B2.2 Commutative Algebra, HT 2019 Problem Sheet 1

R denotes a commutative ring with 1. We assume $1 \neq 0$. 'Module' will mean 'R-module'.

- 1. Let Y be a multiplicatively closed subset of a ring R, with $0 \notin Y$. Prove that any ideal P of R maximal with respect to $P \cap Y = \emptyset$ is prime.
- 2. Let P_1, \ldots, P_n be prime ideals in a ring, and I any ideal. Show that if $I \subseteq P_1 \cup P_2 \cup \cdots \cup P_n$ then $I \subseteq P_j$ for some j.
- 3. Let $\theta: M \to N$ and $\phi: N \to M$ be module homomorphisms such that $\theta(\phi(x)) = x$ for all $x \in N$. Show that $M = \ker \theta \oplus \phi(N)$.
- 4. Let M be an extension of A by B (modules), i.e. $A \leq M$ and $M/A \cong B$.
 - (i) Show that if M is finitely generated then so is B.
 - (ii) Show that if both A and B are finitely generated then so is M. Is the converse true, in general?
 - (iii) Deduce: M is Noetherian if and only if both A and B are Noetherian.
- 5. Let F be a free module with basis X. Let B be an arbitrary module and let $\theta : X \to B$ be an arbitrary mapping. Show that there exists a unique module homomorphism $\theta^* : F \to B$ such that $\theta^*(x) = \theta(x)$ for every $x \in X$. Deduce:
 - (i) every module is a homomorphic image of a free module, and an *n*-generator module is a homomorphic image of \mathbb{R}^n ;
 - (ii) if R is Noetherian then every finitely generated R-module is Noetherian.
- 6. Let F be a free module and let $f: M \to F$ be an *epimorphism*, i.e. a surjective homomorphism. Show that there exists a homomorphism $h: F \to M$ such that $f \circ h = \text{Id}_F$.

Hint: for each $x \in X$, a basis for F, choose a pre-image of x under f.

Deduce: if $N \leq M$ and M/N is free, then N has a complement in M, i.e. there exists a submodule C of M such that $M = N \oplus C$.

- (i) Let M be a module. Show that if M is not Noetherian then M has a submodule N such that N is not finitely generated, but A is finitely generated whenever A is a submodule of M strictly containing N.
 - (ii) Prove that if every prime ideal of the ring R is finitely generated then R is Noetherian. Hint: Take M = R in (i). Then $N \ge BC$ where N < B and N < C. Note that B/BC is a Noetherian R/C-module.