B2.2 Commutative Algebra, HT 2019 Problem Sheet 3

R denotes a commutative ring with 1.

- 1. Let M be a finitely generated R-module and let J = J(R) be the Jacobson radical of R. Prove that if M = JM then M = 0. Is this true if M is not finitely generated?
- 2. (i) Prove that an integral extension of a Jacobson ring is Jacobson.
 - (ii) Prove that the polynomial ring F[t] over a field F is Jacobson.
 - (iii) Find a principal ideal domain R such that $J(R) \neq 0$. Can you complete the sentence: A principal ideal domain is a Jacobson ring if and only if ...?
- 3. Show that the maps c and e from Proposition 6.2 respect inclusions and finite intersections of ideals, and that e respects sums. Does the map c respect sums?
- 4. (i) Let $f(t_1, ..., t_n)$ be a polynomial over a field F. Suppose there exist infinite subsets $X_1, ..., X_n$ of F such that $f(x_1, ..., x_n) = 0$ for all $(x_1, ..., x_n) \in X_1 \times \cdots \times X_n$. Prove that f is the zero polynomial.
 - (ii) Let U be an algebraic set in F^n and V an algebraic set in F^m . Show that $U \times V$ is an algebraic set in F^{n+m} .
 - (iii) Let U be an algebraic set in F^n . A subset X of U is dense in U if U is the smallest algebraic set that contains X. Show that if X is a dense subset of U and Y is a dense subset of V then $X \times Y$ is dense in $U \times V$. How does this relate to (i)?
- 5. (i) Let M be a finitely generated R-module and $\phi: M \to M$ a module endomorphism. Prove that if ϕ is surjective then it is an isomorphism.
 - *Hint:* Consider M as an R[t]-module where t acts as ϕ .
 - (ii) Let $F = \mathbb{R}^d$ be a free module and Y a generating set for F. Prove that if $|Y| \leq d$ then Y is a basis and |Y| = d.
- 6. A module M is said to have length $\lambda(M) = n$ if there is a chain of submodules

$$0 = M_0 < M_1 < \dots < M_n = M$$

and n is maximal; we say $\lambda(M) = \infty$ if there is no such maximal integer n.

- (i) Prove that length is additive on extensions of modules, i.e. if N is a submodule of M then $\lambda(M) = \lambda(N) + \lambda(M/N)$.
- (ii) Suppose that M is a Noetherian R-module and that $P^kM=0$ for some maximal ideal P of R and some integer k. Show that M has finite length.