MFoCS questions should be done by MFoCS students, although everyone is encouraged to try them; we may not have time to go through them in classes. Questions (or parts of questions) marked with a + sign are intended as a challenge for enthusiasts: we will not go through them in classes!

1. Let $\mathcal{A} \subset \mathcal{P}(n)$ be an upset and $\mathcal{B} \subset \mathcal{P}(n)$ be a downset. Prove that $|\mathcal{A} \cap \mathcal{B}| \leq 2^{-n}|\mathcal{A}| \cdot|\mathcal{B}|$.
2. Deduce the LYM inequality follows from the Two Families Theorem.
3. (a) Let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$ be an intersecting set system. Must there be a finite set A such that $\{F \cap A: F \in \mathcal{F}\}$ is an intersecting system?
(b) What if $\mathcal{F} \subset \mathbb{N}^{(r)}$?
4. A sunflower is a sequence F_{1}, \ldots, F_{k} of sets such that for some set S, and all $i<j$,

$$
F_{i} \cap F_{j}=S
$$

Let $r, s \geq 1$. Prove that there is $m=m(r, s)$ such that every sequence of m sets from $\mathbb{N}^{(r)}$ has a subsequence of length s that forms a sunflower.
[Bonus question: explain the term sunflower by means of a nice picture.]
5. The i-compression operator π_{i} is defined by $\pi_{i}(A)=A \backslash\{i\}$ and, for a set system \mathcal{A},

$$
\pi_{i}(\mathcal{A})=\left\{\pi_{i}(A): A \in \mathcal{A}\right\} \cup\left\{A \in \mathcal{A}: \pi_{i}(A) \in \mathcal{A}\right\}
$$

Let $\mathcal{F} \subset \mathcal{P}(n)$ be a set system and $\mathcal{A}=\pi_{i}(\mathcal{F})$ for some $i \in[n]$. Show that $\operatorname{tr}_{\mathcal{A}}(S) \leq \operatorname{tr}_{\mathcal{F}}(S)$ for every $S \subset[n]$.
6. Let \mathcal{F} be the collection of all convex sets in \mathbb{R}^{2}. Show that \mathcal{F} does not have bounded VC-dimension.
7. Let $\mathcal{F} \subset \mathcal{P}(X)$. The dual system \mathcal{F}^{*} has vertex set \mathcal{F}, and for each $x \in X$, there is an edge $\{F \in \mathcal{F}: x \in F\}$ (we ignore duplicate edges). Prove that for every positive integer d there is a constant $f(d)$ such that if \mathcal{F} has VC-dimension at most d then \mathcal{F}^{*} has VC-dimension at most $f(d)$.
8. Suppose that $\mathcal{F}_{1}, \ldots, \mathcal{F}_{s} \subset \mathcal{P}(n)$ are intersecting families. Prove that $\left|\mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{s}\right| \leq 2^{n}-2^{n-s}$.
9. A function $f: \mathcal{P}(n) \rightarrow \mathbb{R}$ is monotone increasing if $f(A) \leq f(B)$ whenever $A \subset B$. Prove that if f and g are nonnegative, monotone increasing functions on $\mathcal{P}(n)$ then

$$
\sum_{A \subset[n]} f(A) g(A) \geq 2^{-n} \sum_{A \subset[n]} f(A) \sum_{A \subset[n]} g(A)
$$

10. (MFoCS) Let $\mathcal{F} \subset \mathcal{P}(\mathbb{N})$ be the set system $\left\{N_{k}: k \in \mathbb{N}\right\}$, where $N_{k}=$ $\{k, 2 k, 3 k, \ldots\}$. Does \mathcal{F} have bounded VC-dimension?
11. ${ }^{+}$Let \mathcal{F} be the collection of all half-spaces in \mathbb{R}^{k}. Show that \mathcal{F} has bounded VC-dimension. Can you determine the VC-dimension exactly?
12. ${ }^{+}$At a road junction there are n three-position switches that control the red-orange-green position of the traffic light. Whenever the positions of all switches are changed, the colour of the light changes. Prove that the colour of the light is actually controlled by only one switch.
