Combinatorics C8.3 Problem 0 solutions EL MT2018

The aim of this sheet is to highlight some useful results and arguments in
combinatorics. The problems make use of a small amount of graph theory,
but everything required can be found in the subsection on Hall’s theorem
in Section 7 of the Part B Graph Theory notes. There will not be tutorials
on this problem sheet, but complete solutions are available on the course
webpage. All graphs below are assumed to be finite.

Remark: The combinatorics course is essentially self-contained, so do not
feel put off if there is notation below which you haven’t encountered before.

1. Let G be a bipartite graph with bipartition (A, B). Suppose also that
every vertex in G has the same degree d > 0.

(a) Show that |A| = |B.

(b) Look up Hall’s theorem. Use this result to prove that G contains
a complete matching.

(c) Show that the edge set of G can be partitioned into d edge disjoint
complete matchings.

Solution: For part (a), note that since G is bipartite we can count the edges
of G by summing the degrees in either A or B. This gives

dAl = da(a) = e(G) =) _da(b) = d|B].
acA beB
As d > 0 this implies |A| = | B].
(b) Given S C Alet I'(S) := {b € B : ab € E(G) for some a € S} C B. By

Hall’s theorem in order to prove G has a complete matching from A to B it is
enough to show that |I'(S)| > |S]| for all S C A. To see this, we will estimate
edges between S and I'(S) in two ways; this technique is often referred to as
‘double counting’. Note that

d|S| = |{(a,b) € S x T(S) : ab € E(G)}| < d|T(S)].

The equality holds as each a € S has all dg(a) = d neighbours in I'(S) and
the inequality holds since each b € I'(S) has at most dg(b) = d neighbours
in S. Dividing by d we see that the conditions of Hall’s theorem hold for G.


https://courses.maths.ox.ac.uk/node/view_material/36561

(¢) By induction on d. If d = 1 then the edges of G form a complete matching.
We will prove the result for d > 2 assuming by induction that it holds for
smaller degree. From (b) there is a complete matching M in G. Let G’
denote the graph obtained from G by deleting the edges of M. All vertices
in G’ have degree d — 1 and so the edges of G’ can be partitioned into d — 1
complete matching My, ..., My_;. Combined with M this gives the required
partition.

2. Let [n]® := {A C {1,...,n} : |A] = i} and suppose that i < n/2.
Prove that for each A € [ ](i) we can choose a set B, € [n]0V) so that
A C By for all A and such that the sets {Ba}4 are all distinct.

Solution: Consider the bipartite graph G with bipartition ([n]®, [n]¢*V) in
which AB € E(G) if A C B. The question is equivalent to proving that G
contains a complete matching from [n]® to [n]*Y. By Hall’s theorem such
a matching exists provided |[['(S)| > |S| for every S C [n]®). We will prove
this again by double counting the edges of G between S and I'(S).

First note that each A € [n]® has exactly n — i neighbours in G, one for
each set AU{a'} with @’ € [n]\ A. On the other hand, every vertex B € T'(.5)
has at most |B| = i 4+ 1 neighbours in [n]®, one for each B — {b}. It follows
that

S|(n— i) =Y da(A) =ea(S,T(S)) < Y |B] = (i+ 1|IT(S)|.
AeS BeT(S)

Since i < n/2 this gives |T'(S)| > (£2£)|I'(S)| > |S]. Thus the conditions of
Hall’s theorem are satisfied and so the required matching exists.

3. Let G be a bipartite graph with bipartition (A, B) which contains a
complete matching from A to B. Prove that there is a € A such that
every edge ab € E(G) lies in a complete matching from A to B.

Hint: Read the ‘direct proof’ of Hall’s theorem in the Part B notes.

Solution: As indicated in the hint, this solution is based on the ‘direct proof’
of Hall’s theorem in the Graph Theory Part B notes. While the main idea is
small modification of this proof, for completeness I've included all details.

We will prove the statement by induction on |A|. When |A| = 1 it is
immediate, so we will assume |A| > 2 and that the result holds for all smaller



graphs. Since G has a complete matching from A to B, Hall’s condition is
satisfied for G (as it is necessary condition). Thus [['(S)| > |S| for all S C A.

First suppose that
TS = 151+ 1, (1)

for all @ # S C A. In this case we prove more: every edge ab € E(G)
is contained in a complete matching. To see this, let G’ denote the graph
obtained from G by deleting the vertices a and b and all edges adjacent to
these vertices. Then G’ satisfies Hall’s condition since for any (§ # S € A"\{a}
we have [IV(S)| > |T'(S)|—[{b}| = (|S|+1)—1 = |S], by [{). Thus G’ contains
a complete matching M’ from A\ {a} to B\ {b}. Combined with the edge
ab, this gives a complete matching M from A to B containing the edge ab.

Suppose now instead that |T'(S)| = |S| for some @ # S C A. Let Gy
denote the induced bipartite subgraph of G' with bipartition (S,I'(S)). This
graph satisfies Hall’s conditions (since G does) and so by induction there is
a € S so that every ab € E(Gy) appears in a complete matching M; in G.

Claim: The vertex a also works for G.

To see this, take any ab € E(G). As a € S, the neighbourhood of a is
contained in I'(S) and so ab € E(G;). Let M; be a complete matching in
(G containing ab. To complete the proof it is now enough to show that M,
can be extended to a complete matching M of G from A to B.

To see this, let G5 be the induced subgraph of G which has bipartition
(A\ S,B\T(S)). For any S’ C A\ S we have
Py (9] = [Fa(S"US)| = [Ta(S)| = [S"U S| = [S] =15

Thus Hall’s condition holds for Gy. By induction G5 contains a complete
matching My from A\ S to B\ T'(S). Setting M := M; U M, then gives a
complete matching from A to B which contains M1, as required.

4. Let P[n| denote the power set of [n] := {1,...n}.

(a) Prove that |P[n]| = 2".

(b) Select a set A € P[n] uniformly at random. Let X denote the
random variable given by X(A) := |A|. Prove that E(X) = n/2
and Var(X) =n/4.



(¢) Use Chebyshev’s inequality and (b) to show that given ¢ > 0
there is C' > 0 such that (1 —€)2" sets A C {1,...,n} satisfy

14— 2| < Oym
Solution. (a) The map which sends the vector (z1,...,2,) € {0,1}" to the
set {i € [n] : x; = 1} € P[n] is a bijection, and so |P[n]| = [{0,1}"| = 2".

To see (b), note that X can be written as a sum of indicator random variables
X =3 e Xi, where X;(A) =11ifi € A and X;(A) = 01if i ¢ A. We have
E(X;) =P(i € A) = 3 for each i € [n] and so linearity of expectation gives

=E(Q_ X)=) E(X)=
1€[n] i€[n]
To see the variance calculation recall that

Var(X) = E(X?) — ( Y x> X, )

i€[n] J€[n]
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Here we used E(X?) = E(X;) = 1 and E(X;X;) =P(i,j € A) = § for i # j.
For (c) note that for any ¢ > 0 by Chebyshev’s inequality we have

P(UAV —g\ 2t> :P(\X—E(X)| zt) < V%gX) - %.

If we set t = Cn'/? where C' = ¢ /2/2 then gives P(||A| — 2| > t) < e.
Since the sets were selected uniformly at random, this is equivalent to the
statement that at most e2" sets A € P[n] satisfy [|A| — 2| > ¢.



