Combinatorics C8.3 — Problem sheet 4 solutions

1. Show that, for some ¢ > 1 and every n > 3, there is a family F C P[n] of size at least "
such that every set in F has odd size, and the intersection of any two distinct sets from

F has odd size.
Set m = [n/2] —1>n/4 asn > 3. We take
Fi={(Ues {20 —1,2i}) U{2m + 1} : S C [m]}.
Then |F| = 2™ > 2"/4 and all sets and their intersections are odd.
2. Let A, B C P[n] be two set systems such that |[AN B| is even for all A € A and B € B.

Prove that |A| - |B| < 2". Can you describe the pairs A, B for which we have equality?
(Hint: Show that if A, A" € A then we may assume AAA" € A.)

We may assume A and B are maximal subject to the condition that |A N B| is even for
all A€ A and B € B. Then for all A, A" € A we have AAA" € A, as for B € B we have

(AAA'YNB| = |ANB|+|A'NB|—2/(ANA)AB|=0 mod 2.

Similarly BAB' € B for all B, B' € B.

View the characteristic vectors V' = {xa}taeca and W = {xp}pes as vectors in Fj. As
XAnrar = Xa + xa in F3, by the previous paragraph we see that V' is a linear subspace of
F%, and similarly with W. Furthermore, letting (z,y) denote the usual inner product on
F5 we have

(xa,xB)=|ANB|=0 mod 2

for all x4 € V and xp € W. Thus V and W are orthogonal subspaces. As (-, -) is non-
degenerate, it follows that dim (V) 4 dim(W) < n, and so |A|-|B| < 24m(V) . 2dim(W) < gn

From above equality holds if and only if the characteristic vectors {x4}c4 form a linear
subspace V of F§ and {xp}pes = {w € F} : (v,w) =0 for allv € V} = V.

3. Prove that for n > ng(k) every family A C ([Z}) which does not contain three disjoint sets
satisfies | A| < |B(n)|, where

B(n) = {Aen®:An{1,2} #0}.
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The following solution follows a ‘degrees of freedom’ argument, similar to Theorem 23 in
the notes. Provided n > ng(k), we will prove that if A does not contain three disjoint sets
and |A| > |B(n)| then there are distinct x,y € [n] and sets Ay, ..., Agy1,B1,...,Brr1 € A
such that:

(a) A;NA; = {x} for all i, j € [k + 1] distinct;
(b) B; N B; ={y} for all 4,5 € [k + 1] distinct;
(c) AinB;=0forallijek+1].

This will prove the theorem. Indeed, if C' € [n]®) and CN{x,y} = 0 then C is disjoint from
some set A; and some set B;, and so C' ¢ A. Thisimplies A C {A € [n]® : An{x,y} # 0},
and so |A| < [B(n)|.

To begin, note that [A| > |B(n)| > (7~]) and so by the Erdés-Ko-Rado theorem A

contains two disjoint sets A; and B; say.

Suppose now that we have found Aj,..., A, and By,..., B, for some ¢ € [k| and wish
to extend the sequence, while satisfying (a), (b) and (c) above. Every set C' € A must
intersect A; U B; in at least one element. Furthermore, the number of sets in [n]*) which
intersect X = U;<¢(A; U B;) in more than one element is at most

k k
| X| n—|X]| 2k? k—2 2k k—2
< E <2 .

— ( 7 k—1 - ) " - "

=2

)

Therefore at least |A| — 22¥"nk—2 > (Zj) sets in A intersect X in eractly one element
(here we have used that n > ng(k)). Again by the Erdés—Ko-Rado theorem there are two

disjoint set C' and D which intersect X in one element. Consider two cases:

e / = 1: Then C meets exactly one of A; and B;; we may assume it meets A;. Set
Ay = C and set z € [n] to equal the element in A; N As. The set D also meets
X in exactly one element and this must lie in By; otherwise Ay, By, D € A and are
disjoint. Set By = D and let y € [n] be the element with {y} = B; N Bs.

e (> 2: In this case,  and y have already been specified, e.g. {x} = A; N Ay. Note
that if C'N {x,y} = 0 then there is some A; and B; which is disjoint from C, using
that C intersects X in exactly one element, that £ > 2 and that (a) and (b) hold.
Therefore x € C' (say) and we set Ayp; = C. The same argument guarantees that
Dn{z,y} #0. As C and D are disjoint y € D and we set By = D.

. Let P be a set of n points in the plane that do not all lie on a straight line. Prove that
they determine at least n lines. [Hint: For each point, consider the set of lines that passes
through it.]

The following solution is based on Fisher’s inequality. Let L = {1, ..., ¢, } denote the set
of lines containing at least two points from P. We want to prove that m > n. To see this,
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to each point p € P associate a set A, = {i € [m] : p € {;} C [m]. As no line contains
all points from P we have |A,| > 2 for all p € P. As any two distinct points p,p’ € P lie
on exactly one line, this gives |4, N A, | = 1. It follows that A = {4, : p € P} C P[m)|
satisfies |A| = |P| = n and by Fisher’s inequality n = |A] < m.

. Prove that a non-trivial decomposition of the edges of K, into edge-disjoint complete
subgraphs requires at least n subgraphs. Show how this bound can be achieved.

We will again prove this using Fisher’s inequality. Let C4, ..., ), denote the collection
of complete subgraphs decomposing K,,. Let A, := {i € [m] : x € C;} C [m] for each
x € V(K,). Note that as C4,...,C,, forms a non-trivial decomposition we must have
|A;| > 2 for all x € V(K,,). Set A={A,:xe€V(K,)} C Plm].

Given distinct z, 2’ € V(K,), we have i € A, N A, if and only if the edge zz’ € E(C;).
It follows from the hypothesis that |A, N A,| = 1 for all distinct z,2" € V(K,). In
particular, as |A,| > 2 for all x € V(K,,), the sets in A are distinct and |A| = n. By
Fisher’s inequality it follows that n = | A| < m, as required.

To see that the bound can be achieved, pick any vertex zy € V(K,). Let Cy denote the
clique containing the vertex set V(K,) \ {zo} and let Cs,...,C,, denote the remaining
cliques of size two (i.e. edges) containing to x.

. Aset Pin R" is a two-distance set if there are real numbers «, 8 such that ||z—y||2 € {«, 5}
for all distinct z,y € P. Let P = {p1,...,pr} be a two-distance set.

(a) For each ¢ € [k], let f; be the polynomial in variables x = (zy,...,x,) defined by

filx) = ([l = pill3 = o®)([[x = pill3 = 5%).
Show that the polynomials f; are linearly independent. [Hint: Consider f;(p;).]

(b) Deduce that k < (g) + 3n + 2. [Hint: Find a basis for the space spanned by the
polynomials f;.]

(a) First note that we may assume «, § # 0, as ||z — yl|s # 0 for all distinct x,y € R".

Suppose that >, Aifi(z) = 0, where \; € R for all 7 € [k]. Substituting p; into this
expression we obtain
QBN+ 0= Nfilp;) =0.
i€[k]
Here we have used that f;(p;) = o?6% if i = j and equals 0 if ¢ # j. It follows that A\; =0
(since «, 5 # 0) for all j € [k]. Thus fi,..., fr are linearly independent, as required.

(b) For any ¢ € R"™ we can write ||z — q|[3 — o = [|#[[3 — 3¢ 2052 + ([|al5 — @?), and

2 can be written as a linear combination of the functions

so [z — g5 —
[||13, {ziticpy and 1.
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It follows that each function f; can be written as a linear combination of the functions

H‘TH; {Hx||§$i}ie[n]7 {xﬂij}#j, {‘T?}z‘e[nﬁ {xi}ie[n}a and L.

(Note here that |[z|[5 = >, #7.) Altogether there are 1-4+n+(3) +n+n+1 = (3)+3n+2
such functions, and so k is at most this number by (a).

. Let F be a collection of functions from [n] to Z. Suppose that, for every pair of distinct
functions f,g € F we have f(i) = g(i) 4+ 1 for some i. Prove that |F| < 2". [Hint: look
for a suitable collection of polynomials.|

To each f € F associate a polynomial py € Z[xy, ..., z,] given by

pr(z . wn) = [ (F() +1— ).

i€[n]
Note that the hypothesis gives py (g(l), o ,g(n)) =1p_, forall f,g € F.
Claim: The polynomials {p} rer are linearly independent over Q.
To see this, suppose Zfef Asps = 0, where Ay € Q for all f € F. Then for every g € F

Ay =Y As((g(1),...,g(n))) = 0.

fer

Thus {py}ser are linearly independent, proving the claim.

Lastly, note that all the polynomials {pf}ser are multilinear, and so contained in V' =
span({][,c; zi : I C [n]}). It follows that |F| < dimg(V) < 2™

. Let p be a prime and let n > p2.

(a) Prove that if A C [n]®) with |[AN B| # 0 mod p for all distinct A, B € A then
Al < (2)-

(b) Prove that if A C [n]®") with [AN B| =0 mod p for all A, B € A then |A| < (gnp)'
Using (a) and (b), show that for all ¢ > 0 there is Ny so that the following holds for

N > Np. The pairs in [N]® can be coloured red or blue so that X receives both
colours for every X C [N] with | X| > N°=.

(a) Note that |A| = 0 mod p for all A € A. Also |AN B| # 0 mod p for all distinct
A, B € A. We may therefore apply the Modular Frankl-Wilson theorem to A, taking p
as the prime and S = {1,...p — 1} to get |A] < (fp).

(b) Here we note that A is S-intersecting, where S = {0,p,2p,...,(p — 1)p}. By the
Frankl-Wilson theorem we obtain that [A| < ( <”p).



10.*

For the final part of the question, take p to be a large prime (below we need p > 2/¢).
We will prove the statement for N of the form N = n?”, where n € N is sufficiently large
(need n > p* below); this implies the result for all N, by an approximation argument.

To begin, identify the elements of [N] with sets in [2]%*) in an arbitrary way. Given two
distinct sets A, B € [n]®) colour AB red if AN B # 0 mod p and blue if AN B =0
mod p. This gives a colouring of [N]® and note that for any X c [N], if X® only
receives colour red then by (a) the set X satisfies |X| < ( <”p). The same holds if X2
only receives colour blue by (b). For n > 3p we have

" P p b )
<§p) = p! (1+<n—p+1>+(n_p+1) -l—) < nP.

Provided n > p* and p > 2/¢, this gives

2 2/p
e () e (e () o
Sp p p

Prove that there is an uncountable collection A of subsets of N such that |AN B| is finite
for all distinct A, B € A.

One possible solution here is as follows. Let p; denote the ith prime for all 7« € N. Given
S C N, consider the set
As={ [] pi:neN}cN

1€SN[n)
We claim that A = {Ag : S C N} has the required property.

First note that Ag, # Ag, whenever S; and S, are distinct, so A is an uncountable family.
Also, if Ag, and Ag, are distinct sets in A then there is i € Sy \ Sy (say). All but a finite
number of elements of Ag, are divisible by p;, while no element of Ag, is divisible by p;.
It follows that |Ag, N Ag,| < 00, as required.

Let 1 <i<j<n. Let A= (Agsr) be a (T;) X (?) matrix with rows indexed by elements
of [n]® and columns indexed by elements of [n]), where agr = 1if S C T and agr = 0

otherwise. Prove that rank(A) = min{ ("), (T;)}

Omitted. Feel free to talk to me about this though.



