
Combinatorics C8.3 Problem 0 solutions EL MT2018

The aim of this sheet is to highlight some useful results and arguments in
combinatorics. The problems make use of a small amount of graph theory,
but everything required can be found in the subsection on Hall’s theorem
in Section 7 of the Part B Graph Theory notes. There will not be tutorials
on this problem sheet, but complete solutions are available on the course
webpage. All graphs below are assumed to be finite.

Remark: The combinatorics course is essentially self-contained, so do not
feel put off if there is notation below which you haven’t encountered before.

1. Let G be a bipartite graph with bipartition (A,B). Suppose also that
every vertex in G has the same degree d > 0.

(a) Show that |A| = |B|.
(b) Look up Hall’s theorem. Use this result to prove that G contains

a complete matching.

(c) Show that the edge set of G can be partitioned into d edge disjoint
complete matchings.

Solution: For part (a), note that since G is bipartite we can count the edges
of G by summing the degrees in either A or B. This gives

d|A| =
∑

a∈A

dG(a) = e(G) =
∑

b∈B

dG(b) = d|B|.

As d > 0 this implies |A| = |B|.
(b) Given S ⊂ A let Γ(S) := {b ∈ B : ab ∈ E(G) for some a ∈ S} ⊂ B. By
Hall’s theorem in order to prove G has a complete matching from A to B it is
enough to show that |Γ(S)| ≥ |S| for all S ⊂ A. To see this, we will estimate
edges between S and Γ(S) in two ways; this technique is often referred to as
‘double counting’. Note that

d|S| =
∣

∣{(a, b) ∈ S × Γ(S) : ab ∈ E(G)}
∣

∣ ≤ d|Γ(S)|.

The equality holds as each a ∈ S has all dG(a) = d neighbours in Γ(S) and
the inequality holds since each b ∈ Γ(S) has at most dG(b) = d neighbours
in S. Dividing by d we see that the conditions of Hall’s theorem hold for G.
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(c) By induction on d. If d = 1 then the edges of G form a complete matching.
We will prove the result for d ≥ 2 assuming by induction that it holds for
smaller degree. From (b) there is a complete matching M in G. Let G′

denote the graph obtained from G by deleting the edges of M. All vertices
in G′ have degree d− 1 and so the edges of G′ can be partitioned into d− 1
complete matchingM1, . . . ,Md−1. Combined withM this gives the required
partition.

2. Let [n](i) :=
{

A ⊂ {1, . . . , n} : |A| = i
}

and suppose that i < n/2.

Prove that for each A ∈ [n](i) we can choose a set BA ∈ [n](i+1) so that
A ⊂ BA for all A and such that the sets {BA}A are all distinct.

Solution: Consider the bipartite graph G with bipartition ([n](i), [n](i+1)) in
which AB ∈ E(G) if A ⊂ B. The question is equivalent to proving that G
contains a complete matching from [n](i) to [n](i+1). By Hall’s theorem such
a matching exists provided |Γ(S)| ≥ |S| for every S ⊂ [n](i). We will prove
this again by double counting the edges of G between S and Γ(S).

First note that each A ∈ [n](i) has exactly n− i neighbours in G, one for
each set A∪{a′} with a′ ∈ [n]\A. On the other hand, every vertex B ∈ Γ(S)
has at most |B| = i+ 1 neighbours in [n](i), one for each B − {b}. It follows
that

|S|(n− i) =
∑

A∈S

dG(A) = eG(S,Γ(S)) ≤
∑

B∈Γ(S)

|B| = (i+ 1)||Γ(S)|.

Since i < n/2 this gives |Γ(S)| ≥
(

i+1
n−i

)

|Γ(S)| ≥ |S|. Thus the conditions of
Hall’s theorem are satisfied and so the required matching exists.

3. Let G be a bipartite graph with bipartition (A,B) which contains a
complete matching from A to B. Prove that there is a ∈ A such that
every edge ab ∈ E(G) lies in a complete matching from A to B.

Hint: Read the ‘direct proof’ of Hall’s theorem in the Part B notes.

Solution: As indicated in the hint, this solution is based on the ‘direct proof’
of Hall’s theorem in the Graph Theory Part B notes. While the main idea is
small modification of this proof, for completeness I’ve included all details.

We will prove the statement by induction on |A|. When |A| = 1 it is
immediate, so we will assume |A| ≥ 2 and that the result holds for all smaller



graphs. Since G has a complete matching from A to B, Hall’s condition is
satisfied for G (as it is necessary condition). Thus |Γ(S)| ≥ |S| for all S ⊂ A.

First suppose that
|Γ(S)| ≥ |S|+ 1, (1)

for all ∅ 6= S ( A. In this case we prove more: every edge ab ∈ E(G)
is contained in a complete matching. To see this, let G′ denote the graph
obtained from G by deleting the vertices a and b and all edges adjacent to
these vertices. ThenG′ satisfies Hall’s condition since for any ∅ 6= S ⊂ A′\{a}
we have |Γ′(S)| ≥ |Γ(S)|−|{b}| ≥ (|S|+1)−1 = |S|, by (1). Thus G′ contains
a complete matching M′ from A \ {a} to B \ {b}. Combined with the edge
ab, this gives a complete matching M from A to B containing the edge ab.

Suppose now instead that |Γ(S)| = |S| for some ∅ 6= S ( A. Let G1

denote the induced bipartite subgraph of G with bipartition (S,Γ(S)). This
graph satisfies Hall’s conditions (since G does) and so by induction there is
a ∈ S so that every ab ∈ E(G1) appears in a complete matching M1 in G1.

Claim: The vertex a also works for G.

To see this, take any ab ∈ E(G). As a ∈ S, the neighbourhood of a is
contained in Γ(S) and so ab ∈ E(G1). Let M1 be a complete matching in
G1 containing ab. To complete the proof it is now enough to show that M1

can be extended to a complete matching M of G from A to B.

To see this, let G2 be the induced subgraph of G which has bipartition
(

A \ S,B \ Γ(S)
)

. For any S ′ ⊂ A \ S we have

|ΓG2
(S ′)| ≥ |ΓG(S

′ ∪ S)| − |ΓG(S)| ≥ |S ′ ∪ S| − |S| = |S ′|.

Thus Hall’s condition holds for G2. By induction G2 contains a complete
matching M2 from A \ S to B \ Γ(S). Setting M := M1 ∪M2 then gives a
complete matching from A to B which contains M1, as required.

4. Let P [n] denote the power set of [n] := {1, . . . n}.

(a) Prove that |P [n]| = 2n.

(b) Select a set A ∈ P [n] uniformly at random. Let X denote the
random variable given by X(A) := |A|. Prove that E(X) = n/2
and Var(X) = n/4.



(c) Use Chebyshev’s inequality and (b) to show that given ǫ > 0
there is C > 0 such that (1 − ǫ)2n sets A ⊂ {1, . . . , n} satisfy
∣

∣|A| − n
2

∣

∣ ≤ C
√
n.

Solution. (a) The map which sends the vector (x1, . . . , xn) ∈ {0, 1}n to the
set {i ∈ [n] : xi = 1} ∈ P [n] is a bijection, and so |P [n]| = |{0, 1}n| = 2n.

To see (b), note that X can be written as a sum of indicator random variables
X =

∑

i∈[n] Xi, where Xi(A) = 1 if i ∈ A and Xi(A) = 0 if i /∈ A. We have

E(Xi) = P(i ∈ A) = 1
2
for each i ∈ [n] and so linearity of expectation gives

E(X) = E(
∑

i∈[n]

Xi) =
∑

i∈[n]

E(Xi) =
n

2
.

To see the variance calculation recall that

Var(X) = E(X2)− E(X)2 = E
(

(
∑

i∈[n]

Xi)(
∑

j∈[n]

Xj)
)

− n2

4

=
∑

i∈[n]

E
(

X2
i

)

+
∑

i,j∈[n]:i 6=j

E
(

XiXj

)

− n2

4

= n · 1
2
+ n(n− 1) · 1

4
− n2

4
=

n

4
.

Here we used E(X2
i ) = E(Xi) =

1
2
and E(XiXj) = P(i, j ∈ A) = 1

4
for i 6= j.

For (c) note that for any t > 0 by Chebyshev’s inequality we have

P
(

∣

∣|A| − n

2

∣

∣ ≥ t
)

= P
(

∣

∣X − E(X)
∣

∣ ≥ t
)

≤ Var(X)

t2
=

n

4t2
.

If we set t = Cn1/2 where C = ǫ−1/2/2 then gives P
(∣

∣|A| − n
2

∣

∣ ≥ t
)

≤ ǫ.
Since the sets were selected uniformly at random, this is equivalent to the
statement that at most ǫ2n sets A ∈ P [n] satisfy

∣

∣|A| − n
2

∣

∣ ≥ t.


