Combinatorics C8.3-Problem sheet 4 solutions

1. Show that, for some $c>1$ and every $n \geq 3$, there is a family $\mathcal{F} \subset \mathcal{P}[n]$ of size at least c^{n} such that every set in \mathcal{F} has odd size, and the intersection of any two distinct sets from \mathcal{F} has odd size.

Set $m=\lceil n / 2\rceil-1 \geq n / 4$ as $n \geq 3$. We take

$$
\mathcal{F}:=\left\{\left(\cup_{i \in S}\{2 i-1,2 i\}\right) \cup\{2 m+1\}: S \subset[m]\right\} .
$$

Then $|\mathcal{F}|=2^{m} \geq 2^{n / 4}$, and all sets and their intersections are odd.
2. Let $\mathcal{A}, \mathcal{B} \subset \mathcal{P}[n]$ be two set systems such that $|A \cap B|$ is even for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Prove that $|\mathcal{A}| \cdot|\mathcal{B}| \leq 2^{n}$. Can you describe the pairs \mathcal{A}, \mathcal{B} for which we have equality? (Hint: Show that if $A, A^{\prime} \in \mathcal{A}$ then we may assume $A \triangle A^{\prime} \in \mathcal{A}$.)

We may assume \mathcal{A} and \mathcal{B} are maximal subject to the condition that $|A \cap B|$ is even for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Then for all $A, A^{\prime} \in \mathcal{A}$ we have $A \triangle A^{\prime} \in \mathcal{A}$, as for $B \in \mathcal{B}$ we have

$$
\left|\left(A \triangle A^{\prime}\right) \cap B\right|=|A \cap B|+\left|A^{\prime} \cap B\right|-2\left|\left(A \cap A^{\prime}\right) \triangle B\right| \equiv 0 \quad \bmod 2 .
$$

Similarly $B \triangle B^{\prime} \in \mathcal{B}$ for all $B, B^{\prime} \in \mathcal{B}$.
View the characteristic vectors $V=\left\{\chi_{A}\right\}_{A \in \mathcal{A}}$ and $W=\left\{\chi_{B}\right\}_{B \in \mathcal{B}}$ as vectors in \mathbb{F}_{2}^{n}. As $\chi_{A \triangle A^{\prime}}=\chi_{A}+\chi_{A^{\prime}}$ in \mathbb{F}_{2}^{n}, by the previous paragraph we see that V is a linear subspace of \mathbb{F}_{2}^{n}, and similarly with W. Furthermore, letting $\langle x, y\rangle$ denote the usual inner product on \mathbb{F}_{2}^{n} we have

$$
\left\langle\chi_{A}, \chi_{B}\right\rangle \equiv|A \cap B| \equiv 0 \quad \bmod 2
$$

for all $\chi_{A} \in V$ and $\chi_{B} \in W$. Thus V and W are orthogonal subspaces. As $\langle\cdot, \cdot\rangle$ is nondegenerate, it follows that $\operatorname{dim}(V)+\operatorname{dim}(W) \leq n$, and so $|\mathcal{A}| \cdot|\mathcal{B}| \leq 2^{\operatorname{dim}(V)} \cdot 2^{\operatorname{dim}(W)} \leq 2^{n}$. From above equality holds if and only if the characteristic vectors $\left\{\chi_{A}\right\}_{A \in \mathcal{A}}$ form a linear subspace V of \mathbb{F}_{2}^{n} and $\left\{\chi_{B}\right\}_{B \in \mathcal{B}}=\left\{\mathbf{w} \in \mathbb{F}_{2}^{n}:\langle v, w\rangle=0\right.$ for all $\left.v \in V\right\}=V^{\perp}$.
3. Prove that for $n \geq n_{0}(k)$ every family $\mathcal{A} \subset\binom{[n]}{k}$ which does not contain three disjoint sets satisfies $|\mathcal{A}| \leq|\mathcal{B}(n)|$, where

$$
\mathcal{B}(n):=\left\{A \in[n]^{(k)}: A \cap\{1,2\} \neq \emptyset\right\} .
$$

The following solution follows a 'degrees of freedom' argument, similar to Theorem 23 in the notes. Provided $n \geq n_{0}(k)$, we will prove that if \mathcal{A} does not contain three disjoint sets and $|\mathcal{A}| \geq|\mathcal{B}(n)|$ then there are distinct $x, y \in[n]$ and sets $A_{1}, \ldots, A_{k+1}, B_{1}, \ldots, B_{k+1} \in \mathcal{A}$ such that:
(a) $A_{i} \cap A_{j}=\{x\}$ for all $i, j \in[k+1]$ distinct;
(b) $B_{i} \cap B_{j}=\{y\}$ for all $i, j \in[k+1]$ distinct;
(c) $A_{i} \cap B_{j}=\emptyset$ for all $i, j \in[k+1]$.

This will prove the theorem. Indeed, if $C \in[n]^{(k)}$ and $C \cap\{x, y\}=\emptyset$ then C is disjoint from some set A_{i} and some set B_{j}, and so $C \notin \mathcal{A}$. This implies $\mathcal{A} \subset\left\{A \in[n]^{(k)}: A \cap\{x, y\} \neq \emptyset\right\}$, and so $|\mathcal{A}| \leq|\mathcal{B}(n)|$.
To begin, note that $|\mathcal{A}| \geq|\mathcal{B}(n)|>\binom{n-1}{k-1}$ and so by the Erdős-Ko-Rado theorem \mathcal{A} contains two disjoint sets A_{1} and B_{1} say.
Suppose now that we have found A_{1}, \ldots, A_{ℓ} and B_{1}, \ldots, B_{ℓ} for some $\ell \in[k]$ and wish to extend the sequence, while satisfying (a), (b) and (c) above. Every set $C \in \mathcal{A}$ must intersect $A_{1} \cup B_{1}$ in at least one element. Furthermore, the number of sets in $[n]^{(k)}$ which intersect $X=\cup_{i \leq \ell}\left(A_{i} \cup B_{i}\right)$ in more than one element is at most

$$
\sum_{i=2}^{k}\binom{|X|}{i}\binom{n-|X|}{k-i} \leq \sum_{i=2}^{k}\binom{2 k^{2}}{i} n^{k-2} \leq 2^{2 k^{2}} n^{k-2}
$$

Therefore at least $|\mathcal{A}|-2^{2 k^{2}} n^{k-2}>\binom{n-1}{k-1}$ sets in \mathcal{A} intersect X in exactly one element (here we have used that $n \geq n_{0}(k)$). Again by the Erdős-Ko-Rado theorem there are two disjoint set C and D which intersect X in one element. Consider two cases:

- $\ell=1$: Then C meets exactly one of A_{1} and B_{1}; we may assume it meets A_{1}. Set $A_{2}=C$ and set $x \in[n]$ to equal the element in $A_{1} \cap A_{2}$. The set D also meets X in exactly one element and this must lie in B_{1}; otherwise $A_{2}, B_{1}, D \in \mathcal{A}$ and are disjoint. Set $B_{2}=D$ and let $y \in[n]$ be the element with $\{y\}=B_{1} \cap B_{2}$.
- $\ell \geq 2$: In this case, x and y have already been specified, e.g. $\{x\}=A_{1} \cap A_{2}$. Note that if $C \cap\{x, y\}=\emptyset$ then there is some A_{i} and B_{j} which is disjoint from C, using that C intersects X in exactly one element, that $\ell \geq 2$ and that (a) and (b) hold. Therefore $x \in C$ (say) and we set $A_{\ell+1}=C$. The same argument guarantees that $D \cap\{x, y\} \neq \emptyset$. As C and D are disjoint $y \in D$ and we set $B_{\ell+1}=D$.

4. Let P be a set of n points in the plane that do not all lie on a straight line. Prove that they determine at least n lines. [Hint: For each point, consider the set of lines that passes through it.]

The following solution is based on Fisher's inequality. Let $L=\left\{\ell_{1}, \ldots, \ell_{m}\right\}$ denote the set of lines containing at least two points from P. We want to prove that $m \geq n$. To see this,
to each point $p \in P$ associate a set $A_{p}=\left\{i \in[m]: p \in \ell_{i}\right\} \subset[m]$. As no line contains all points from P we have $\left|A_{p}\right| \geq 2$ for all $p \in P$. As any two distinct points $p, p^{\prime} \in P$ lie on exactly one line, this gives $\left|A_{p} \cap A_{p^{\prime}}\right|=1$. It follows that $\mathcal{A}=\left\{A_{p}: p \in P\right\} \subset \mathcal{P}[m]$ satisfies $|\mathcal{A}|=|P|=n$ and by Fisher's inequality $n=|\mathcal{A}| \leq m$.
5. Prove that a non-trivial decomposition of the edges of K_{n} into edge-disjoint complete subgraphs requires at least n subgraphs. Show how this bound can be achieved.

We will again prove this using Fisher's inequality. Let C_{1}, \ldots, C_{m} denote the collection of complete subgraphs decomposing K_{n}. Let $A_{x}:=\left\{i \in[m]: x \in C_{i}\right\} \subset[m]$ for each $x \in V\left(K_{n}\right)$. Note that as C_{1}, \ldots, C_{m} forms a non-trivial decomposition we must have $\left|A_{x}\right| \geq 2$ for all $x \in V\left(K_{n}\right)$. Set $\mathcal{A}=\left\{A_{x}: x \in V\left(K_{n}\right)\right\} \subset \mathcal{P}[m]$.
Given distinct $x, x^{\prime} \in V\left(K_{n}\right)$, we have $i \in A_{x} \cap A_{x^{\prime}}$ if and only if the edge $x x^{\prime} \in E\left(C_{i}\right)$. It follows from the hypothesis that $\left|A_{x} \cap A_{x^{\prime}}\right|=1$ for all distinct $x, x^{\prime} \in V\left(K_{n}\right)$. In particular, as $\left|A_{x}\right| \geq 2$ for all $x \in V\left(K_{n}\right)$, the sets in \mathcal{A} are distinct and $|\mathcal{A}|=n$. By Fisher's inequality it follows that $n=|\mathcal{A}| \leq m$, as required.
To see that the bound can be achieved, pick any vertex $x_{0} \in V\left(K_{n}\right)$. Let C_{1} denote the clique containing the vertex set $V\left(K_{n}\right) \backslash\left\{x_{0}\right\}$ and let C_{2}, \ldots, C_{n} denote the remaining cliques of size two (i.e. edges) containing to x_{0}.
6. A set P in \mathbb{R}^{n} is a two-distance set if there are real numbers α, β such that $\|x-y\|_{2} \in\{\alpha, \beta\}$ for all distinct $x, y \in P$. Let $P=\left\{p_{1}, \ldots, p_{k}\right\}$ be a two-distance set.
(a) For each $i \in[k]$, let f_{i} be the polynomial in variables $x=\left(x_{1}, \ldots, x_{n}\right)$ defined by

$$
f_{i}(x)=\left(\left\|x-p_{i}\right\|_{2}^{2}-\alpha^{2}\right)\left(\left\|x-p_{i}\right\|_{2}^{2}-\beta^{2}\right) .
$$

Show that the polynomials f_{i} are linearly independent. [Hint: Consider $f_{i}\left(p_{j}\right)$.]
(b) Deduce that $k \leq\binom{ n}{2}+3 n+2$. [Hint: Find a basis for the space spanned by the polynomials f_{i}.]
(a) First note that we may assume $\alpha, \beta \neq 0$, as $\|x-y\|_{2} \neq 0$ for all distinct $x, y \in \mathbb{R}^{n}$.

Suppose that $\sum_{i \in[k]} \lambda_{i} f_{i}(x)=0$, where $\lambda_{i} \in \mathbb{R}$ for all $i \in[k]$. Substituting p_{j} into this expression we obtain

$$
\alpha^{2} \beta^{2} \lambda_{j}+0=\sum_{i \in[k]} \lambda_{i} f_{i}\left(p_{j}\right)=0 .
$$

Here we have used that $f_{i}\left(p_{j}\right)=\alpha^{2} \beta^{2}$ if $i=j$ and equals 0 if $i \neq j$. It follows that $\lambda_{j}=0$ (since $\alpha, \beta \neq 0$) for all $j \in[k]$. Thus f_{1}, \ldots, f_{k} are linearly independent, as required.
(b) For any $q \in \mathbb{R}^{n}$ we can write $\|x-q\|_{2}^{2}-\alpha^{2}=\|x\|_{2}^{2}-\sum_{j \in[n]} 2 q_{i} x_{i}+\left(\|q\|_{2}^{2}-\alpha^{2}\right)$, and so $\|x-q\|_{2}^{2}-\alpha^{2}$ can be written as a linear combination of the functions

$$
\|x\|_{2}^{2}, \quad\left\{x_{i}\right\}_{i \in[n]} \quad \text { and } \quad 1 .
$$

It follows that each function f_{i} can be written as a linear combination of the functions

$$
\|x\|_{2}^{4}, \quad\left\{\|x\|_{2}^{2} x_{i}\right\}_{i \in[n]}, \quad\left\{x_{i} x_{j}\right\}_{i \neq j}, \quad\left\{x_{i}^{2}\right\}_{i \in[n]}, \quad\left\{x_{i}\right\}_{i \in[n]}, \quad \text { and } 1 .
$$

(Note here that $\|x\|_{2}^{2}=\sum_{i \in[n]} x_{i}^{2}$.) Altogether there are $1+n+\binom{n}{2}+n+n+1=\binom{n}{2}+3 n+2$ such functions, and so k is at most this number by (a).
7. Let \mathcal{F} be a collection of functions from $[n]$ to \mathbb{Z}. Suppose that, for every pair of distinct functions $f, g \in \mathcal{F}$ we have $f(i)=g(i)+1$ for some i. Prove that $|\mathcal{F}| \leq 2^{n}$. [Hint: look for a suitable collection of polynomials.]

To each $f \in \mathcal{F}$ associate a polynomial $p_{f} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ given by

$$
p_{f}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i \in[n]}\left(f(i)+1-x_{i}\right) .
$$

Note that the hypothesis gives $p_{f}(g(1), \ldots, g(n))=\mathbf{1}_{f=g}$ for all $f, g \in \mathcal{F}$.
Claim: The polynomials $\left\{p_{f}\right\}_{f \in \mathcal{F}}$ are linearly independent over \mathbb{Q}.
To see this, suppose $\sum_{f \in \mathcal{F}} \lambda_{f} p_{f}=0$, where $\lambda_{f} \in \mathbb{Q}$ for all $f \in \mathcal{F}$. Then for every $g \in \mathcal{F}$

$$
\lambda_{g}=\sum_{f \in \mathcal{F}} \lambda_{f} p_{f}((g(1), \ldots, g(n)))=0 .
$$

Thus $\left\{p_{f}\right\}_{f \in \mathcal{F}}$ are linearly independent, proving the claim.
Lastly, note that all the polynomials $\left\{p_{f}\right\}_{f \in \mathcal{F}}$ are multilinear, and so contained in $V=$ $\operatorname{span}\left(\left\{\prod_{i \in I} x_{i}: I \subset[n]\right\}\right)$. It follows that $|\mathcal{F}| \leq \operatorname{dim}_{\mathbb{Q}}(V) \leq 2^{n}$.
8. Let p be a prime and let $n \geq p^{2}$.
(a) Prove that if $\mathcal{A} \subset[n]^{\left(p^{2}\right)}$ with $|A \cap B| \not \equiv 0 \bmod p$ for all distinct $A, B \in \mathcal{A}$ then $|\mathcal{A}| \leq\binom{ n}{\leq p}$.
(b) Prove that if $\mathcal{A} \subset[n]^{\left(p^{2}\right)}$ with $|A \cap B| \equiv 0 \bmod p$ for all $A, B \in \mathcal{A}$ then $|\mathcal{A}| \leq\binom{ n}{\leq p}$.

Using (a) and (b), show that for all $\varepsilon>0$ there is N_{0} so that the following holds for $N \geq N_{0}$. The pairs in $[N]^{(2)}$ can be coloured red or blue so that $X^{(2)}$ receives both colours for every $X \subset[N]$ with $|X| \geq N^{\varepsilon}$.
(a) Note that $|A| \equiv 0 \bmod p$ for all $A \in \mathcal{A}$. Also $|A \cap B| \not \equiv 0 \bmod p$ for all distinct $A, B \in \mathcal{A}$. We may therefore apply the Modular Frankl-Wilson theorem to \mathcal{A}, taking p as the prime and $S=\{1, \ldots p-1\}$ to get $|\mathcal{A}| \leq\binom{ n}{\leq p}$.
(b) Here we note that \mathcal{A} is S-intersecting, where $S=\{0, p, 2 p, \ldots,(p-1) p\}$. By the Frankl-Wilson theorem we obtain that $|\mathcal{A}| \leq\binom{ n}{\leq p}$.

For the final part of the question, take p to be a large prime (below we need $p \geq 2 / \varepsilon$). We will prove the statement for N of the form $N=n^{p^{2}}$, where $n \in \mathbb{N}$ is sufficiently large (need $n \geq p^{4}$ below); this implies the result for all N, by an approximation argument.
To begin, identify the elements of $[N]$ with sets in $[n]^{\left(p^{2}\right)}$ in an arbitrary way. Given two distinct sets $A, B \in[n]^{\left(p^{2}\right)}$ colour $A B$ red if $A \cap B \not \equiv 0 \bmod p$ and blue if $A \cap B \equiv 0$ $\bmod p$. This gives a colouring of $[N]^{(2)}$ and note that for any $X \subset[N]$, if $X^{(2)}$ only receives colour red then by (a) the set X satisfies $|X| \leq\binom{ n}{\leq p}$. The same holds if $X^{(2)}$ only receives colour blue by (b). For $n \geq 3 p$ we have

$$
\binom{n}{\leq p} \leq \frac{n^{p}}{p!}\left(1+\left(\frac{p}{n-p+1}\right)+\left(\frac{p}{n-p+1}\right)^{2}+\ldots\right) \leq n^{p} .
$$

Provided $n \geq p^{4}$ and $p \geq 2 / \varepsilon$, this gives

$$
|X| \leq\binom{ n}{\leq p} \leq n^{p} \leq\left(\frac{n}{p^{2}}\right)^{2 p} \leq\binom{ n}{p^{2}}^{2 / p} \leq N^{\varepsilon}
$$

9. Prove that there is an uncountable collection \mathcal{A} of subsets of \mathbb{N} such that $|A \cap B|$ is finite for all distinct $A, B \in \mathcal{A}$.

One possible solution here is as follows. Let p_{i} denote the i th prime for all $i \in \mathbb{N}$. Given $S \subset \mathbb{N}$, consider the set

$$
A_{S}=\left\{\prod_{i \in S \cap[n]} p_{i}: n \in \mathbb{N}\right\} \subset \mathbb{N}
$$

We claim that $\mathcal{A}=\left\{A_{S}: S \subset \mathbb{N}\right\}$ has the required property.
First note that $A_{S_{1}} \neq A_{S_{2}}$ whenever S_{1} and S_{2} are distinct, so \mathcal{A} is an uncountable family. Also, if $A_{S_{1}}$ and $A_{S_{2}}$ are distinct sets in \mathcal{A} then there is $i \in S_{1} \backslash S_{2}$ (say). All but a finite number of elements of $A_{S_{1}}$ are divisible by p_{i}, while no element of $A_{S_{2}}$ is divisible by p_{i}. It follows that $\left|A_{S_{1}} \cap A_{S_{2}}\right|<\infty$, as required.
10. ${ }^{+}$Let $1 \leq i \leq j \leq n$. Let $A=\left(A_{S T}\right)$ be a $\binom{n}{i} \times\binom{ n}{j}$ matrix with rows indexed by elements of $[n]^{(i)}$ and columns indexed by elements of $[n]^{(j)}$, where $a_{S T}=1$ if $S \subset T$ and $a_{S T}=0$ otherwise. Prove that $\operatorname{rank}(A)=\min \left\{\binom{n}{i},\binom{n}{j}\right\}$.
Omitted. Feel free to talk to me about this though.

