The aim of this sheet is to highlight some useful results and arguments in combinatorics. The problems make use of a small amount of graph theory, but everything required can be found in the subsection on Hall's theorem in Section 7 of the Part B Graph Theory notes. There will not be tutorials on this problem sheet, but complete solutions are available on the course webpage. All graphs below are assumed to be finite.
Remark: The combinatorics course is essentially self-contained, so do not feel put off if there is notation below which you haven't encountered before.

1. Let G be a bipartite graph with bipartition (A, B). Suppose also that every vertex in G has the same degree $d>0$.
(a) Show that $|A|=|B|$.
(b) Look up Hall's theorem. Use this result to prove that G contains a complete matching.
(c) Show that the edge set of G can be partitioned into d edge disjoint complete matchings.

Solution: For part (a), note that since G is bipartite we can count the edges of G by summing the degrees in either A or B. This gives

$$
d|A|=\sum_{a \in A} d_{G}(a)=e(G)=\sum_{b \in B} d_{G}(b)=d|B| .
$$

As $d>0$ this implies $|A|=|B|$.
(b) Given $S \subset A$ let $\Gamma(S):=\{b \in B: a b \in E(G)$ for some $a \in S\} \subset B$. By Hall's theorem in order to prove G has a complete matching from A to B it is enough to show that $|\Gamma(S)| \geq|S|$ for all $S \subset A$. To see this, we will estimate edges between S and $\Gamma(S)$ in two ways; this technique is often referred to as 'double counting'. Note that

$$
d|S|=|\{(a, b) \in S \times \Gamma(S): a b \in E(G)\}| \leq d|\Gamma(S)| .
$$

The equality holds as each $a \in S$ has all $d_{G}(a)=d$ neighbours in $\Gamma(S)$ and the inequality holds since each $b \in \Gamma(S)$ has at most $d_{G}(b)=d$ neighbours in S. Dividing by d we see that the conditions of Hall's theorem hold for G.
(c) By induction on d. If $d=1$ then the edges of G form a complete matching. We will prove the result for $d \geq 2$ assuming by induction that it holds for smaller degree. From (b) there is a complete matching \mathcal{M} in G. Let G^{\prime} denote the graph obtained from G by deleting the edges of \mathcal{M}. All vertices in G^{\prime} have degree $d-1$ and so the edges of G^{\prime} can be partitioned into $d-1$ complete matching $\mathcal{M}_{1}, \ldots, \mathcal{M}_{d-1}$. Combined with \mathcal{M} this gives the required partition.
2. Let $[n]^{(i)}:=\{A \subset\{1, \ldots, n\}:|A|=i\}$ and suppose that $i<n / 2$. Prove that for each $A \in[n]^{(i)}$ we can choose a set $B_{A} \in[n]^{(i+1)}$ so that $A \subset B_{A}$ for all A and such that the sets $\left\{B_{A}\right\}_{A}$ are all distinct.

Solution: Consider the bipartite graph G with bipartition $\left([n]^{(i)},[n]^{(i+1)}\right)$ in which $A B \in E(G)$ if $A \subset B$. The question is equivalent to proving that G contains a complete matching from $[n]^{(i)}$ to $[n]^{(i+1)}$. By Hall's theorem such a matching exists provided $|\Gamma(S)| \geq|S|$ for every $S \subset[n]^{(i)}$. We will prove this again by double counting the edges of G between S and $\Gamma(S)$.

First note that each $A \in[n]^{(i)}$ has exactly $n-i$ neighbours in G, one for each set $A \cup\left\{a^{\prime}\right\}$ with $a^{\prime} \in[n] \backslash A$. On the other hand, every vertex $B \in \Gamma(S)$ has at most $|B|=i+1$ neighbours in $[n]^{(i)}$, one for each $B-\{b\}$. It follows that

$$
|S|(n-i)=\sum_{A \in S} d_{G}(A)=e_{G}(S, \Gamma(S)) \leq \sum_{B \in \Gamma(S)}|B|=(i+1)| | \Gamma(S) \mid
$$

Since $i<n / 2$ this gives $|\Gamma(S)| \geq\left(\frac{i+1}{n-i}\right)|\Gamma(S)| \geq|S|$. Thus the conditions of Hall's theorem are satisfied and so the required matching exists.
3. Let G be a bipartite graph with bipartition (A, B) which contains a complete matching from A to B. Prove that there is $a \in A$ such that every edge $a b \in E(G)$ lies in a complete matching from A to B.
Hint: Read the 'direct proof' of Hall's theorem in the Part B notes.
Solution: As indicated in the hint, this solution is based on the 'direct proof' of Hall's theorem in the Graph Theory Part B notes. While the main idea is small modification of this proof, for completeness I've included all details.

We will prove the statement by induction on $|A|$. When $|A|=1$ it is immediate, so we will assume $|A| \geq 2$ and that the result holds for all smaller
graphs. Since G has a complete matching from A to B, Hall's condition is satisfied for G (as it is necessary condition). Thus $|\Gamma(S)| \geq|S|$ for all $S \subset A$.

First suppose that

$$
\begin{equation*}
|\Gamma(S)| \geq|S|+1 \tag{1}
\end{equation*}
$$

for all $\emptyset \neq S \subsetneq A$. In this case we prove more: every edge $a b \in E(G)$ is contained in a complete matching. To see this, let G^{\prime} denote the graph obtained from G by deleting the vertices a and b and all edges adjacent to these vertices. Then G^{\prime} satisfies Hall's condition since for any $\emptyset \neq S \subset A^{\prime} \backslash\{a\}$ we have $\left|\Gamma^{\prime}(S)\right| \geq|\Gamma(S)|-|\{b\}| \geq(|S|+1)-1=|S|$, by (11). Thus G^{\prime} contains a complete matching \mathcal{M}^{\prime} from $A \backslash\{a\}$ to $B \backslash\{b\}$. Combined with the edge $a b$, this gives a complete matching \mathcal{M} from A to B containing the edge $a b$.

Suppose now instead that $|\Gamma(S)|=|S|$ for some $\emptyset \neq S \subsetneq A$. Let G_{1} denote the induced bipartite subgraph of G with bipartition $(S, \Gamma(S))$. This graph satisfies Hall's conditions (since G does) and so by induction there is $a \in S$ so that every $a b \in E\left(G_{1}\right)$ appears in a complete matching \mathcal{M}_{1} in G_{1}.
Claim: The vertex a also works for G.
To see this, take any $a b \in E(G)$. As $a \in S$, the neighbourhood of a is contained in $\Gamma(S)$ and so $a b \in E\left(G_{1}\right)$. Let \mathcal{M}_{1} be a complete matching in G_{1} containing $a b$. To complete the proof it is now enough to show that \mathcal{M}_{1} can be extended to a complete matching \mathcal{M} of G from A to B.

To see this, let G_{2} be the induced subgraph of G which has bipartition $(A \backslash S, B \backslash \Gamma(S))$. For any $S^{\prime} \subset A \backslash S$ we have

$$
\left|\Gamma_{G_{2}}\left(S^{\prime}\right)\right| \geq\left|\Gamma_{G}\left(S^{\prime} \cup S\right)\right|-\left|\Gamma_{G}(S)\right| \geq\left|S^{\prime} \cup S\right|-|S|=\left|S^{\prime}\right| .
$$

Thus Hall's condition holds for G_{2}. By induction G_{2} contains a complete matching \mathcal{M}_{2} from $A \backslash S$ to $B \backslash \Gamma(S)$. Setting $\mathcal{M}:=\mathcal{M}_{1} \cup \mathcal{M}_{2}$ then gives a complete matching from A to B which contains \mathcal{M}_{1}, as required.
4. Let $\mathcal{P}[n]$ denote the power set of $[n]:=\{1, \ldots n\}$.
(a) Prove that $|\mathcal{P}[n]|=2^{n}$.
(b) Select a set $A \in \mathcal{P}[n]$ uniformly at random. Let X denote the random variable given by $X(A):=|A|$. Prove that $\mathbb{E}(X)=n / 2$ and $\operatorname{Var}(X)=n / 4$.
(c) Use Chebyshev's inequality and (b) to show that given $\epsilon>0$ there is $C>0$ such that $(1-\epsilon) 2^{n}$ sets $A \subset\{1, \ldots, n\}$ satisfy $\left||A|-\frac{n}{2}\right| \leq C \sqrt{n}$.

Solution. (a) The map which sends the vector $\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$ to the set $\left\{i \in[n]: x_{i}=1\right\} \in \mathcal{P}[n]$ is a bijection, and so $|\mathcal{P}[n]|=\left|\{0,1\}^{n}\right|=2^{n}$.

To see (b), note that X can be written as a sum of indicator random variables $X=\sum_{i \in[n]} X_{i}$, where $X_{i}(A)=1$ if $i \in A$ and $X_{i}(A)=0$ if $i \notin A$. We have $\mathbb{E}\left(X_{i}\right)=\mathbb{P}(i \in A)=\frac{1}{2}$ for each $i \in[n]$ and so linearity of expectation gives

$$
\mathbb{E}(X)=\mathbb{E}\left(\sum_{i \in[n]} X_{i}\right)=\sum_{i \in[n]} \mathbb{E}\left(X_{i}\right)=\frac{n}{2}
$$

To see the variance calculation recall that

$$
\begin{aligned}
\mathbb{V a r}(X)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)^{2} & =\mathbb{E}\left(\left(\sum_{i \in[n]} X_{i}\right)\left(\sum_{j \in[n]} X_{j}\right)\right)-\frac{n^{2}}{4} \\
& =\sum_{i \in[n]} \mathbb{E}\left(X_{i}^{2}\right)+\sum_{i, j \in[n]: i \neq j} \mathbb{E}\left(X_{i} X_{j}\right)-\frac{n^{2}}{4} \\
& =n \cdot \frac{1}{2}+n(n-1) \cdot \frac{1}{4}-\frac{n^{2}}{4}=\frac{n}{4} .
\end{aligned}
$$

Here we used $\mathbb{E}\left(X_{i}^{2}\right)=\mathbb{E}\left(X_{i}\right)=\frac{1}{2}$ and $\mathbb{E}\left(X_{i} X_{j}\right)=\mathbb{P}(i, j \in A)=\frac{1}{4}$ for $i \neq j$.
For (c) note that for any $t>0$ by Chebyshev's inequality we have

$$
\mathbb{P}\left(\left||A|-\frac{n}{2}\right| \geq t\right)=\mathbb{P}(|X-\mathbb{E}(X)| \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}}=\frac{n}{4 t^{2}}
$$

If we set $t=C n^{1 / 2}$ where $C=\epsilon^{-1 / 2} / 2$ then gives $\mathbb{P}\left(\left||A|-\frac{n}{2}\right| \geq t\right) \leq \epsilon$. Since the sets were selected uniformly at random, this is equivalent to the statement that at most $\epsilon 2^{n}$ sets $A \in \mathcal{P}[n]$ satisfy $\left||A|-\frac{n}{2}\right| \geq t$.

