
Combinatorics C8.3 – Problem sheet 4 solutions

1. Show that, for some c > 1 and every n ≥ 3, there is a family F ⊂ P [n] of size at least cn

such that every set in F has odd size, and the intersection of any two distinct sets from

F has odd size.

Set m = ⌈n/2⌉ − 1 ≥ n/4 as n ≥ 3. We take

F :=
{(

∪i∈S {2i− 1, 2i}
)

∪ {2m+ 1} : S ⊂ [m]
}

.

Then |F| = 2m ≥ 2n/4, and all sets and their intersections are odd.

2. Let A,B ⊂ P [n] be two set systems such that |A ∩ B| is even for all A ∈ A and B ∈ B.

Prove that |A| · |B| ≤ 2n. Can you describe the pairs A, B for which we have equality?

(Hint: Show that if A,A′ ∈ A then we may assume A△A′ ∈ A.)

We may assume A and B are maximal subject to the condition that |A ∩ B| is even for

all A ∈ A and B ∈ B. Then for all A,A′ ∈ A we have A△A′ ∈ A, as for B ∈ B we have

|(A△A′) ∩ B| = |A ∩B|+ |A′ ∩ B| − 2|(A ∩ A′)△B| ≡ 0 mod 2.

Similarly B△B′ ∈ B for all B,B′ ∈ B.

View the characteristic vectors V = {χA}A∈A and W = {χB}B∈B as vectors in Fn
2 . As

χA△A′ = χA + χA′ in Fn
2 , by the previous paragraph we see that V is a linear subspace of

Fn
2 , and similarly with W . Furthermore, letting 〈x, y〉 denote the usual inner product on

Fn
2 we have

〈χA, χB〉 ≡ |A ∩ B| ≡ 0 mod 2

for all χA ∈ V and χB ∈ W . Thus V and W are orthogonal subspaces. As 〈·, ·〉 is non-

degenerate, it follows that dim(V )+dim(W ) ≤ n, and so |A| · |B| ≤ 2dim(V ) ·2dim(W ) ≤ 2n.

From above equality holds if and only if the characteristic vectors {χA}A∈A form a linear

subspace V of Fn
2 and {χB}B∈B = {w ∈ Fn

2 : 〈v, w〉 = 0 for all v ∈ V } = V ⊥.

3. Prove that for n ≥ n0(k) every family A ⊂
(

[n]
k

)

which does not contain three disjoint sets

satisfies |A| ≤ |B(n)|, where

B(n) :=
{

A ∈ [n](k) : A ∩ {1, 2} 6= ∅
}

.
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The following solution follows a ‘degrees of freedom’ argument, similar to Theorem 23 in

the notes. Provided n ≥ n0(k), we will prove that if A does not contain three disjoint sets

and |A| ≥ |B(n)| then there are distinct x, y ∈ [n] and sets A1, . . . , Ak+1, B1, . . . , Bk+1 ∈ A

such that:

(a) Ai ∩ Aj = {x} for all i, j ∈ [k + 1] distinct;

(b) Bi ∩ Bj = {y} for all i, j ∈ [k + 1] distinct;

(c) Ai ∩Bj = ∅ for all i, j ∈ [k + 1].

This will prove the theorem. Indeed, if C ∈ [n](k) and C∩{x, y} = ∅ then C is disjoint from

some setAi and some setBj, and so C /∈ A. This impliesA ⊂ {A ∈ [n](k) : A∩{x, y} 6= ∅},

and so |A| ≤ |B(n)|.

To begin, note that |A| ≥ |B(n)| >
(

n−1
k−1

)

and so by the Erdős–Ko–Rado theorem A

contains two disjoint sets A1 and B1 say.

Suppose now that we have found A1, . . . , Aℓ and B1, . . . , Bℓ for some ℓ ∈ [k] and wish

to extend the sequence, while satisfying (a), (b) and (c) above. Every set C ∈ A must

intersect A1 ∪B1 in at least one element. Furthermore, the number of sets in [n](k) which

intersect X = ∪i≤ℓ(Ai ∪ Bi) in more than one element is at most

k
∑

i=2

(

|X|

i

)(

n− |X|

k − i

)

≤
k

∑

i=2

(

2k2

i

)

nk−2 ≤ 22k
2

nk−2.

Therefore at least |A| − 22k
2

nk−2 >
(

n−1
k−1

)

sets in A intersect X in exactly one element

(here we have used that n ≥ n0(k)). Again by the Erdős–Ko–Rado theorem there are two

disjoint set C and D which intersect X in one element. Consider two cases:

• ℓ = 1: Then C meets exactly one of A1 and B1; we may assume it meets A1. Set

A2 = C and set x ∈ [n] to equal the element in A1 ∩ A2. The set D also meets

X in exactly one element and this must lie in B1; otherwise A2, B1, D ∈ A and are

disjoint. Set B2 = D and let y ∈ [n] be the element with {y} = B1 ∩ B2.

• ℓ ≥ 2: In this case, x and y have already been specified, e.g. {x} = A1 ∩ A2. Note

that if C ∩ {x, y} = ∅ then there is some Ai and Bj which is disjoint from C, using

that C intersects X in exactly one element, that ℓ ≥ 2 and that (a) and (b) hold.

Therefore x ∈ C (say) and we set Aℓ+1 = C. The same argument guarantees that

D ∩ {x, y} 6= ∅. As C and D are disjoint y ∈ D and we set Bℓ+1 = D.

4. Let P be a set of n points in the plane that do not all lie on a straight line. Prove that

they determine at least n lines. [Hint: For each point, consider the set of lines that passes

through it.]

The following solution is based on Fisher’s inequality. Let L = {ℓ1, . . . , ℓm} denote the set

of lines containing at least two points from P . We want to prove that m ≥ n. To see this,
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to each point p ∈ P associate a set Ap = {i ∈ [m] : p ∈ ℓi} ⊂ [m]. As no line contains

all points from P we have |Ap| ≥ 2 for all p ∈ P . As any two distinct points p, p′ ∈ P lie

on exactly one line, this gives |Ap ∩ Ap′ | = 1. It follows that A = {Ap : p ∈ P} ⊂ P [m]

satisfies |A| = |P | = n and by Fisher’s inequality n = |A| ≤ m.

5. Prove that a non-trivial decomposition of the edges of Kn into edge-disjoint complete

subgraphs requires at least n subgraphs. Show how this bound can be achieved.

We will again prove this using Fisher’s inequality. Let C1, . . . , Cm denote the collection

of complete subgraphs decomposing Kn. Let Ax := {i ∈ [m] : x ∈ Ci} ⊂ [m] for each

x ∈ V (Kn). Note that as C1, . . . , Cm forms a non-trivial decomposition we must have

|Ax| ≥ 2 for all x ∈ V (Kn). Set A = {Ax : x ∈ V (Kn)} ⊂ P [m].

Given distinct x, x′ ∈ V (Kn), we have i ∈ Ax ∩ Ax′ if and only if the edge xx′ ∈ E(Ci).

It follows from the hypothesis that |Ax ∩ Ax′ | = 1 for all distinct x, x′ ∈ V (Kn). In

particular, as |Ax| ≥ 2 for all x ∈ V (Kn), the sets in A are distinct and |A| = n. By

Fisher’s inequality it follows that n = |A| ≤ m, as required.

To see that the bound can be achieved, pick any vertex x0 ∈ V (Kn). Let C1 denote the

clique containing the vertex set V (Kn) \ {x0} and let C2, . . . , Cn denote the remaining

cliques of size two (i.e. edges) containing to x0.

6. A set P in Rn is a two-distance set if there are real numbers α, β such that ||x−y||2 ∈ {α, β}

for all distinct x, y ∈ P . Let P = {p1, . . . , pk} be a two-distance set.

(a) For each i ∈ [k], let fi be the polynomial in variables x = (x1, . . . , xn) defined by

fi(x) = (||x− pi||
2
2 − α2)(||x− pi||

2
2 − β2).

Show that the polynomials fi are linearly independent. [Hint: Consider fi(pj).]

(b) Deduce that k ≤
(

n
2

)

+ 3n + 2. [Hint: Find a basis for the space spanned by the

polynomials fi.]

(a) First note that we may assume α, β 6= 0, as ‖x− y‖2 6= 0 for all distinct x, y ∈ Rn.

Suppose that
∑

i∈[k] λifi(x) = 0, where λi ∈ R for all i ∈ [k]. Substituting pj into this

expression we obtain

α2β2λj + 0 =
∑

i∈[k]

λifi(pj) = 0.

Here we have used that fi(pj) = α2β2 if i = j and equals 0 if i 6= j. It follows that λj = 0

(since α, β 6= 0) for all j ∈ [k]. Thus f1, . . . , fk are linearly independent, as required.

(b) For any q ∈ Rn we can write ||x− q||22 − α2 = ||x||22 −
∑

j∈[n] 2qixi + (||q||22 − α2), and

so ||x− q||22 − α2 can be written as a linear combination of the functions

||x||22, {xi}i∈[n] and 1.
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It follows that each function fi can be written as a linear combination of the functions

||x||42,
{

||x||22xi

}

i∈[n]
,

{

xixj

}

i 6=j
,

{

x2
i

}

i∈[n]
,

{

xi

}

i∈[n]
, and 1.

(Note here that ||x||22 =
∑

i∈[n] x
2
i .) Altogether there are 1+n+

(

n
2

)

+n+n+1 =
(

n
2

)

+3n+2

such functions, and so k is at most this number by (a).

7. Let F be a collection of functions from [n] to Z. Suppose that, for every pair of distinct

functions f, g ∈ F we have f(i) = g(i) + 1 for some i. Prove that |F| ≤ 2n. [Hint: look

for a suitable collection of polynomials.]

To each f ∈ F associate a polynomial pf ∈ Z[x1, . . . , xn] given by

pf (x1, . . . , xn) =
∏

i∈[n]

(

f(i) + 1− xi

)

.

Note that the hypothesis gives pf
(

g(1), . . . , g(n)
)

= 1f=g for all f, g ∈ F .

Claim: The polynomials {pf}f∈F are linearly independent over Q.

To see this, suppose
∑

f∈F λfpf = 0, where λf ∈ Q for all f ∈ F . Then for every g ∈ F

λg =
∑

f∈F

λfpf
(

(g(1), . . . , g(n))
)

= 0.

Thus {pf}f∈F are linearly independent, proving the claim.

Lastly, note that all the polynomials {pf}f∈F are multilinear, and so contained in V =

span({
∏

i∈I xi : I ⊂ [n]}). It follows that |F| ≤ dimQ(V ) ≤ 2n.

8. Let p be a prime and let n ≥ p2.

(a) Prove that if A ⊂ [n](p
2) with |A ∩ B| 6≡ 0 mod p for all distinct A,B ∈ A then

|A| ≤
(

n
≤p

)

.

(b) Prove that if A ⊂ [n](p
2) with |A ∩B| ≡ 0 mod p for all A,B ∈ A then |A| ≤

(

n
≤p

)

.

Using (a) and (b), show that for all ε > 0 there is N0 so that the following holds for

N ≥ N0. The pairs in [N ](2) can be coloured red or blue so that X(2) receives both

colours for every X ⊂ [N ] with |X| ≥ N ε.

(a) Note that |A| ≡ 0 mod p for all A ∈ A. Also |A ∩ B| 6≡ 0 mod p for all distinct

A,B ∈ A. We may therefore apply the Modular Frankl–Wilson theorem to A, taking p

as the prime and S = {1, . . . p− 1} to get |A| ≤
(

n
≤p

)

.

(b) Here we note that A is S-intersecting, where S = {0, p, 2p, . . . , (p − 1)p}. By the

Frankl–Wilson theorem we obtain that |A| ≤
(

n
≤p

)

.
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For the final part of the question, take p to be a large prime (below we need p ≥ 2/ε).

We will prove the statement for N of the form N = np2 , where n ∈ N is sufficiently large

(need n ≥ p4 below); this implies the result for all N , by an approximation argument.

To begin, identify the elements of [N ] with sets in [n](p
2) in an arbitrary way. Given two

distinct sets A,B ∈ [n](p
2) colour AB red if A ∩ B 6≡ 0 mod p and blue if A ∩ B ≡ 0

mod p. This gives a colouring of [N ](2) and note that for any X ⊂ [N ], if X(2) only

receives colour red then by (a) the set X satisfies |X| ≤
(

n
≤p

)

. The same holds if X(2)

only receives colour blue by (b). For n ≥ 3p we have

(

n

≤ p

)

≤
np

p!

(

1 +
( p

n− p+ 1

)

+
( p

n− p+ 1

)2
+ . . .

)

≤ np.

Provided n ≥ p4 and p ≥ 2/ε, this gives

|X| ≤

(

n

≤ p

)

≤ np ≤
( n

p2

)2p

≤

(

n

p2

)2/p

≤ N ε.

9. Prove that there is an uncountable collection A of subsets of N such that |A∩B| is finite

for all distinct A,B ∈ A.

One possible solution here is as follows. Let pi denote the ith prime for all i ∈ N. Given

S ⊂ N, consider the set

AS =
{

∏

i∈S∩[n]

pi : n ∈ N
}

⊂ N.

We claim that A = {AS : S ⊂ N} has the required property.

First note that AS1
6= AS2

whenever S1 and S2 are distinct, so A is an uncountable family.

Also, if AS1
and AS2

are distinct sets in A then there is i ∈ S1 \ S2 (say). All but a finite

number of elements of AS1
are divisible by pi, while no element of AS2

is divisible by pi.

It follows that |AS1
∩ AS2

| < ∞, as required.

10.+ Let 1 ≤ i ≤ j ≤ n. Let A = (AST ) be a
(

n
i

)

×
(

n
j

)

matrix with rows indexed by elements

of [n](i) and columns indexed by elements of [n](j), where aST = 1 if S ⊂ T and aST = 0

otherwise. Prove that rank(A) = min{
(

n
i

)

,
(

n
j

)

}.

Omitted. Feel free to talk to me about this though.
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