]-module and then R is also
finitely generated as an F [x1, . . . , xk]-module.

If {y1, . . . , yn} is already algebraically independent over F , there is
nothing to prove. So, suppose that f(y1, . . . , yn) = 0 for some non-
zero f(Y1, . . . , Yn) ∈ F [Y1, . . . , Yn]. Write f =

∑

α∈S
λαY

α where S is a

finite subset of Nd, Y α := Y α1

1 · · ·Y αn
n for each α ∈ Nd, and λα ∈ F is

non-zero for each α ∈ S. Thus {Y α : α ∈ S} is the set of monomials
appearing in the polynomial f .

Choose an integer r strictly greater than maxα∈S max1≤i≤n αi. Then
it follows that the map S −→ N given by α 7→ α1 + rα2 + · · ·+ rn−1αn
is injective. For each i = 2, . . . , n define zi := yi − yri−1

1 and substitute

yi = zi + yr
i−1

1 into the relation f(y1, . . . , yn) = 0 to obtain

(5) f(y1, z2 + yr1, z3 + yr
2

1 , . . . , zn + yr
n−1

1 ) = 0.

Expand this equation out, and note that the highest degree term in y1
in the monomial

yα1

1 (z2 + yr1)
α2 · · · (zn + yr

n−1

1 )αn

is equal to y1 to the power of α1 + rα2 + · · · + rn−1αn. By our choice
of r, it follows that (5) gives a monic polynomial equation satisfied
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by y1, with coefficients in A := F [z2, . . . , zn]. For each i = 2, . . . , n,
yi = zi + y

ri−1

1 is also integral over A by Corollary 7.4. It follows that
R = F [y1, . . . , yn] is a finitely generated A-module as required. �

Proposition 8.10. Let R be a domain which is finitely generated as
an algebra over a field F . Let P be a non-zero prime ideal of R. Then
tr.degFR > tr.degFR/P .

We postpone the proof, and deduce the important corollary first.

Theorem 8.11. Let R be a domain which is finitely generated as an
algebra over its subfield F . Then dimR = tr.degFR.

Proof. By Theorem 8.9 we can find {x1, . . . xk} ⊂ R, algebraically
independent over F , such that R is integral over the subring A :=
F [x1, . . . , xk]. Note that A is a polynomial ring over F . We have
dimR = dimA by Proposition 8.3, and since the field of fractions of
R is algebraic over F (x1, . . . , xk) we have k = tr.degFR. Now consider
the chain of ideals of A

{0} = P0 ⊂ P1 ⊂ · · · ⊂ Pk,

where Pi = 〈x1, . . . , xi〉. Since A is a polynomial ring over F , each Pi
is a prime ideal of A and so dimR = dimA ≥ k.

Let {0} = P0 ⊂ P1 ⊂ · · · ⊂ Pm be a strict chain prime ideals of
R of length m. Let Ri := R/Pi, this is a domain which is a finitely
generated algebra over F and by Proposition 8.10 we have

k = tr.degFR > tr.degFR1 > · · · > tr.degFRm ≥ 0.

So tr.degFR = k ≥ m. Hence dimR = k = tr.degFR. �

Corollary 8.12. Let F be a field, and R = F [t1, . . . , tk] be a polynomial
ring. Then dimR = k.

Proof of Proposition 8.10. By Theorem 8.9, we can find {x̄1, . . . , x̄k} ⊂
R/P which is algebraically independent over F and such that R/P
is a finitely generated F [x̄1, . . . , x̄k]-module. So the field of fractions
of R/P is integral over F (x̄1, . . . , x̄k) (see Problem Sheet 4, Question
4), which implies that tr.degFR/P = k by Proposition 8.7. Choose
elements xi ∈ R such that x̄i = xi + P and note that {x1, . . . , xk} are
algebraically independent over F . Hence tr.degFR ≥ k.

Let A := F [x1, . . . , xk], a polynomial ring over F ; let Y := A − {0}
and let E := Y −1A = F (x1, . . . , xk) be the field of fractions of A.
Since R is finitely generated as an F -algebra, we can find elements
y1, . . . , yn ∈ R such that R = F [y1, . . . , yn]. Suppose for the sake
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of contradiction that tr.degFR = k. Then for each i = 1, . . . , n there
exists a non-zero polynomial gi(t) ∈ A[t] such that gi(yi) = 0. Consider
the localization S := Y −1R, which is an integral domain containing
E. Then each yi is algebraic over E, and since R = F [y1, . . . , yn]
we conclude that every element of S is algebraic over E. So, S is
a finite field extension of E. Since P is not the zero ideal in R, it
follows that Y −1P = SP = S, and therefore P ∩ Y 6= ∅. But then
P ∩ A contains a non-zero element g ∈ F [x1, . . . , xk] say, and then
g(x̄1, . . . , x̄k) = 0 gives a non-trivial algebraic relation between the
{x̄1, . . . , x̄k} with coefficients in F — a contradiction.

Therefore tr.degF R̄ < tr.degFR as claimed. �

Corollary 8.13. Let F be an algebraically closed field and let V ⊆ F k

be an algebraic set. Then dimV ≤ k, and dimV = k if and only if
V = F k.

Proof. We have I(F k) = {0} and so dimF k = dimF [t1, . . . tk] = k by
Corollary 8.12.

Now suppose V ⊂ F k is a proper algebraic set of dimension l. We
may replace V with an irreducible component and so without loss of
generality may assume that V is irreducible. Then I(V ) is a prime
ideal by Proposition 3.12 which is non-zero since V 6= F k. But then

l = dimV = dimF [t1, . . . , tk]/P < k

by Proposition 8.10. �

9. Noetherian rings of small dimension. Dedekind domains

We can apply the theory developed so far to study the Noetherian
rings of dimension 0 and 1. Recall that ideals P1, . . . , Pn in a ring R
are said to be pairwise coprime if Pi + Pj = R whenever i 6= j.

Lemma 9.1 (Chinese Remainder Theorem). Let P1, . . . , Pn be pairwise
coprime ideals in the ring R. Then

(a) the canonical ring homomorphism

R

P1 ∩ · · · ∩ Pn
−→

n
∏

i=1

R

Pi

given by (r+P1∩· · ·∩Pn) 7→ (r+P1, . . . , r+Pn), is an isomorphism,
(b) P1 · · ·Pn = P1 ∩ · · · ∩ Pn.

Proof. (a) The canonical map is injective. We prove that it is surjective
by induction on n, the case n = 1 being trivial. Let (r1, . . . , rn) ∈ Rn
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be given. By the induction hypothesis, there exists r ∈ R such that
r ≡ ri mod Pi for each i = 1, . . . , n − 1. For each i = 1, . . . , n − 1
choose xi ∈ Pi and yi ∈ Pn such that xi + yi = 1. Then

(x1 + y1)(x2 + y2) · · · (xn−1 + yn−1) = 1,

so a := x1 · · · xn−1 ≡ 1 mod Pn and a ∈ P1 ∩ · · · ∩ Pn−1. Finally,
(1−a)r+arn ≡ (1−0)r+0rn = r ≡ ri mod Pi for each i < n, whereas
(1− a)r + arn ≡ 0r + 1rn = rn mod Pn.

(b) We show by induction on n that P1 ∩ · · · ∩ Pn ⊆ P1 · · · · · Pn,
the reverse inclusion being clear. Choose a ∈ P1 ∩ · · · ∩Pn−1 such that
1−a ∈ Pn as above and let r ∈ P1∩· · ·∩Pn. Then r ∈ P1 · · · · ·Pn−1 by
induction, so r(1−a) ∈ P1·· · ··Pn, whereas a ∈ P1·· · ··Pn−1 by induction
and r ∈ Pn so ra ∈ P1 · · · · · Pn. Hence r = ra+ r(1− a) ∈ P1 · · · · · Pn
as claimed. �

Theorem 9.2. Let R be a Noetherian ring of dimension zero. Then

(a) R/nilrad(R) is isomorphic to a finite direct product of fields.
(b) R is isomorphic to a finite direct product of local rings of dimension

zero.

Proof. (a) By Proposition 3.2 R has finitely many minimal prime ideals,
say P1, . . . , Pn. By Theorem 3.6, nilrad(R) = ∩ni=1Pi. Since dimR = 0,
each Pj is a maximal ideal of R so Pi+Pj = R whenever i 6= j. Hence

R

nilradR
=

R

∩iPi
≃

n
∏

i=1

R

Pi

by Lemma 9.1(a), and each R/Pi is a field by the maximality of Pi.

(b) Since nilrad(R) is nilpotent by Corollary 3.5, there ism ∈ N with
such that

∏n
i=1 P

m
i ⊆ (P1 ∩ · · · ∩ Pn)m = {0}. Now Pm

i and Pm
j are

coprime for each i 6= j. Hence
∏n

i=1 P
m
i = ∩ni=1P

m
i = {0} by Lemma

9.1(b), and now Lemma 9.1(a) implies that

R ≃ R
∏n

i=1 P
m
i

=
R

∩ni=1P
m
i

≃
n
∏

i=1

R

Pm
i

.

Each R/Pm
i is a local ring of dimension zero. �

Conversely, a ring R such that nilradR is a nilpotent finitely gener-
ated ideal and R/nilradR is a direct product of fields, is a Noetherian
ring of dimension 0. We leave the proof as an exercise.

We now move to Noetherian rings of dimension 1.
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Recall from Definition 7.3(b) that a domain R is integrally closed if
whenever a/b is an element of the field of fractions Q of R which is
integral over R, we must have a/b ∈ R.
Definition 9.3. A Noetherian domain R is said to be a Dedekind
domain if dimR = 1 and R is integrally closed.

Clearly Z and more generally any PID is a Dedekind domain. A rich
source of Dedekind domains is provided by Algebraic Number Theory.

Let E/Q be a finite field extension of Q and let OE be the integral
closure of Z in E. Then OE is a domain and since R is integral over Z
we have dimOE = dimZ = 1 by Proposition 8.3.

Theorem 9.4. Let E/Q be a finite field extension. Then OE is finitely
generated as a Z-module, and hence is a Noetherian ring.

Proof. Omitted. See B3.4 Algebraic Number Theory for a proof. �

Thus OE is always a Dedekind domain.

An important characterisation of Dedekind domains is that their
ideals have unique factorization property.

Theorem 9.5. Let R be a Dedekind domain. Then any nonzero ideal
I is a product of prime ideals. This factorization is unique up to re-
ordering of the prime ideals.

Proof. Note that in a Dedekind domain the set of maximal ideals coin-
cides with the set of non-zero prime ideals. Now if P is a maximal ideal
of R, then the localisation RP is integrally closed by Problem Sheet 4,
Question 4 and it is Noetherian by Corollary 6.4. Hence RP is again
a Dedekind domain, but now it is a local ring. By Problem Sheet 4,
Question 6, RP is a PID, and every non-zero ideal in RP is a power of
the unique maximal ideal PP of RP .

Let I be a non-zero ideal of R. Since R is Noetherian, the set
min(I) = {P1, . . . , Pm} is finite by Theorem 3.2, so we can find ni ∈ N

such that IPi
= (Pi,Pi

)ni . Each Pi is non-zero since I is non-zero, hence
maximal. Let J := P n1

1 · · ·P nm
m ; by Proposition 6.6, to show that I = J

it is enough to check that IM = JM for every maximal ideal M of R.
If M ∈ min(I) then this holds by construction, since (P

nj

j )Pi
= RPi

whenever j 6= i. If M is a non-zero prime ideal different from any of
the Pi then I 6⊆M and so IRM = RM = JRM .

Finally, an easy localisation argument using Problem Sheet 4, Ques-
tion 6 shows that the integers ni and the prime ideals Pi are uniquely
determined by I. �
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There is a converse to Theorem 9.5: a domain all of whose ideals are
product of prime ideals is necessarily a Dedekind domain. We won’t
prove this here, instead we shall prove some other results.

Let I and J be two ideals of R. We say that I divides J if J = IT
for some ideal T of R.

Proposition 9.6. Let R be a Dedekind domain and I and J two ideals
of R. Then I divides J if and only if J ⊆ I.

Proof. If I divides J then clearly J ⊆ I. Conversely suppose J ⊆ I. We
can write J =

∏m
i=1 P

ni

i and I =
∏m

i=1 P
si
i for some integers ni, si ≥ 0

and prime ideals Pi. Then JRPi
= P ni

i RPi
⊆ P si

i RPi
= IRPi

. Therefore
ni ≥ si for each i. Let ui = ni − si and put T :=

∏m
i=1 P

ui
i . We have

IT = J and so I divides J . �

Proposition 9.7. Let R be a Dedekind domain. Then every ideal of
R can be generated by at most 2 elements.

Proof. By Problem Sheet 4 Question 6, the localisation RP is a PID for
every maximal ideal P of R. Hence every factor ring of RP is a PIR (it
might not be a domain, but at least every ideal is principal). Let n be
a positive integer and consider the ideal R∩ (PP )n. It contains P n and
is contained in P . The only such ideals are powers of P by Theorem
9.5, and since its localisation at P equals that of P n we conclude that
it must be equal to P n by Proposition 6.6. It follows that the natural
map R/P n → RP/(PP )

n is an isomorphism, so R/P n is also a PIR.
Now Theorem 9.5 together with Lemma 9.1 implies that R/J is a PIR
for every non-zero ideal J of R.

Now let I be a non-zero ideal, choose a non-zero element a ∈ I and
let J = Ra. Then R/J is a PIR by the above, so I/J = (R/J).(b+J) =
(Rb + J)/J for some b ∈ R. Hence I = Rb + J = Rb + Ra can be
generated by a and b. �
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