The aim of this sheet is to highlight some useful results and arguments in combinatorics. The problems make use of a small amount of graph theory, but everything required can be found in the subsection on Hall's theorem in Section 7 of the Part B Graph Theory notes. There will not be tutorials on this problem sheet, but complete solutions are available on the course webpage. All graphs below are assumed to be finite.
Remark: The combinatorics course is essentially self-contained, so do not feel put off if there is notation below which you haven't encountered before.

1. Let G be a bipartite graph with bipartition (A, B). Suppose also that every vertex in G has the same degree $d>0$.
(a) Show that $|A|=|B|$.
(b) Look up Hall's theorem. Use this result to prove that G contains a complete matching.
(c) Show that the edge set of G can be partitioned into d edge disjoint complete matchings.
2. Let $[n]^{(i)}:=\{A \subset\{1, \ldots, n\}:|A|=i\}$ and suppose that $i<n / 2$. Prove that for each $A \in[n]^{(i)}$ we can choose a set $B_{A} \in[n]^{(i+1)}$ so that $A \subset B_{A}$ for all A and such that the sets $\left\{B_{A}\right\}_{A}$ are all distinct.
3. Let G be a bipartite graph with bipartition (A, B) which contains a complete matching from A to B. Prove that there is $a \in A$ such that every edge $a b \in E(G)$ lies in a complete matching from A to B.
Hint: Read the 'direct proof' of Hall's theorem in the Part B notes.
4. Let $\mathcal{P}[n]$ denote the power set of $[n]:=\{1, \ldots n\}$.
(a) Prove that $|\mathcal{P}[n]|=2^{n}$.
(b) Suppose a set $A \in \mathcal{P}[n]$ is selected uniformly at random. Let X denote the random variable given by $X(A):=|A|$. Prove that $\mathbb{E}(X)=n / 2$ and $\operatorname{Var}(X)=n / 4$.
(c) Use Chebyshev's inequality and (b) to show that given $\epsilon>0$ there is $C>0$ such that $(1-\epsilon) 2^{n}$ sets $A \subset[n]$ satisfy $\left||A|-\frac{n}{2}\right| \leq C \sqrt{n}$.
