Combinatorics C8.3 – Problem sheet 4 solutions

1. Show that, for some c > 1 and every $n \ge 3$, there is a family $\mathcal{F} \subset \mathcal{P}[n]$ of size at least c^n such that every set in \mathcal{F} has odd size, and the intersection of any two distinct sets from \mathcal{F} has odd size.

Set $m = \lfloor n/2 \rfloor - 1 \ge n/4$ as $n \ge 3$. We take

$$\mathcal{F} := \left\{ \left(\cup_{i \in S} \{2i - 1, 2i\} \right) \cup \{2m + 1\} : S \subset [m] \right\}.$$

Then $|\mathcal{F}| = 2^m \ge 2^{n/4}$, and all sets and their intersections are odd.

2. Let $\mathcal{A}, \mathcal{B} \subset \mathcal{P}[n]$ be two set systems such that $|A \cap B|$ is even for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Prove that $|\mathcal{A}| \cdot |\mathcal{B}| \leq 2^n$. Can you describe the pairs \mathcal{A}, \mathcal{B} for which we have equality? (Hint: Show that if $A, A' \in \mathcal{A}$ then we may assume $A \triangle A' \in \mathcal{A}$.)

We may assume \mathcal{A} and \mathcal{B} are maximal subject to the condition that $|A \cap B|$ is even for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Then for all $A, A' \in \mathcal{A}$ we have $A \triangle A' \in \mathcal{A}$, as for $B \in \mathcal{B}$ we have

$$|(A \triangle A') \cap B| = |A \cap B| + |A' \cap B| - 2|(A \cap A') \triangle B| \equiv 0 \mod 2.$$

Similarly $B \triangle B' \in \mathcal{B}$ for all $B, B' \in \mathcal{B}$.

View the characteristic vectors $V = {\chi_A}_{A \in \mathcal{A}}$ and $W = {\chi_B}_{B \in \mathcal{B}}$ as vectors in \mathbb{F}_2^n . As $\chi_{A \bigtriangleup A'} = \chi_A + \chi_{A'}$ in \mathbb{F}_2^n , by the previous paragraph we see that V is a linear subspace of \mathbb{F}_2^n , and similarly with W. Furthermore, letting $\langle x, y \rangle$ denote the usual inner product on \mathbb{F}_2^n we have

$$\langle \chi_A, \chi_B \rangle \equiv |A \cap B| \equiv 0 \mod 2$$

for all $\chi_A \in V$ and $\chi_B \in W$. Thus V and W are orthogonal subspaces. As $\langle \cdot, \cdot \rangle$ is nondegenerate, it follows that $\dim(V) + \dim(W) \leq n$, and so $|\mathcal{A}| \cdot |\mathcal{B}| \leq 2^{\dim(V)} \cdot 2^{\dim(W)} \leq 2^n$.

From above equality holds if and only if the characteristic vectors $\{\chi_A\}_{A \in \mathcal{A}}$ form a linear subspace V of \mathbb{F}_2^n and $\{\chi_B\}_{B \in \mathcal{B}} = \{\mathbf{w} \in \mathbb{F}_2^n : \langle v, w \rangle = 0 \text{ for all } v \in V\} = V^{\perp}$.

3. Prove that for $n \ge n_0(k)$ every family $\mathcal{A} \subset {\binom{[n]}{k}}$ which does not contain three disjoint sets satisfies $|\mathcal{A}| \le |\mathcal{B}(n)|$, where

$$\mathcal{B}(n) := \left\{ A \in [n]^{(k)} : A \cap \{1, 2\} \neq \emptyset \right\}.$$

The following solution follows a 'degrees of freedom' argument, similar to Theorem 23 in the notes. Provided $n \ge n_0(k)$, we will prove that if \mathcal{A} does not contain three disjoint sets and $|\mathcal{A}| \ge |\mathcal{B}(n)|$ then there are distinct $x, y \in [n]$ and sets $A_1, \ldots, A_{k+1}, B_1, \ldots, B_{k+1} \in \mathcal{A}$ such that:

- (a) $A_i \cap A_j = \{x\}$ for all $i, j \in [k+1]$ distinct;
- (b) $B_i \cap B_j = \{y\}$ for all $i, j \in [k+1]$ distinct;
- (c) $A_i \cap B_j = \emptyset$ for all $i, j \in [k+1]$.

This will prove the theorem. Indeed, if $C \in [n]^{(k)}$ and $C \cap \{x, y\} = \emptyset$ then C is disjoint from some set A_i and some set B_j , and so $C \notin \mathcal{A}$. This implies $\mathcal{A} \subset \{A \in [n]^{(k)} : A \cap \{x, y\} \neq \emptyset\}$, and so $|\mathcal{A}| \leq |\mathcal{B}(n)|$.

To begin, note that $|\mathcal{A}| \geq |\mathcal{B}(n)| > {n-1 \choose k-1}$ and so by the Erdős–Ko–Rado theorem \mathcal{A} contains two disjoint sets A_1 and B_1 say.

Suppose now that we have found A_1, \ldots, A_ℓ and B_1, \ldots, B_ℓ for some $\ell \in [k]$ and wish to extend the sequence, while satisfying (a), (b) and (c) above. Every set $C \in \mathcal{A}$ must intersect $A_1 \cup B_1$ in at least one element. Furthermore, the number of sets in $[n]^{(k)}$ which intersect $X = \bigcup_{i \leq \ell} (A_i \cup B_i)$ in more than one element is at most

$$\sum_{i=2}^{k} \binom{|X|}{i} \binom{n-|X|}{k-i} \le \sum_{i=2}^{k} \binom{2k^2}{i} n^{k-2} \le 2^{2k^2} n^{k-2}.$$

Therefore at least $|\mathcal{A}| - 2^{2k^2} n^{k-2} > {n-1 \choose k-1}$ sets in \mathcal{A} intersect X in *exactly* one element (here we have used that $n \ge n_0(k)$). Again by the Erdős–Ko–Rado theorem there are two disjoint set C and D which intersect X in one element. Consider two cases:

- $\ell = 1$: Then C meets exactly one of A_1 and B_1 ; we may assume it meets A_1 . Set $A_2 = C$ and set $x \in [n]$ to equal the element in $A_1 \cap A_2$. The set D also meets X in exactly one element and this must lie in B_1 ; otherwise $A_2, B_1, D \in \mathcal{A}$ and are disjoint. Set $B_2 = D$ and let $y \in [n]$ be the element with $\{y\} = B_1 \cap B_2$.
- $\ell \geq 2$: In this case, x and y have already been specified, e.g. $\{x\} = A_1 \cap A_2$. Note that if $C \cap \{x, y\} = \emptyset$ then there is some A_i and B_j which is disjoint from C, using that C intersects X in exactly one element, that $\ell \geq 2$ and that (a) and (b) hold. Therefore $x \in C$ (say) and we set $A_{\ell+1} = C$. The same argument guarantees that $D \cap \{x, y\} \neq \emptyset$. As C and D are disjoint $y \in D$ and we set $B_{\ell+1} = D$.
- 4. Let P be a set of n points in the plane that do not all lie on a straight line. Prove that they determine at least n lines. [Hint: For each point, consider the set of lines that passes through it.]

The following solution is based on Fisher's inequality. Let $L = \{\ell_1, \ldots, \ell_m\}$ denote the set of lines containing at least two points from P. We want to prove that $m \ge n$. To see this,

to each point $p \in P$ associate a set $A_p = \{i \in [m] : p \in \ell_i\} \subset [m]$. As no line contains all points from P we have $|A_p| \ge 2$ for all $p \in P$. As any two distinct points $p, p' \in P$ lie on exactly one line, this gives $|A_p \cap A_{p'}| = 1$. It follows that $\mathcal{A} = \{A_p : p \in P\} \subset \mathcal{P}[m]$ satisfies $|\mathcal{A}| = |P| = n$ and by Fisher's inequality $n = |\mathcal{A}| \le m$.

5. Prove that a non-trivial decomposition of the edges of K_n into edge-disjoint complete subgraphs requires at least n subgraphs. Show how this bound can be achieved.

We will again prove this using Fisher's inequality. Let C_1, \ldots, C_m denote the collection of complete subgraphs decomposing K_n . Let $A_x := \{i \in [m] : x \in C_i\} \subset [m]$ for each $x \in V(K_n)$. Note that as C_1, \ldots, C_m forms a *non-trivial* decomposition we must have $|A_x| \ge 2$ for all $x \in V(K_n)$. Set $\mathcal{A} = \{A_x : x \in V(K_n)\} \subset \mathcal{P}[m]$.

Given distinct $x, x' \in V(K_n)$, we have $i \in A_x \cap A_{x'}$ if and only if the edge $xx' \in E(C_i)$. It follows from the hypothesis that $|A_x \cap A_{x'}| = 1$ for all distinct $x, x' \in V(K_n)$. In particular, as $|A_x| \geq 2$ for all $x \in V(K_n)$, the sets in \mathcal{A} are distinct and $|\mathcal{A}| = n$. By Fisher's inequality it follows that $n = |\mathcal{A}| \leq m$, as required.

To see that the bound can be achieved, pick any vertex $x_0 \in V(K_n)$. Let C_1 denote the clique containing the vertex set $V(K_n) \setminus \{x_0\}$ and let C_2, \ldots, C_n denote the remaining cliques of size two (i.e. edges) containing to x_0 .

- 6. A set P in \mathbb{R}^n is a *two-distance set* if there are real numbers α, β such that $||x-y||_2 \in \{\alpha, \beta\}$ for all distinct $x, y \in P$. Let $P = \{p_1, \ldots, p_k\}$ be a two-distance set.
 - (a) For each $i \in [k]$, let f_i be the polynomial in variables $x = (x_1, \ldots, x_n)$ defined by

$$f_i(x) = (||x - p_i||_2^2 - \alpha^2)(||x - p_i||_2^2 - \beta^2).$$

Show that the polynomials f_i are linearly independent. [Hint: Consider $f_i(p_j)$.]

(b) Deduce that $k \leq \binom{n}{2} + 3n + 2$. [Hint: Find a basis for the space spanned by the polynomials f_{i} .]

(a) First note that we may assume $\alpha, \beta \neq 0$, as $||x - y||_2 \neq 0$ for all distinct $x, y \in \mathbb{R}^n$.

Suppose that $\sum_{i \in [k]} \lambda_i f_i(x) = 0$, where $\lambda_i \in \mathbb{R}$ for all $i \in [k]$. Substituting p_j into this expression we obtain

$$\alpha^2 \beta^2 \lambda_j + 0 = \sum_{i \in [k]} \lambda_i f_i(p_j) = 0.$$

Here we have used that $f_i(p_j) = \alpha^2 \beta^2$ if i = j and equals 0 if $i \neq j$. It follows that $\lambda_j = 0$ (since $\alpha, \beta \neq 0$) for all $j \in [k]$. Thus f_1, \ldots, f_k are linearly independent, as required.

(b) For any $q \in \mathbb{R}^n$ we can write $||x - q||_2^2 - \alpha^2 = ||x||_2^2 - \sum_{j \in [n]} 2q_i x_i + (||q||_2^2 - \alpha^2)$, and so $||x - q||_2^2 - \alpha^2$ can be written as a linear combination of the functions

$$||x||_2^2, \{x_i\}_{i\in[n]}$$
 and 1.

It follows that each function f_i can be written as a linear combination of the functions

 $||x||_{2}^{4}, \quad \left\{ ||x||_{2}^{2}x_{i}\right\}_{i \in [n]}, \quad \left\{x_{i}x_{j}\right\}_{i \neq j}, \quad \left\{x_{i}^{2}\right\}_{i \in [n]}, \quad \left\{x_{i}\right\}_{i \in [n]}, \quad \text{and} \quad 1.$

(Note here that $||x||_2^2 = \sum_{i \in [n]} x_i^2$.) Altogether there are $1+n+\binom{n}{2}+n+n+1 = \binom{n}{2}+3n+2$ such functions, and so k is at most this number by (a).

7. Let \mathcal{F} be a collection of functions from [n] to \mathbb{Z} . Suppose that, for every pair of distinct functions $f, g \in \mathcal{F}$ we have f(i) = g(i) + 1 for some i. Prove that $|\mathcal{F}| \leq 2^n$. [Hint: look for a suitable collection of polynomials.]

To each $f \in \mathcal{F}$ associate a polynomial $p_f \in \mathbb{Z}[x_1, \ldots, x_n]$ given by

$$p_f(x_1,...,x_n) = \prod_{i \in [n]} (f(i) + 1 - x_i).$$

Note that the hypothesis gives $p_f(g(1), \ldots, g(n)) = \mathbf{1}_{f=g}$ for all $f, g \in \mathcal{F}$.

Claim: The polynomials $\{p_f\}_{f\in\mathcal{F}}$ are linearly independent over \mathbb{Q} .

To see this, suppose $\sum_{f \in \mathcal{F}} \lambda_f p_f = 0$, where $\lambda_f \in \mathbb{Q}$ for all $f \in \mathcal{F}$. Then for every $g \in \mathcal{F}$

$$\lambda_g = \sum_{f \in \mathcal{F}} \lambda_f p_f \big((g(1), \dots, g(n)) \big) = 0.$$

Thus $\{p_f\}_{f\in\mathcal{F}}$ are linearly independent, proving the claim.

Lastly, note that all the polynomials $\{p_f\}_{f\in\mathcal{F}}$ are multilinear, and so contained in $V = \text{span}(\{\prod_{i\in I} x_i : I \subset [n]\})$. It follows that $|\mathcal{F}| \leq \dim_{\mathbb{Q}}(V) \leq 2^n$.

8. Let p be a prime and let $n \ge p^2$.

(a) Prove that if $\mathcal{A} \subset [n]^{(p^2)}$ with $|A \cap B| \neq 0 \mod p$ for all distinct $A, B \in \mathcal{A}$ then $|\mathcal{A}| \leq {n \choose < p}$.

(b) Prove that if $\mathcal{A} \subset [n]^{(p^2)}$ with $|A \cap B| \equiv 0 \mod p$ for all $A, B \in \mathcal{A}$ then $|\mathcal{A}| \leq {n \choose < p}$.

Using (a) and (b), show that for all $\varepsilon > 0$ there is N_0 so that the following holds for $N \ge N_0$. The pairs in $[N]^{(2)}$ can be coloured **red** or **blue** so that $X^{(2)}$ receives both colours for every $X \subset [N]$ with $|X| \ge N^{\varepsilon}$.

(a) Note that $|A| \equiv 0 \mod p$ for all $A \in \mathcal{A}$. Also $|A \cap B| \not\equiv 0 \mod p$ for all distinct $A, B \in \mathcal{A}$. We may therefore apply the Modular Frankl–Wilson theorem to \mathcal{A} , taking p as the prime and $S = \{1, \ldots, p-1\}$ to get $|\mathcal{A}| \leq {n \choose \leq p}$.

(b) Here we note that \mathcal{A} is S-intersecting, where $S = \{0, p, 2p, \dots, (p-1)p\}$. By the Frankl–Wilson theorem we obtain that $|\mathcal{A}| \leq {n \choose \leq p}$.

For the final part of the question, take p to be a large prime (below we need $p \ge 2/\varepsilon$). We will prove the statement for N of the form $N = n^{p^2}$, where $n \in \mathbb{N}$ is sufficiently large (need $n \ge p^4$ below); this implies the result for all N, by an approximation argument.

To begin, identify the elements of [N] with sets in $[n]^{(p^2)}$ in an arbitrary way. Given two distinct sets $A, B \in [n]^{(p^2)}$ colour AB red if $A \cap B \not\equiv 0 \mod p$ and blue if $A \cap B \equiv 0 \mod p$. This gives a colouring of $[N]^{(2)}$ and note that for any $X \subset [N]$, if $X^{(2)}$ only receives colour red then by (a) the set X satisfies $|X| \leq {n \choose \leq p}$. The same holds if $X^{(2)}$ only receives colour blue by (b). For $n \geq 3p$ we have

$$\binom{n}{\leq p} \leq \frac{n^p}{p!} \left(1 + \left(\frac{p}{n-p+1}\right) + \left(\frac{p}{n-p+1}\right)^2 + \dots \right) \leq n^p.$$

Provided $n \ge p^4$ and $p \ge 2/\varepsilon$, this gives

$$|X| \le \binom{n}{\le p} \le n^p \le \left(\frac{n}{p^2}\right)^{2p} \le \binom{n}{p^2}^{2/p} \le N^{\varepsilon}.$$

9. Prove that there is an uncountable collection \mathcal{A} of subsets of \mathbb{N} such that $|A \cap B|$ is finite for all distinct $A, B \in \mathcal{A}$.

One possible solution here is as follows. Let p_i denote the *i*th prime for all $i \in \mathbb{N}$. Given $S \subset \mathbb{N}$, consider the set

$$A_S = \left\{ \prod_{i \in S \cap [n]} p_i : n \in \mathbb{N} \right\} \subset \mathbb{N}.$$

We claim that $\mathcal{A} = \{A_S : S \subset \mathbb{N}\}$ has the required property.

First note that $A_{S_1} \neq A_{S_2}$ whenever S_1 and S_2 are distinct, so \mathcal{A} is an uncountable family. Also, if A_{S_1} and A_{S_2} are distinct sets in \mathcal{A} then there is $i \in S_1 \setminus S_2$ (say). All but a finite number of elements of A_{S_1} are divisible by p_i , while no element of A_{S_2} is divisible by p_i . It follows that $|A_{S_1} \cap A_{S_2}| < \infty$, as required.

10.⁺ Let $1 \le i \le j \le n$. Let $A = (A_{ST})$ be a $\binom{n}{i} \times \binom{n}{j}$ matrix with rows indexed by elements of $[n]^{(i)}$ and columns indexed by elements of $[n]^{(j)}$, where $a_{ST} = 1$ if $S \subset T$ and $a_{ST} = 0$ otherwise. Prove that rank $(A) = \min\{\binom{n}{i}, \binom{n}{i}\}$.

Omitted. Feel free to talk to me about this though.