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AssTrACT. Itis an understatement to say that differential equations are useful to describe quantities that evolve
over time. In many applications (such as biology, finance or engineering, to name a few) these quantities
can often be profoundly affected by stochastic fluctuations, noise, and randomness. The theory of stochastic
differential equations provides a qualitative and quantitative understanding of the effects of such perturbations.
This course is an introduction to this theory.
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CHAPTER 1

A motivation

One of simplest cases of a stochastic perturbation is an ODE driven by a vector field u that is affected
by noise: let us model this perturbation by a sequence of random variables N = (N;),», which influence
the evolution over time via another vector field o,

dY,
(1.0.1) —L = u(¥)+o (%) Ny .

dt -
Noise
There is a multitude of situations where one ends up with an equation of the form (I.0.1)) (for example
the management of risk, mathematical finance, uncertainty in biological processes, etc; we refer to
[Gardiner, 2009, |Gardiner et al., 1985, @ksendal, 2003 for a wealth of examples). Throughout this
course we mainly focus on the well-posedness of (T.0.T).
There are many possible choices for the distribution of the noise process N. A common situation is

that the noise N is a white noise, that is

(1) (independence) Vs # ¢, N (¢) and N (s) are independent,

(2) (stationarity) Vt; < --- < t,, the law of (N (¢; +¢),---, N (t, + 1)) does not depend on ¢,

(3) (centered) E[N;] =0, Vt > 0.
It is clear, that above properties imply that the trajectory ¢ — N; will not be continuouqT] and therefore
we cannot simply apply standard ODE results for every sample path N (w) since the regularity of the
vector fields is well-beyond classic ODE theory. We have to exploit the probabilistic structure of the
noise. Putting mathematical rigour aside, let us rewrite above differential equation as an integral equation,
that is we integrate (I.0.1)) against time and work with dB; := N,dt. Since integration smoothes out, the
process B will have continuous trajectories, By = 0 and by 1) and 2) above it has stationary and independent
increments. One can show that this already implies that B is a BM (this is not suprising considering the
CLT; the “Levy-Ito decomposition theorem” makes this preciseﬂ This informal(!) argument motivates us
to rewrite (1.0.1)) as a stochastic integral equation

t t
(1.0.2) Yt=/ p(Y,)dr+/ o (Y;)dB;.
0 0

resp. in differential notation
dY, = u(¥,)dt + 0 (Y,)dB;.

So far we shifted the problem to give meaning to the second integral fot o (Y,)dB,. If t — B, would be a
path of finite length (finite variation), we could just use classic Riemann—Stieltjes integration. But you
already know that although B can be rigorously defined as a stochastic process with continuous trajectories
t — B; (w), these trajectories are somewhat “degenerate”: they are of infinite length (also called unbounded
variation) and therefore excluding the use of Riemann—Stieltjes integration, highly oscillatory, statistically
self-similar and possess a rich fractal structure, etc.; see Figure ?? for a two-dimensional BM sampled at
different time intervals. Nevertheless it is possible to exploit the probabilistic structure of the noise and

Even worse, if we assume that E[Ntzj =1 then (w, t) — N;(w) is not even measurable (see [@ksendal, 2003, Hida, 1980])).
2Any continuous real-valued process X with stationary independent increments can be written as X; = Xq + ut + B; where B
is a BM and u is a constant.
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develop a vast generalization of classic ODE theory that can deal with such “wild” trajectories. Qulitatively
and quantitavely understanding the influence of such perturbations of is what makes stochastic differential
equations such a fascinating and rich subject. You already know that there exists a beautiful and highly
influential theory that gives meaning to such integrals against “degenerate” trajectories. We are going to
recall this theory and start to think about the well-posedness of (1.0.2).



CHAPTER 2

Martingale theory in continuous time

In this chapter we briefly recall the basic theory of martingales in continuous time as covered for
example in last year’s “B8.2 Continuous martingales and stochastic Calculus”. We refer to the lecture notes
for B8.1, B8.2 [Obloj, 2015]| or alternatively [Revuz and Yor, 1999] and the books in the reading list in
Appendix [A] for a thorough treatment. We prove very few of the results in Chapter 2]and therefore many
proofs in Chapter [2]are marked as not examinable. However, you should be familiar with the statements
themselves and be able to apply them: all of the other chapters rely on these obects and their properties as
presented in Chapter 2, like stochastic integrals, the quadratic variation process, semimartingales, etc.

2.1. Processes, filtrations and stopping times

Fix two measurable spaces (Q, ) and (S,S). We refer to (Q, ) as sample space and to (S, S) as state
space. We call a collection of random variables X = (X;);>¢,

X (QF)—=(SS)

a stochastic process and we sometimes use the notation X (¢, w) for X; (w). In virtually all situations that
we are interested in, it is justified to assume a stronger measurability requirement, namely that

(tw) X(tw)

is B([0,0)) X ¥ measurable, and we call such a stochastic process X measurable. Further, we refer to the
index t as time and for every fixed w € Q) we say that

t— X (w)

is the trajectory or sample path of X associated with w. Obviously, two stochastic processes, X = (X;) and
Y = (Y;) are the same if

X(t,w) =Y (t,w)V(t,w)
but it turns out that weaker concepts of “being the same” are more useful:

(1) X and Y are indistinguishable if P(X; = Y;,Vt) = 1.
(2) X and Y are modifications if P(X; =Y;) = 1 for every ¢ > 0,
(3) X and Y have the same finite dimensionals marginals if forevery k e N, t; <--- <1, A€ S 8k

P((Xys... X, ) €A) =P((Y,.... Y, ) € A)

and in this case we also say that X and Y are versions of each other.

Note that 1 implies 2 and 2 implies 3. The weakest notion of the above, namely having the same finite
dimensional marginals, has (unlike being a modifications or indistinguishable) an immediate extension to
the case when X and Y are defined on different probability spaces, that is if X; : (<, F,P) — (S,S) and ¥; :
(Q,F',P") — (S,S) . Recall also Kolmogorov’s extension theorem which guarantees that there exists a
probability space and a stochastic process that has a given set of marginals (under natural consistency
assumptions).
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Since we usually think about the index ¢ as time, we want to formalize the accumulation of information
over time and of processes that “do not look into the future”: this is done using filtrations. [ A filtration of a
measure space (in our case the sample space) (Q, F) is a nondecreasing family {77 : ¢ > 0} of sub-o-fields
of F,ie. ¥ c F; ¢ ¥ forall s <t. Given a stochastic process X and a filtration (#;) we say that X is
adapted to (¥;) if for every ¢ > 0, X; is ¥;-measurable. We call the smallest filtration for which this is true
the filtration generated by X and denote it by

Fr=0(X;:0<s5<71).

Given a filtration, we can speak of past and future by setting

Fi_ :=0'(U7—7),7-}+ :=0'(ﬂﬁ) and Fo_ := .

s<t s>t

Obviously ;- C ¥; C ¥+ and in general these inclusions are strict. Note that o (U <; F-) = 0 (U< F7) =
0 (U< F7+) and we denote this o-algebra with Fo,. We call a filtration right-continuous it ¥; = ¥4
[resp. resp. left-continous if F; = ¥+ ]. Given a probability space (Q, #,P) with a filtration (%), we denote
this as (Q, 7, (), P) and refer to a filtered probability space. We say that(Q, 7, (7;),P) [or the filtration
(F7)] satisfies the usual conditions if (¥;) is right-continuous and % contains all P-null sets in F.

CONVENTION 1. Unless stated otherwise, we always assume that the usual conditions hold ]

Given a filtration (7;) we can use this to gradually define smaller classes of processes: X is progressively
measurable with respect to () if for each t > 0

(s,w) — X (w) is (B([0,7]) ® F7) — measurable

for all (s,w) € [0,7] X Q. Every measurable process that is adapted to (¥;) has a modification that is
progressively measurable with respect to (7). Using the progressively measurable version allows to avoid
some measure theoretic trouble. A stronger requirement is that of predictability: X is predictable if
(s,w) — X (w) is P —measurable
where P denotes the o--algebra on [0, c0) X Q that is generated by the space of continuous and (¥;)-adapted
processes. To sum up,
predictableCprogressively measurableCcadaptedCmeasurable.

Using filtrations we can also speak of random and stopping times: we a call any random variable
7:(QF) = ([0,00], B([0,00]))
a random time. We call a random time a stopping time if for every (¢, w)
Hw)eF

We say that a property 7 holds locally for a process X if there exists a sequence of stopping times, (7,,)
such that 7, — oo a.s. and such that the stopped process (Xz, ar 17, >0) , has the property r for every n > 1.
We call a family of random variables {Z, },; indexed by some set I uniformly integrable if

SupE [1Za| 1)z, 15n] = 0asn — oo,
acl

(in the case of stochastic process, 7 = [0, 0)).
Finally, recall a common convention:

'We use the word “information” very loosely here but one way to make precise how a o-algebra contains “information” is
the Doob-Dynkin lemma: given two real-valued random variables U, V on (€, ¥) it holds that V' is o (U)-measurable if and only
V = f(U) for a B(R)-measurable function f.

2This is justified since we can replace ¥; by o (Fr+, {IN € F:P(N) =0}) to get a filtration that satisfies the usual conditions.
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Remark 2.1. Fix a measure space (S, %, 1) and denote the space of all real-valued Lebesgue measurable
functions such that

1/p
Iflp = (/S If(x)ll’/x(dx)) <o

with L7 (S, Z, p). This is a linear space but ||, is only a seminorm since it is invariant under modification
of f on u-nullsets. By using the quotient space

LP (8,5, 1) := LP (S, %, ) [ker (|.|,,)

we arrive at normed space.
CONVENTION 2. Itis custom to not be pedantic about such distinctions between an equivalence
class and a member of this equivalence class and unless stated otherwise we follow this convention.
For example, we use the same notation for what are strictly speaking two different objects; we refer to
a process when it is actually an equivalence class of indistinguishable processes in the same way as we
refer to a function L? although it is an equivalence class of functions in £

2.2. (Local) Martingales
Throughout the rest of Chapter 2 we fix a filtered probability space (Q, P, (%) F).

DErINITION 2.2. We call an (7;)-adapted process M = (M;) ;o such that M, € L' (dP) Vt >0 a
(1) a submartingale if E[M,|F;] > M,
(2) a supermartingale if E[M,|F;] < Mj,
(3) amartingale if E[M,|F] = Mj,
holds (a.s.) for all s <. If the sample paths ¢ — M, are right-continuous, then we say that M is a
right-continuous [sub/super] martingale; similary we speak about left-continuous or continuous [sub/super]

martingales. We denote the space of martingales with M, the subspace of continuous martingales with
M..

REMARK 2.3.

e M and M, are vector spaces under pointwise addition and scalar multiplication of sample paths.

o If we want to emphasize with respect to which probability measure and filtration a process is a
martingale, we say that it is ((%;),P)-martingale or (¥;)-martingale. If M is ((¥;),P)-martingale
then it is also a ((G;),P)-martingale under every filtration such that M is (G;)-adapted and
G: C ¥4, especially this applies to (G;) = o (M). The converse is not true: if ¥, C G; then
there is no reason why M should be a ((G;),P)-martingale. (The same applies to [sub/super]
martingales).

o The prefixes sub- and super- come from a deep connection with sub- and superharmonic functions.
Rogers & Williams give the useful mnemonic that the “b” in “sub” points upwards, and the “p”
in “sup” downwards reflecting that the conditional expectation of a submartingale increases/a
supermartingale decreases.

Recall that we 7 holds locally for a process X if there exists a sequence of stopping times, (7;,) such that
T, — oo a.s. and such the stopped process (Xr,,,/\t 1., >0) , has the property 7 for every n > 1. In the context
of martingales this leads to so-called local martingales. This generalization of martingales is extremely
useful: for example it frees us from worrying about integrability and allows to deal with processes that are
only defined up to a stopping time.

DEeriniTION 2.4. We call an adapted, right-continuous stochastic process X = (X;) ;>0 a local martingale
if there exists a sequence of stopping times (7,),, such that

T, < Tpe1 and limT,, = 00 a.s.
n
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and such that
X 1‘r,, >0 = (Xt/\‘r,, l‘rn>0)t20
is a sequence of martingales. We denote with M, the space of local martingales, and with M, o the
subspace of continuous local martingales.
REMARK 2.5.

e The purpose of the factor 1,0 is to deal with the case when Xj is not integrable, thus when Xy
is constant we can ignore it.

e By replacing the stopping times 7,, with 7,, = 7, A n we get another sequence of stopping times
(7;) such that X™ is u.i. (Therefore some textbooks include u.i. in above in the definition of a
local martingale).

e If X is continuous we can use 7, = 7, Ainf{¢ : |X;| = n} to work with a sequence (XT;L) of
bounded martingales.

Any martingale is a local martingale (using for example 7,, = n) but many important processes are
only local martingales but not martingales — we recall such examples below. Many proofs that work for
martingales have an immediate generalisation to local martingales by repeating a localized version of the
argument. Let us first recall one of the most important examples of a martingale, namely Brownian motion.

DeriniTION 2.6. We call a real-valued, stochastic process B = (B;) >0 defined on a probability space
(P, ) and adapted to a filtration (%), > a one-dimensional Brownian motion started at O with respect to
the filtration () if

(1) By =0and ¢+~ B, is continuous (a.s.),
(2) for s <t, B; — By is independend of 7y,
3) fors <t, B;—Bs ~ N (0,t—5).

Last year, it was shown to you that the above is non-vacous: there exists a probability space that carries
a Brownian motion (you might have seen several different ways to prove this). Already in the Brownian
case, local martingales appear naturally under nonlinear transformations.

ExampLE 2.7. Let B be a two-dimensional Brownian motion. Then
(log|B:|),
is a local martingale but not a martingale since E[log|B;|] — o as t — oo.

RemARKk 2.8 (WARNING). One might be tempted to think of local martingales as martingales that
just miss an integrability property. This is wrong! For example

log|B;| € LPVp < 00, ¥t > 0
but r — E[log|B;|] is not constant. Local martingales are truly much more general than martingales.
Given a local martingale M, often it is useful to know if M is actually a martingale.
ProposiTioN 2.9. Let M € Mo and M € L' (P) V¥t > 0. Then M € M...

Proor. Since M, < M we have M, € L' (P) so it just remains to verify E[M,|F;] = M,. Since
M™ € Mg o we have

E[M"|F] = M}

Since M € L' (P) we can apply dominated convergence and let n to co. O

CoroLLARY 2.10. A bounded, continuous local martingale is a continuous martingale.
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2.3. Inequalities, regularity, convergence and optional stopping

It often helps to think of sub- and supermartingales as randomized versions of decreasing and
increasing sequences. This motivates us to look for “randomized versions” of classic results from analysis
about monotone sequences, for example convergence. A powerful tool to do this are Doob’s inequalities.
Throughout this section recall that any statement about a supermartingale M can be turned into a statement
about the submartingale —M. We use the notation

X} = sup |X]
s€[0,z7]
THEOREM 2.11 (DOOB’S MAXIMAL INEQUALITIES). Let M be right-continuous, a martingale or a
positive submartingale. Then for every t > 0, 1 > 0 and every
e p>1wehave
AP (M 2 A) < |Myl7,
e p> 1 we have

|Mt*|Lp < |Ml‘|LP'

P
p—1
Proor. (PROOF NOT EXAMINABLE)The result is first established in discrete time, then we

choose an increasing squence of finite subsets of [0, 7] to approximate the continuous time case. The details
are given in [Obloj, 2015]. O

Since |M,| < M} we get for every p > 1, that M} is LP-bounded iff M has a uniform L”-bound over
[0,7]. For p = 2 this becomes a key ingredient for stochastic integration theory.

COROLLARY 2.12. Let M be a right-continuous martingale. Then

|M,"|L2 < oo ifand only if sup |M;|;2 < .

s€[0,¢]

If the above holds, then M" = (Mj)¢(o,,) IS u.i.

As in the proof of Doob’s maximal inequalities a common strategy is to first derive a result in in
discrete time and then approximate the process in continuous time. This requires that sample paths can be
well-approximated by such discrete approximations (like right continuous trajectories). Luckily, under
weak conditions we can work with a modification that is right-continuous.

THeorEM 2.13. Let M be a submartingaldd If
t— E[X/]

is right-continuous then M has a modification that is a (%) submartingale with cadlag? paths. This
modification is unique (up to indistinguishability).

Proor. (PROOF NOT EXAMINABLE) O

Especially, every martingale has a cadlag modification.

CONVENTION 3. From now onwards, unless otherwise stated, we only consider cadlag
[sub-/super-] martingales (without explicitly stating that they are cadlag).

We can now state the first convergence result.

THEOREM 2.14. Let X be a submartingale. If sup,E [ X;'| < co then

Xo := lim X, exists a.s. and | Xo| 1 < 0.
t—o00

3Recall our convention that we always assume the usual conditions. This theorem is even true if (#;) is only right-continuous
4continue a droite, limite a gauche (right-continuous with left limit).
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Proor. (PROOF NOT EXAMINABLE). Follows by using Doob’s upcrossing inequalities (which
we do not recally here) in discrete time and use the usual limit to get the result for the continuous time case.
See details in [Obloj, 2015]]. O

If a [sub-/super-] martingale converges to a limit M., we want to add 7 = {co} as time and study M via
the conditional expecation E[ M |%;].

THeOREM 2.15. Let M € M. The following are equivalent,

(1) limy— M, converges in L,
(2) there exists a M, € L' such that M; = B[ M| %] Vt,
(3) M is uniformly integrable.

If the above holds, then

M; = 00 M a.s.

Moreover, above conditions are all satisfied if sup, |M;|p (o #p) < o holds for a p > 1. The analoguous
statement holds to super [sub-] martingales by replacing the equality in 2 with <[resp. >].

Proor. (PROOF NOT EXAMINABLE). O

An important consequence is that a L” bounded martingale is a uniformly integrable martingale.

We emphasize that above Theorem shows that a path-valued (thus infinite dimensional) random
variable, namely the u.i. martingale M = (M;), (. is determined by a real-valued random variable and
a filtration, namely ((%;), M). This identification is a key ingredient for stochastic integration theory.
Another very useful property of u.i. martingales is that the martingale property is robust under stopping
times.

TuEOREM 2.16 (OPTIONAL STOPPPING THEOREM). Let X € M and u.i. Then
E[Xe|Fo] =E[X:|Fo] = X
for all stopping times o, T with o < 1.

Proor. (PROOF NOT EXAMINABLE). O

REMARK 2.17. The u.i. assumption is not a technicality. For example if 7, :=inf {t : B; = x} then
b=E|B:,|F,| # Br, =aforany a < b.

(Thus BM is not a u.i. martingale).

2.4. From finite to quadratic variation

Given a path y : R, — R we can measure its length on the interval [0,¢] as follows: for every finite
partition 7 = {0 =1y < --- <1, =t} the length of the path that is the linear interpolation of the points

(Y0, V11> - - -» ¥4, ) is clearly
Z |yti+l _7t;|~

t; enn[0,7]
Thus it is natural to definte the length (henceforth referred to as total variation) of y as
sup > P =il
T fenn0]

with sup,, is taken over all finite partitions 7.
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DEerintTION 2.18. Let A be an adapted cadlag process such that for all > 0
2.4.1) sup > A, —Ay] < oo,

T tenn[0,]
with the sup,, is taken over all finite partitions 7 = {0 =1y < --- < f,, < oo}. We call (2.4.1) the total variation
of A on the interval [0,7], and denote the set of adapted cadlag processes with finite total variation with BV.

Note that (2.4.1)) does not have to converge, even if y is continuous! Last year you saw that if y is a
typical realization of Brownian motion,y = B(w) for a.e. w, then

sup Z ‘Bliﬂ —B|=00
T tenn0,r]
for any sequence of partitions (77,,) with mesh () —, 0. Hence a Brownian particle travels an infinite
distance over a finite interval [0, ] so it moves with “infinite speed”. However, we can say a bit more by
recalling that BM is @-Holder continuous, i.e.
Bt{ - Bt,‘ 1
sup% < oo Ya e (O,—
s#t |t - S| 2

and as consequence
1/ 1
sup § iBtiH _Btil ‘<o Vae (05 E)

t; enn[0,7]
Thus we found a more more useful “inner clock™ for the evolution of a Brownian particle, namely taking
the é—th power of its space increments. It turns out that if we switch from a sup,, over all partitions 7
to a lim,, along a sequnce of partitions with vanishing mesh, we can even take o = % Moreover, above
generalizes to local martingales.

THEOREM 2.19. Let M € M, oc. Then there exists a non-decreasing, continuous adapted process
(M)
such that (M), =0 and
M? — (M) € Mcjoc.
This process is unique (up to indistinguishability). Furthermore, for any interval [0,t] and any sequence of
partitions (1t,),,
m={0=1) <t} <--<tf =t}
with vanishing mesh, that is

sup |t;‘—t{’_1| — 0asn— oo,
iiti_1,t;i €My
we have that

np
<M>t = hrllnzl: (Mti - Mfi—l)
where the limit is taken in probability. We call the process (M) the quadratic variation or bracket of M.
Proor. (PROOF NOT EXAMINABLE) O

ReEMARK 2.20.

e Every increasing path is of finite total variation, thus (M) € BV.
— For Brownian motion (B), = ¢ but in general (M) is not deterministic and it is often difficult
to find an explicit expression for (M).

We motivated the bracket process by speaking about lenght/speed of a particle following the trajectory
of a process. There are other ways to motivate the bracket - first let us generalize the bracket via polarisation
to a bilinear operator.
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DerintTION 2.21. Given X,Y € Mo we define their cross-variation process as
1
(X, Y>t = Z (X + Y)z —(X- Y>t) .

(Note that (X, X) = (X)). As above we can characterize the process (X, Y).

THEOREM 2.22. Let M,N € M, joc. Then there exists a continuous, adapted process of finite variation

denoted
(M,N),
such that (M,N), =0 and
MN —(M,N) € M¢oc-
This process is unique (up to indistinguishability). Furthermore, for any interval [0,t] and any sequence of
partitions (1,),,
m={0=1) <t} <---<1p =t}
with vanishing mesh, that is
sup|t!' =" ,| > 0 as n — oo,
i

we have that
my

(M), = lirIan (Mti - Mfi—l) (Nti _Nti—l)
i=1
where the limit is taken in probability. We call the process (M, N) the quadratic covariation or bracket of
M and N.

Proor. (PROOF NOT EXAMINABLE) For example [Revuz and Yor, 1999, Chapter 4.1] O

Recall that the covariance of two random variables U,V that are centred, E[U] = E[V] = 0 is simply
(24.2) Cov(U,V)=E[UV].
Moreover, one has the simple estimate

(2.4.3) Cov(U,V) < +/Var(U)\/Var (V).

A (local) martingale has clearly centred increments so from this point of view (M, N) generalizes above
covariation (2.4.2)) since informally(!)

CEIMN)] = tim > B[ (M, - M) (Np, - Ny )]

n
t" enn[0,7]
i

t
/ Cov (dM, dNy).”
0

Similarly, the Kunita—Watanabe inequality generalizes (2.4.3) to pathspace.

THEOREM 2.23 (KUNITA—WATANABE INEQUALITY). Let M,N € M., and H,K be measurable
processes. Ther3|for all t > 0

t t ) t )
/0HS1<s|d<MJV>|Ss\//0 H: |d<M>|s\//0 K21d (N,

SIf A € BV then djt’ exists dP x dA-a.e. (dA denotes Lebesgue measure). Hence, for P-a.e. w we can define new measure on

(R, B([0, ) |dA; ()] := |%§‘“>‘dn By the above (M, N) € BV.
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Moreover, for 1% +é =1

E[ /0 HyK, |d (M.N)],

< \// H?|d (M), \// K3 |d(N)| | -
0 0 L

Lr a

Proor. (PROOF NOT EXAMINABLE) For example [Revuz and Yor, 1999, Chapter 4.1] or
[Obloj, 2015]] O

We have seen several motivations for the bracket process (via the length of a path, the process which
turns M? into a local martingale, as generalization of covariance) and we will see yet another way to think
about the bracket process when we recall Ito’s formula.

2.5. Ito’s stochastic integral

We now give meaning to stochastic integrals

t
2.5.1) / K.dM,.
0

A first naive try is to define the above integral, trajectory by trajectory via Riemann—Stieltjes integration
t
[ K@ @) =tim 3 Ky (@) (M) = M @)
0 tien(n)

But already if M is a Brownian motion we see that this is doomed to fail since Brownian motion is
of unbounded variation and Riemann—Stieltjes integration relies heavily on the assumption of bounded
variation (check your old notes if you do not believe this!). Ito realized that despite the breakdown of
classic integration theory, one can develop a general theory of integration for (2.5.1) by

(1) restricting integrators M to (semi)martingales;
(2) restricting integrands K to those that “do not look into the future” of the integrator.

We will see below that the combination of (1) and (2) allows to exploit probabilistic cancellations in the
Riemann sums using the martingale inequalities and gives shows well-posedness of (2.5.1).

2.5.1. A nice class of integrators: the space of continuous, Z>-bounded martingales H>.

THEOREM 2.24. Denote with H? the space of L*-bounded martingales@
H := {M € M :sup M| < oo}
t

and with H? the subspace of continuous and L*-bounded martingales
H> :=H>NM..
Then
(1) H? is isomorphic to L? (Q, Fe,P) and the isomorphism is given as
Mi)iso }LTO M,
Mo +—  (E[Mw|Ft])i0-
It follows that H? is a Hilbert space with inner product

(M, Nz = E[MNo] and norm |M|yp = \JE[M2].
(2) H? is closed in (H2,|.|g2), hence again Hilbert.

6Recall that by Convention 2, we strictly consider equivalence classes of indistinguishable £2 (dP)-bounded martingales. Recall
also Convention 3, that throughout we refer to cadlag martingales.
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We also refer to H?> [resp. H?] as the space of square integrable or L*>-bounded [and continuous]
martingales.

Proor. We claim that H? is isomorphic to L? (Q, %z, P). To see this let M, € L? (Q, Fz,P), then the
process

(E[MelF: 1),
is in H? since |M:| 124y = E [E [Mm|‘77,]2] <E [E [Mozo|77,]] =E [Mfo] On the other hand, given M € H?
we get by Doob that M € L?(Q, .., P), therefore M is u.i. and M, = E[Z|F;] for some Z € L*(Q, Foo, P)

by Theorem [2.15]
It remains to see the closedness of H>. Therefore consider a Cauchy sequence (M") ¢ H? converging

to some M € H2. By Doob
E [sup|M," —M,f] < 4IM" ~ My —> 0.

Since L? convergence implies a.s. convergence along a subsequence, there must exists a subsequence (1)
such that

sup|M;' = M;| =0 a.s.
t
]

In our applications the integrand will always be a continuous process. In this case we have a nice
characterization of H.

PropoOSITION 2.25. Let M € M, .. Then M € H? iff

(1) My e L?(dP),
(2) E[(M)e] < 0.

In this case, M*> — (M) is w.i. and for all stopping times o < T,
E[(M: -My)|Fs] = E[<M>-r - <M>a— |For ]
Especially, if M € Hg it follows that

1/2
Ml = Mool 20 = | (MDY

L2(dP)
Proor. (PROOF NOT EXAMINABLE) For example, see [Revuz and Yor, 1999, Chapter 4.1] or
[Obloj, 2015] O

2.5.2. A nice class of integrands for every integrator M € H”: the space L>(M). Firstly, we
restrict ourselves to integrands that are progressively measurable. Secondly, we expect two stochastic
integrals [ ! H,dM; and f‘ ! G,dM, to coincide if M does not change on the interval [s,¢] (both should
equal 0). Recalling that the bracket measures the “accumulated infinitesimal changes” of M, we take this
as motivation for the definition of the so-called “Doleans measure” on ([0, c0) x Q, B ([0, )) X Fo),

pm ((s,1]x A) = E[(M),—(M),;A]
= E[/ 1a(w)d (M), |.

Thus for every integrator M € H? we have identified a nice candidate for a class of integrands, namely the
subspace of progressively measurable processes in the Hilbert space

L*([0,00) X Q, B([0,00)) ® Feo tiar)
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The measure pys does not see a difference between processes H, G that only differ from each other on
intervals where M does not change. From the definition of w; we see that

P, /|H<r,w>|2duM<t,w)

0

E [/Ow Hszd(M)X] .

DEFINITION 2.26. For M € H? denote with L* (M) the Hilbert space of progressively measurable
processeq’| with Hilbert norm

< 00,

2 (e8]
|H|L2(M) :=E['/0' Hszd<M>\
REMARK 2.27. L*(M) includes all bounded and cadlag, adapted processes though in our applications
we will mostly deal with continuous bounded processes.
2.5.3. Construction of the stochastic integral. Let’s make an educated guess what our stochastic

integral should look like: if the integrand is especially simple, namely piecewise constant

K =K_ 1101 (1) +2Ki1(’i”f+1] (t) for some 0 =g < t; < --- with lilmtl- =0
i>0

with K; € ¥, all K; bounded uniformly in i, then we obviously want that

t
/ KdM = ZKi (Mi; 0 = Migne) -

0 i1

By linearity of cross covariation we get for every N € H? that

</OAKdM,N>[ = Zi:Ki<Mr.~+1At—Mtf/\t’N>

t
/ Ked (M,N)
0

On the right hand side we have a classic Riemann—Stieltjes integral against the quadratic cross variation
(M, N). It turns out that above property already characterizes the stochastic integral and can be used to
show its existence.

TueoREM 2.28. Let M € H? and K € L>(M). Then
(1) there exists a unique element K e M € Hg such that

(KeM,N)Y=K-(M,N) VN € H.

(2) the map
K—KeM

is an isometry from (L2 (M), |.|L2(M)) into (Hg, |.|H§), that is
1Kl 2a1) EE[ /0 H3d<M>s] =E[(Ke MR = |K o M|y

We call the process K M the stochastic integral or Ito integral of the integrand K against the integrator
M. We also denote it with deM.

7Again: recall Convention 2, that strictly speaking we don’t consider process but equivalence classes processes.
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Proor. (PROOF NOT EXAMINABLE) Let 1,1’ € Hg and orthogonal to all N € H?. Then their
difference is also orthogonal to all N € H?. Choosing N = I — I’gives
q-11-I'Y=0
which shows that / and I’ are indistinguishable. To see the existence, first fix M € Hg and consider the map
(2.5.2) Hy >N - E[(K-(M,N)),,]

It is a linear functional since Riemann-Stieltjes integration and expectation are both linear operators.
Further, by Kunita—Watanabe

/Kszd (M,N)| < Nl |K|20r) YN € Hy
the linear functional (2.5.2)) is also continuous. By the Riesz representation theorem any linear continuous
functional can be written as an inner product, hence there must exist K e M € Hg such that O

Applied to the case when M is a BM stopped at a fixed time t, M = (Bll/\l‘)z’ we have M € H>

since |M |2 = /E [(B)f] = t and we recover what is known as “Ito’s isometry” (historically stochastic
integration was first developed for BM)
t 2
([ 1)
0

t
E[/ Hfds]z]E
0

Unfortunately, Theorem [2.28|excludes example Brownian motion on the half-line since /E [(B)go] =00

and hence B ¢ H?. However, if we stop Brownian motion at a fixed time then it becomes an element of H 2,
We expect that a similar argument should work if we replace the fixed time ¢ by a stopping time — put
differently, the stochastic integral should depend only on local properties of the integrator. Below we show
that this is indeed the case. This allows to extend the class of integrands from H? to M. 1oc Using stopping
times and localization.

2.5.4. Extending the stochastic integral to Mo integrators. For the extension we first show that
the stochastic integral just depends on local properties.

ProposiTioN 2.29. If T is a stopping time then
KeM*™=(KeM)"

DeriniTION 2.30. Let M € Mo Denote with L120 . (M) the space of progressively measurable
processes K such that there exists a sequence of increasing stopping times (7,,),7,, — oo such that

E[ [ K,

THeEOREM 2.31. Let M € M, joc and K € leoc (M). Then there exist a unique K « M € M joc such that
(KeM,N)y=K-(M,N) YN € M ioc.
IfM € H? and K € L*>(M) then K M coincides with the stochastic integral defined in Theorem

< 00,

Proor. (PROOF NOT EXAMINABLE) O

We already know how to integrate against bounded variation processes, hence we can immediately
extend the class of integrands even further.
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DEerintTION 2.32. We call a an adapted, continuous process X a continuous semimartingale if there
exists a M € M joc and a A € BV, such that

We denote the class of adapted, continuous semimartingales with S;. For a locally bounded process¥ K we
define
KeX :=KeM+KeoA.

THeOREM 2.33. Let X € S. and K be a locally bounded process. ThenK e X € S, and the map
K—KeX

has the following properties:
(1) He(KeM)=(HK e M) for any locally bounded H, K,
(2) (KeM)" = (K e M™) for any stopping time T,
(3) if M € M joc then Ko M € M joc,
(4) if M € BV then K e M € BV,
®) ifK = K_ll{o} (t)+ Zizl Kil)ti,ti+l]’ K; € ?-,l. then

(K°M)z = ZKi (th/\t _Mti/\t)
i>1

Moreover, if K is a left-continuous, locally bounded process then

Z Kt[ (Mti+1/\t - Mt,—/\t) —n—oo (K [ ] M)t n P—probablllty

tien(n)

whenever mesh (r (n)) — 0 as n — oo.
Proor. (PROOF NOT EXAMINABLE) O
REMARK 2.34. You might ask:

o Why semimartingales? Could we have done things differently and not ended up with semimartin-
gales as our class of integrators? The Bichteler—Dellacherie—Meyer theorem gives a negative
answer: if M is a stochastic proceess and I, an operator on locally bounded processes K such
that I5; (K) coincides on the class of simple processes with our definition and I, is continuous
then this is equivalent to M being a semimartingale. The proof is somewhat technical but we
refer to [Protter, 2004].

o Why left Riemann sums? We could look for limits of type

Z Ktl.* (Mli+1/\l _Mtl-/\t)
tien(n)
where tl.* is any point in [#;,#;+1]. In the bounded variation case, the choice of £ € [#;,#;41] does

not matter but this is not the case here. For example, if we take tl.* = t;41 instead of tl.* =t; we end
up with the so-called “Fisk—Stratonovich integral” and a simple calculation shows that

. 1
lim Z Koo (Mo = Mipe) = (Ko M), + 5 (K.M), .
tien(n)
One of the main reasons for the popularity of the Ito integral is that in many applications it is
naturall that the integrand should not look into the future of the integrator, for example in finance,
K is a trading strategy and M an asset price.

8That is, there exists constants (c,) and a sequence of stopping times (7, ) such that |[K™" | < ¢, (for example, every
continuous adapted process is locally bounded (7, =inf {¢ : |K;| > n}). A locally bounded processes is in L120<: (M) it M € Mcoc

since‘ fOT" K2d{(M)g| < c2 (M )z, - Therefore the integral is well defined.
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o Equivalence classes vs pathwise definitions? Our stochastic integral only depends on the
the equivalence class of the underlying integrator and integrand (which explains the notation

( f KdMm ) (w) as opposed to f K (w)dM (w)). There are more radical departures from classic

stochastic calculus that allow to integrate against non-semimartingales like fractional Brownian
motion and recent developments like rough path integration can deal with such signals in great
generality. However, in many applications the semimartingale assumption is justified, for example
in finance via the no-arbitrage condition.



CHAPTER 3

Ito’s stochastic calculus and applications

Given a process X we can apply a function f to it to create the new process f(X) = (f(X;));s0- If f
is linear and X € M then f(X) € M — similarly if f is convex/concave and X is a sub/supermartingale,
f(X) is again a sub/supermartingale (vian Jentzen’s inequality). Ito’s formula shows that there exists a
class of processes that is closed under all non-linear transformations f that are sufficiently smooth, namely
the class of semimartingales. Ito’s formula itself is a consequence of a second order Taylor expansion

I (X5)
2

FX)=F(X0) = 7 (X) (X = X0+ =2 (X = X, +0 (X = X)?) s =] =0

Now using a telescope sum

f” (Mfi)
2

and sending |#;+1 —t;] — 0 we have (very heuristically!) “proved” Ito’s famous change-of-variable formula.

f(Mt)_f(MO) = Zf, (Mli) (Mti+1 _Ml:t) +Z (Ml‘i+1 _Mti)2+0((Mfi+1 _Ml‘i)z)

TueoreM 3.1. Let f € C*(R,R) and X € S.. Then f(X) is again a semimartingale and we have P-a.s.
that

F(X) = f(Xo)+ /0 F ) dX, + 5 /0 £ (X0 d (XY, Vi 0.

For brevity we also use the differential notation to express the above

af (%) = 11 (X)X, + 57 (X)),

Proor. (PROOF NOT EXAMINABLE) One approach is to make our reasoning above rigourous,
that is carefully show that the discrete sums convergence and the error term vanishes uniformly. Another
approach is to show via a direct calcultation that it holds for all polynomials and conclude by using that
polynomials are dense in C (R,R). O

REMARK 3.2.

e Ito’s formula not only tells us that S, is invariant under C? transformation (unlike M., thus
giving another justification for the introduction of semimartingales). It even gives the explicit
semimartingale decomposition of the new semimartingale. If

X =Xo+M+Aforsome M € M5, A€ BV

then

F(X) = F(Xo)+ /0 F(X,)dM, + /0 £ (X)) dA + /0 £ (X, d (M),

€/\,(;.lac BV

21



3.2. THE STOCHASTIC EXPONENTIAL (DOLEANS-DADE EXPONENTIAL) 22

e There are some easy extensions: in the case of a d—dimensional continuous semimartingales,
thatis X = (X',...,X9) with X' € S, and f € C? (R%,R), we have

d 1 d o
df (X)= Y d:f (X)dx' + 3 DTRf(SHd (X xT),
i=1 ij=1

where 0; f denotes the first derivate in the i-th coordinate of f, etc. Note that if S takes only
values in an open set we only need f to be defined on that set. Later we will see that one can
reduce the smoothness assumption of f further using so-called local times.

e It is often said that Ito’s calculus is a “second order” theory: unlike for the case for bounded
variation paths x where the change of variable formula reads

df (x;) = f" (x;)dx,

an additional second derivative of f appears. This happens since only a Taylor expansion up to
order two will converge. The additional term leads to new phenomena that are not encountered
in classic analysis.

3.1. Integration by parts

Another consequence of Ito’s formula is that the integration by parts formula has an additional term.
By applying the Ito-formula to (x,y) — xy we immediately get

ProposiTiON 3.3. Let X,Y € S;. Then for everyt >0
(XeoY), =XV —XoYo— (Yo X), —(X,Y),
RemMARk 3.4. Applied with processes that start at O the above reads
X, V), =X, —(YeX),—(X,Y),

and with X =Y it reduces to
(X), = X7 -2(X e X),.

Recall that for a bounded variation path X we have Xf —2(X ¢ X), = 0 since the stochastic integral coincides
in this case with the classic Riemman-Stieltjes integral. Thus (X) can be interpreted as measuring “how
far we are away from a first order calculus”.

3.2. The stochastic exponential (Doleans—Dade exponential)
In the deterministic case, the unique solution of
dyr = yidt,yo =1
is given by y; = expt. We now replace dt by dB; and look for a process Y such that

(3.2.1) dY; =Y,dB;, Yy =1.
Assume such a process Y exists. Applying Ito to InY; yields
1 11
dlgly = —dVi—-—=d{¥
g t Yt t 2Yt2 < >t
1 11
= —dY,--=Ydt
A7

1
= dBt_zdt
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hence we arrive at ¥; = exp (B, - %t) as candidate for our solution; above calculation was somewhat formal

(we assumed Y exists, is not C> everywhere, etc.) but by defining

1
Y, :=exp (B, — 5[)

we can quickly verify that it indeed solves (3.2.1): (Bt - %t) is a martingale and Ito applied to x — exp x
t

shows [3.2.1] This justifies the name stochastic exponential and not surprisingly this turns out to be
extremely useful process (it plays a role akin to the exponential funtion in classic calculus).

THeorREM 3.5. Let X € S¢, Xo = 0. The process & (X),

&(X), = exp (X, -3 <X>,),

is a continuous semimartingale and the unique solution of the SDE
3.2.2) dZ, = Z,dX, with Zy = 1.
We call & (X) the stochastic exponential (also Dolean—Dade exponential) of X.

Proor. Applying Ito to the semimartingale X; — % (X), and the exponential x — exp x shows

d&(X),

1 1 1
600 (X~ 5 00, )+ 3800, a (%~ 3 0, )
&(X), dX,

and clearly & (X), = 1. To see uniqueness let Z be any solution, set ¥; := ﬁ = exp (—X, + % (X),). By
Ito

(3.2.3) dy = —YdX+%Yd(X)+%Yd(X)
= -YdX+Yd(X)
Now apply Ito to ZY to get
d(YZ) = ZdY+YdZ+d{(Z)Y)

~ZYdX +ZYd(X)+YZdX +d(Z,Y)
ZYd(X)+(ZeX,~YeX) =0

where we used [3.2.3]for the first equality and Ito isometry plus linearity of the bracket for the final equality.
Above says that for all 1 > 0

7Y, —ZpYy =0
hence Z,Y; = ZpYy = 1 and so Z,(‘:}(X);1 =1 o

ReEMARK 3.6. An useful consequence is that for 1 € C, &(4AX) is a complex valued semimartingale
(i.e. real and imaginary part are both in S, ) that solves the SDE

dZt = /th dXt .

ExampLE 3.7 (GEOMETRIC BROWNIAN MOTION). An important example is geometric brownian motion
& (G) where G; = ut + o By, i.e.

&E(G) = exp((,u— %2)t+0'B,)
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By above, ¥)& (G) is the unique solution of the SDE with constant coefficients (u, o),
dYy, = YdG;
= oYdt+ uY,dB;.
ProposiTION 3.8. Let M € M, o with My =0. Then
1) EM) e Meioe, EM), =0 forallt >0,
(2) E(M) is a continuous supermartingale,
3) E[E(M),] € [0,1] for all stopping times T,
@) EM) e M. and u.i. iff B[E(M)]=1.
Proor. (See also exercise Sheet 3). The first statement follows from (3.2.2). We claim that the
second, third and fourth statement hold more generally for any N € M_ 1o With E[Np] =1 and N; > O for

all # > 0 and not just & (M). To see this, denote with (7;,) a sequence of stopping times such that N7 is a
u.i. martingale (this is possible by Remark [2.5]). By Fatou’s lemma and optional stopping

(3.2.4) E[N,|F] =E [hmianTn Mm] < 1liminfE [N, nr|For] = lim Ny, o = Nor
n n n

for all stopping times o < 7, thus N is a supermartingale. As a consequence, applied with o = 0 we

have E[N;] < E[Ny] = 1 which shows the third statement. For the fourth statement, note that N being a

u.i. martingale, martingale convergence (Theorem [2.15)) implies that N, exists and E[Ne ] = E[Ny] = 1;

conversely if E[Ne ] = 1 use the supermartingale property of N from statement 2 with 7 = oo in to get
E[Nw|Fo] < Ne.

Taking expectation gives E[N, | > E[Nw| = 1 but because N is a supermartingale (statement 2), t — E[N]
is decreasing therefore also 1 = E[Ny] > E[Ny ], thus E[N,] = 1 for all stopping times o~. Hence N is
a martingale (a supermartingale is martingale iff # — E[N,] is constant). It is u.i. since No, exists in L'
(again martingale convergence, Theorem [2.T5). O

When we discuss changes of measure, it turns out that the case when & (M) is a martingale is especially
important. We give a simple sufficient criteria:

ProposiTION 3.9. Let M € M, 1o and there exists a constant ¢ such that for all t > 0
(M), < ct.
Then & (M) € M..

Proor. By Proposition[3.8/& (M) € M. 1oc. Therefore we can find a sequence (7,,) of stopping times
s.t. (8(M), g, ), is a martingale for every n > 1. We would like to send n to co in

(3.2.5) E[&M)pe, |Fs] =B [E M), |-

The (conditional) dominated convergence theorem can be applied if

< 00

(3.2.6) E[sup|8(M)S|} = E[supS(M)s
s<t

s<t

To see that this is satisfied, note that from the definition of & (M) = exp (Mt - % (M) ,) we deduce that

E (M)} = E(2My)exp((M),)

and use this in Doob’s maximal inequality with p =2

E [Sli[t) E(M); e, ] < 4E[EM)y, ]
S
= 4E[EQM),pr, exp(M) s, ]
< dexpctE[E(2M)y] =4expct.
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Now send n — co and by monotone convergence E [supsg EM )?] < 4expct, so we have shown

sup& (M)?

s<t

< 00,

2
E [sup8(M)s] <E

s<t

Thus (3.2.6) holds and we can apply dominated convergence in (3.2.5). a
Two much more general criteria are due to Kazamaki and Novikov.

ProposiTioN 3.10. Let M € M, joc. If at least one of the conditions

(1) (Kazamaki condition) exp (%M ) is a u.i. submartingale
(2) (Novikov condition) E [exp% (M)oo] < o0

holds, then &(M) is a continuous and u.i. martingale.

Proor. 1) Exercise Sheet 4, exercise 2.
2) One can show that 2) implies the Kazamaki condition. This will be easy once we have proved the
Burkholder—Davie—Gundy inequalities and we postpone the proof until then. Exercise Sheet 5, exercise 2)
O

Remark 3.11. Despite their innocent looks, both conditions can often be hard to verify.

3.3. Brownian functional and martingale representation

In his section we assume that (Q, F, (%), P) carries a Brownian motion B. We denote the filtration
generated by Brownian motion with (7;2).

THEOREM 3.12. LetY € L? ( TOE,P). Then there exists a predictable process H € L*(B) such that
(3.3.1) Y=E[Y]+/ HdB;.
0

This representation of Y is unique (up to indistinguishability).

To motivate the proof note that by the previous section, we know that if we take Y = & (B), then
Y=E(B),=EY+ / E(B), 110,11 (s)dBy
0
is of above form. More generally, if Y = & (M), for M; = fot fydBs, then

Y=EY+/ S(M)val[o’t](s)st.
0 — -
Hs

So if we can show that the linear span of the random variables &(M),, with M a stochastic integral
M = f e B with “nice enough” f is a dense subspace of L2 (Q, Tof,IP’), the existence of the represenation
will follow.

LemMma 3.13. Let
o0 k

J = S(M)OOZMZ/ fdBs andsz/ljl)tAt_H}fork €N, A; eROLH <<t <oop.
0 = jotj

The linear span of J is dense in L? (« FB ,]P’).

For the proof of this lemma recall that

e if two complex analytic functions f,g : C¥ — R agree on a connected subset of CX then f = g,
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e the Fourier transform of a measure x on (R, 8 (R¥)) is
—i{u,x)
u— e u(dx)
Rk
and if this map equals u — 0 then y is the zero measure.

Proor. (Proof of Lemma Not examinable)It is sufficient to show that if
(3.3.2) <Y’Z>L2(Q,77£,IP‘) =0forall Ze J.

then ¥ = 0 a.s. Note that by definition of J every Z € J is of the form exp ( fooo fdB - % < fo. f dB> ) but

since f is step function with compact support,

/mde - Zklaj (8,,.,~B,) and
0 =
<-/0.de>00 /ooofzd(B)S - IZ:/EZ (tj+1=1;)

k
1
z=exp| 3\ By - By) - EDIHURE
=

and (3.3.2) holds if for every k € N, #; < ---f; the map

k
exp (Z/li (Bli+| _Bli)

Therefore

A=y,... ) —~E Y|=o.

i=1

This map is clearly real analytic in 1 € RX. Obviously its (unique!) extension to an analytic function to
A eCkis A 0. Evaluated at

(idy,...,idg) with Ay,...,Ax €R

this gives
k

Z i (Bli+1 - Bli)

i=1
Now define a measure Q on (Q, Tof) asa dQ :=Y - dP (that is Q(A) = Ep[Y14] for A € ¥5). Above
expression is the Fourier transform of the image of Q under the map

I(w) = (B, (w) =By (w), ..., By, (w)— By, (w)).

E [exp Y[=0.

That is

A=y,..., ) —E =/ eV aQo I (x)
Rk

it the Fourier transform of the measure Qo /~! on (R¥, 8 (R¥)) and equals 0. Hence Qo I~! (S) = 0 for all
S € B (R¥) and therefore

k
exp (Z id; (B, —B,l.)) Y

i=1

Q(A)=0
forall A€ o(I) =0 (B —Bo,....,By = By,_,) =0 (By,,..., By, ) . Since dQ = YdP and P is a probability
measure, Y = 0 P-a.s. O

We now have everything to give the proof of Theorem[3.12}
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Prookr. (of Theorem[3.12) Set
H = {Y 1> (Q Tf,P) E[Y]+ /0 " HodB, H < L2 (B)and predictable}
and note that this is a linear space. Moreover, J CH since directly by Ito’s formula
EM), = 1+/018(M)stst for M; = /OIdeBS.
Since f has compact support, this holds also with # = co. Therefore & (M), € H. The linear span of J
is dense in H by above Lemma so the existence of the representation follows if H is closed in

L* (Q,75.P).
We now show the closedness of H: therefore note that if Y is of the form (3.3.1)), then

) 2
(E Y1+ /0 Hsst)

E[Y]2+2E[Y]/OOHSdBS+ (/DOHSdBS)
0 0

Y2

2

Taking expecations and the Ito isometry yields
(3.3.3) E[¥?] =E[Y]2+/ E [H?] ds.
0
Now let (Y") c H be Cauchy in L? (Q, 7.8, P) and apply (3.3.3) with ¥ = ¥,,, —¥,,. This shows

E| (Y =Y,)’] =E[Ym —Yn]2+/ (H" = H')* ds — 0 as m,n — .
0

S HR g
Thus (H"),, is Cauchy in L?(B) and therefore converges to a H € L>(B). To sum up,
limY, = imE[Y,] + / H,dB,
n n 0

(where the limit on the left is in L? (Q, 7.2, P)). This shows the closedness H in L* (Q, Fe, P) and since H
contains a dense subspace (by above Lemma) the existence of the representation ([3.3.1)) follows.
To see uniqueness, assume Y = E[Y]+ fooo H¢dB=E[Y]+ fooo HdB;. Then

0= / (Hs — Hy) dB;
0
and by lb applied with ¥ = fooo (Hy — H!) dB; we have

0= [ (H -t as
0

Therefore |H — H'| 25y = 0 or put differently H; (w) = Hg (w) for a.e. (s,w) which shows uniquness of the
representation (3.3.7). |

TueOREM 3.14. Let M be a continuous (fB)-martingale that is L*-bounded (i.e. M € H?). Then
there exists a predictable H € L (B) such that

t
M, = E[M] +/ H,dB,.
0
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Proor. By L*-boundedness we have M; = E [Mw|F,B| for some My € L* (F5,P) (see Theorem
[2.24). We apply the previous result

Mooz]E[Moo]+/ HdB;
0

and take the conditional expectation E [-| 7,5 . O
REmMARK 3.15.

e Above Theorem extends to local martingales using localization but we do not develop this.

e One could ask if we can replace Brownian motion by another process. This is not true in general.

¢ In the exercise sheets you will see some concrete exampels where the martingale representation
gets explicit. More generally and in analogy to classic calculus one expects H to be in a certain
sense the first derivative of F. This is indeed the case: the process H can be expressed as a
Frechet derivative of M.,. This is developed in the so-called Malliavin calculus.

3.4. Lévy’s characterization of Brownian motion
If B is a Brownian motion then
B e M.joc and (B), =t.

A famous result of Paul Levy shows this already characterizes Brownian motion in the class of continuous
and adapted processes. The proof follows is a rather simple application of the stochastic exponential.

THeEOREM 3.16. Let M be a continuous, adapted process with My = 0. Then M is a Brownian motion
if and only if
M e Mo and (M), =1t.

Proor. If M is a BM then we already know M € M. € M joc with (M), =t a.s. To show the other

direction, consider
2

&E(iuM), = exp (iuM, + % (M),) with u € R.

By Ito

d&(iuM), = &@{uM),d (ith + M; (M)t) + %S(iuM)t d<iuM, + M; (M),>
w2
~ & ), d (M)

2

= &(iuM),d (th + ’% <M>,)

iu& (iuM), dM,.

Hence & (iuM) is a stochastic integral against a continuous local martingale, thus again a continuous local
martingale. Moreover |E (iuM),| < 1 and therefore a martingale by Proposition [3.8] Therefore

E[E M), 5] = & (iuM),.

and rewriting the above
2

: u”(t-s)

E [exp (iu(M; — M) [F5] = exp———

Taking expecation, this already implies that M; — M; is normally distributed with mean zero and variance
(t—s). To see that (M; — M) is independent of ¥y, take A € ¥, P(A) > 0 and define a new measure on
(Q,F) as

P(ANB)

Pa (B) = W

for Be F.
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Then Ep(4) [exp (iu (M, — My))] = EP“Aeng(“/if/[’_M“))] = exp (—“72 (t- s)), hence M; — My ~ N (0,1 — 5) wrt

to P4. Thus for all bounded measurable g, g > 0,
Ep, [8(M; — My)] = E[g (M; - Mj)]
or unwrapping the definition of P(A)
E[g(M; - My)] =P(A)E[g(M; - My)] VA € T

The the indepence of increments follows.

3.5. Martingales as time changed BM: Dambis, Dubins—Schwarz

Let M = (M), be a continous and bounded martingale. If we can find a time change ¢ + 7 (¢) such
that the time changed process M, := (MT(,)) is continuous and has as bracket

<M7>t =t
then by OST (since M is bounded, hence w.i.) E[Mq)|Frw)| = Mrw), we know that M is a (Fr)-

martingale. By Levy’s characterization it must be a Brownian motion wrt to (%z(;)) To find such aa
time change 7 is trivial when

(3.5.1) 1 (M),

t>0

120"

is strictly increasing: simply take the inverse of’

A famous theorem by Dambis and Dubins—Schwarz generalizes the above argument. This proves the
somewhat suprising fact that one-dimensional continous local martingales that “move enough” are simply
Brownian motion run at a different speed and this time-change is given by the bracket (M).

THEOREM 3.17. Let M € M joc with Mp =0 and
(3.5.2) litm (M), =00 a.s.
Define for everyt > 0
7 =inf{u: (M), >t} and G, := F=,.

Then for each s > 0, T is a (F;)-stopping time, (G;) is a filtration on (Q, F,P) that satisifies the usual
conditions and

(1) the process B = (B;) defined as B, := M-, is a Brownian motion on (Q,F,(G:),P),
@ (M2 = (Baay, ) g a5

We prepare the proof with a lemma.
LemmMma 3.18. Let M € M, joc. The intervals of constancy of (M) and M coincide.

Proor. Exercise O
We can now proof the main result

Proor. If we can show that (B;) is a continuous process then it remains by Levy’s characaterization,
Theorem [3.16] only to show that B € M, and that (B), = ¢. To see continuity note that for each s > 0, 7,
is the hitting time of the bracket process (M) of the set (s, o0), hence a (¥;)-stopping time. In fact,

t— 1

is the right-continuous inverse of
s (M)
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The assumption (3.5.2)) also guarantees that 7, < co a.s. and clearly s > 7 is an increasing process. The
right-continuity of ¢ — 7, together with the continuity of # — M, implies that

= Bt = MT[
is right-continuous (a.s.). It also has left-limits since
(3.5.3) Bs_=1im B, = lim M,, = M, .
u,/'s u,/'s ’

It now follows that B is even continuous: by definition of 7, 75— < 7 iff (M) is constant on [75_,75]. By
Lemma[3.18] 7,_ < 7, iff M is constant on [,_, 7], that is (3.5.3) reduces to

By_=M,_ =M,

To conclude via Levy’s characterization, it remains to show B € Mjo. and that (B), =t. By the
characterization of the bracket this is equivalent to show

(B;) and (Bt2 —t) are local (G;)—martingales.

For u < s consider
E[Bs|Gu] =E [M‘rs |7'Tru] .
Note that E [MZ | =E[(M),,] =1 so the stopped process M™ = (M-, pr), 5, is L*-bounded for n € N.
Therefore we can apply OST. Moreover, the monotonicity of s — 7 guarentess 7, < 7, < T, foru <s<n
so putting everything together gives
E(Bs|Gu] = E[M, |7, | =E[M7!|F7,] = M7? = My, = By.
Similarly,
E [B% - S|gu] =E I:M‘%S/\Tn - <1w>‘rs/\‘r,l |ﬁu] = M‘%u/\‘rn - <M>TL,/\T,1 = M‘zu - <M>T,, = Bl?t —u.

This shows that B is a Brownian motion.
Finally, the second statement follows since by definition By, = Mz ,,, and again by Lemma@

s > T, is constant on [z, 7(ar), |, hence My, = M. o

3.6. The maximum, the bracket and their moments: Burkholder-Davis—Gundy inequalities

The running maximum M* of a (local) martingale appears naturally and is usually a compli-
cated quantity. Doob’s maximal inequlities gave us one powerful tool to bound its moments. The
Burkholder-Davis—Gundy inequalities gives us another. It relates the L”-norms for all p > 0 of the running
maximum with that of the bracket process and the latter are often easier to handle. We already ran into a
situation where we needed such an estimate (Kazamaki’s criterion) and we will see more such applications
when we work with SDEs and local times.

THEOREM 3.19 (BURKHOLDER—DAVIS—GUNDY). For every p € (0,00) there are two constants c¢| =
c1(p),c2 = ¢ (p) > 0 such that

ciE [(M)ﬁ/z] <E[(M})"] < ;B [(M)f/z]
holds for any M € M ¢, My = 0 and stopping time T.
ReEmark 3.20.

e Above is already non-trivial and useful with the constant stopping time 7 = co.

e An important class processes with complicated running maxima are stochastic integrals M, =
fot KdNs. Since (M), = fot K2d (N), and the latter integral is often easy to estimate, e.g. if N is
a Brownian motion, the BDG inequalities turns out the be very useful in this context.
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e Chapter [2| recalled L’-theory of martingale integration (that is the spaces H?). We then
made a huge step to the general local martingale integration using localization. However, in
between these two extremes one can develop a L”-theory with sharper estimates: the space of
martingales with |MZ]|, » (@ Fup) < forms a vector space and Theoremtells us that the
norms M +— |MZ| Lr@.7p) Ad M = (M)l pnq 7. p) are equivalent. We do not develop
this general H? theory in these notes.

e Compare the above with Proposition[2.25| which shows that for p = 2 a sharper statement holds,
namely one can take ¢ (2) = ¢;(2) = 1. (This is not true for general p). Moreover, the BDG
inequalities cover also the case of nearly no integrability, p € (0,1).

By Levy’s theorem [3.16] we can write M as a time-changed BM so it is sufficient to prove that

THEOREM 3.21. If B is a standard Brownian motion, then for every p € (0, 0) there are two constants
c1 =c1(p),ca = co2(p) > 0 such that

cipEB [T”/Z] <E[(B})"] <c1,E [TP/Q]
for every stopping time T.
There are several approaches to show BDG. The classic approach is via so-called “good A inequalities”.

Lemma 3.22. We call a function F : [0,00) — R moderately increasing with growth rate k if F is
nondecreasing, F (0) = 0 and
FQA) <kF ().
Let X,Y be nonnegative random variables. If
P(X >21Y <61) <6*P(X > ) V6,1>0

then
E[F(X)] < cE[F(Y)]

for every moderately increasing function F, where the constant ¢ depends only on the growth rate K.

Proor. By replacing F with F An for n € N and letting n — oo we see that wlog we can assum that F'
is bounded. By our assumption we bound

P(X>21) = P(X>21Y <6)+P(X>21Y >54)
§P(X > ) +P(Y > 64)
Integrating against dF (1) shows
X
EF (_)
2

* (X
/ P(— >/l)dF(/l)
0 2
Choosing ¢ s.t. K6%> < 1 and N s.t. 2V > % and using the growth assumption gives

“(5)]
2|7 (3

E[F(X)] < KE [F(%)

IA

IA

8’E[F (X)]+E

<KNE[F ()]

and therefore
<KS*E[F(X)|+KNTE[F (YV)].

[m]

BDG follows from the above with B¥ and /7 as nonnegative random variable. So it only remains to
show that such good A inequalities hold.
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LemMma 3.23. Let 8> 1and 6 >0. Then VA >0

* 62 *
B(Br>pavT<6d) < (ﬁ_l)zP(BT > ),
P(\/?>B/I,B*s6/l) < (ﬁf—il)]?(\/?>/1).

Proor. If the results holds with 7 A n for all n € N instead of 7, then it must hold also for 7. Thus we
can assume wlog that 7 is bounded. To see first inequality, define

g1 = inf{t: IBI/\T| > /l}
oy = inf{r:|Biae| > A}
o = inf{t A AT > (m}
We observe that
(3.6.1) {B} > pA} c {01 <o <7} and {VT <61} C {03 = o0}

and therefore
P(B:>ﬁﬂ,\/?£6/1) < P(|BT/\(T3/\(TQ_ T/\(T}/\0'1|Z(ﬂ_1)/l)‘
Applying Chebycef gives
2
E [lBTAa'3/\0'2 - T/\O'3/\O’1| ]

(B-1)*22

(3.6.2) P (B;* > BT < 5/1) <

For bounded stopping times p; < p, we have

E[(Bn-8,)°| = E[BL]-28[B,B,]+2[B2]

E[Brz)z] -2E [BplE[BPz|ﬂ1” +E[Bfg)l:|
E [Bf%z] _E[Bﬁ%l] =E[p2-p1]

where we used that use that (Bt2 — t) is a martingale. Applied with po =Tt Ao3 A0z and p; =T A3 A0
(recall that wlog 7 is bounded) we get

E [|BTA[,3A02 —Braosnoy |2] =E[tAo3AOy—TAO3AOTY].
Now we have the trivial estimate
E[tAos Ao —TAo3 Ao S (TAo3)P(0] < )
and using that by T Aoz <1 < 8%4% we plug this into (3.6.2) to get
FLP (1 < )

(B-1)° 22
62P (BF > BA)

(B-1)*

P(BF>pAVT<0d) <

To see the other inequality, we run the same argument with the roles of BX and 7 reversed.
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3.7. Changes of measure on pathspace: Girsanov and Cameron-Martin

Let M, N be two real-valued, jointly Gaussian random variables on (Q, 7,P). A direct calculation
(e.g. using the characteristic function) shows

E[g(M +c)] =E[pg(M)]
for all bounded measurable functions g and where

1
p=exp N—EVar[N]—IE[N] and ¢ := Cov(M,N).

Since E[p] = 1 we can define a new probability measure Q on (Q, ¥) by dQ = pdP, that is
Q(A):=Ep[pla] forAeF

Then P ~ Q, p is the density p = 3—5 and above can be rewritten as

Ep[g (M +c)] = Eq[g(M)].

To sum up, an additive term can be equivalent to an absolutely continuous change of measure on (€, F).
The corresponding density p takes an explicit form. The aim of this section is to develop a similar result
in the infinite-dimensional case, that is when real-valued random variables are replaced by path-valued
random variables, namely local martingales. We first recall the Radon—Nikodym theorem:

THeoREM 3.24. Let (Q, A, u) be a separable measure space and p and v be finite measures on A.
TFAE

(1) Forevery A€ A, u(A) =0 implies v(A) =0 (we say v is absolutely continuous wrt to pu and
write 1 >>v)
(2) There exists a p € L' (Q, A, ) such that k > 0 and v (A) = /Apdu (we call p the density of v wrt

u and write p = 2’—/‘:).

If u > v and v > u we say u and v are equivalent and denote this as i ~ v. We are interested in the case
when the measures are probablity measures on a pathspace: that is we have additionally a filtration, thus
given a filtered probabilty space (Q, 7, (%), P) and a positive random variable p, > 0 a.s. with Ep [peo] =1
we define a new probability measure

dQ = poodP
and the above implies Q > P, P> Q and p.is a density pe = ‘;—%. Naturally, we are interested in the
process given by conditioning ps, on (7).
LemMma 3.25. Let Q ~ P and denoteps := %. Then
(1) (conditional Bayes) Eq[Z|F;] = % for any real-valued, bounded random variable Z,
(2) the procesp =(Pt)s0 := (Bp[peo|F:]); 50 is a non-negative, u.i. P-martingale,

(3) the process % = (l) is a u.i. Q-martingale and fulfills p% =Eq [i|ﬁ].

Pt
Proor. Since % is (¥;)-measurable
B [pm—rf = Brlpalf] o220
Ep [peo|F7] ' ' Ep [poo|Fi]
= Epl[p=Z|F:]
or if we write for brevity C; := % this reads

Ep [P Cr|F7] = Bp [0 Z|F7] -

IRecall that conditional expectation is only well-defined up to equivalence class. By convention 3, we always work with the
cadlag version of a martingale.



3.7. CHANGES OF MEASURE ON PATHSPACE: GIRSANOV AND CAMERON-MARTIN 34

Hence for A € 7,
Eq[1aC] =Ep[pelaCl =Ep[14AEp [pZ|F1]] = Ep[lapZ] = Eq[1aZ]

This characterizes the conditional expection, that is C = Eq [X|¥;].

The second point follows directly from the definition resp. Radon—Nikodym theorem. For the last

statement, note that Zz% = dIQ = p%w and by point (1)) applied with Z =1,

ar
E [dP| ]_ E[1]7] 1

Q| 7=t =—F7—==—-

dQ E[Z—%W:t] Pt

Especially p% is given as a conditional expectation, thus % is a u.i. martingale. O

ProposiTiON 3.26. Let Q ~ P and p = (p;) be as in Lemma If X is an adapted process on
(Q,F,(%1),P) then TFAE

(1) X is a Q-local martingale,
(2) pX =(p:Xi);50 is P-local martingale,

Proor. Wlog Xy = 0. We first prove it for martingales instead of local martingales. Since
1Xi|L1@) = Be [peo | Xi ] = Bp [|Xi | Bp [0oo|F7 1] = |01 X | L1(p)
we have|X;|11(q) < o iff |0/ X;| 1) < c0. By Lemma point
Ep [0: X¢|F5] Ep [Ep [poo X |72 ]| Fs]
Ep [poo X: %]
psBo [X:|Fs]

hence Ep [0, X;|Fs]| = ps X; iff Eq [X;|F5] = XG.

To extend to local martingales we need to prove that given a stopping time 7, X is Q-martingale iff
(pX)" is a P-martingale. We have just seen that X© being a Q-martingale is equivalent to pX7 being a
P-martingale. It therefore remains to show that (pX)" is a P-martingale iff pX7 is a P-martingale. Since p
is a nonnegative u.i. martingale (Propositionpoint 4.) we use OST to see Ep [p¢|F+] = prar and

Ep [l s Xenr|] = Be [| Xeac | ELor|F2 1] = Ep [l prar Xenc|] = Ep ”(PX):” .

Hence, |p,XtT|L] < oo iff |(pX)f < co and in this case M := pX™ —(pX)" is a martingale:

\L](]P’)

(P)
E[M|Fs] = E[(pr = prac) Xenc|Fs]
= E [E [Pt _pt/\r|7:t/\(sv-r)] Xine |7:s]
= E [(,OTM(WT) - ptlvr) Xt/\‘rlfv]
= (ps = Psar) Xenr = M.
Thus pX™ is a martingale iff (pX)* is a martingale. O

Below we show that such results hold in great generality: given a local martingale on our filtered
probabilty space (, 7, (77),P) we can remove/add a bounded variation process by a change to an absolutely
continuous measure.

TueEOREM 3.27. Let P~ Q on (Q, F,(F;)). Assume p = (01),50 1= (Be [0 F7]); 50 is continuous. If X
is a local continuous P-martingale then there exists a local continous Q-martingale Y such that

(Xt)r50 = (Yz+/0 p§1d<p,X>s)

>0

holds with probability one.
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Proor. For brevity define the bounded variation process C; := /Ot p;'d(p,X), andsetY := X —C. By
Lemma it is enough to show that pY = (p,Y; ), is a local continuous P-martingale. By definition of Y
(3.7.1) pY =p(X=C)=pX—{(p,X)—(pC—{p,X)).

The first term pX — (p, X) is a continuous local P-martingale by characterization of the bracket. By Ito and
using that (p, C) = 0 due to the finite variation of C,

d(pC),

_ 1
pip; d{p. Xy, + Crdp, + 3O
(0, X), +Cidpy.

The local martingale is preserved under stochastic integration, hence C e p is a continuous local P-martingale

and therefore pC — (p, X) is also continuous local P-martingale. By (3.7.1), pY is a continuous local

P-martingale. o
ReEmARrk 3.28.

e Above proof immediately extends to non-continuous local martingales and p being cadlag if the
Ito-formula is proven for non-continuous processes (which we have not done).
o All results in this section carry over to the multidimensional case in a straightforward fashion.

How to construct an equivalent probability measure? Given P and a positive u.i. martingale p we can
define an equivalent measure by choosing a positive random variable p., :=lim;_,« p; and take dQ := pdP.
A natural candidate for p is the stochastic exponential. In this case above reduces to Girsanov’s theorem for
which the finite variation term takes an especially simple form.

THEOREM 3.29 (GirsaNov). Let X be a continous, local P-martingale and K € L*(X). If
p:=E(K e X) is a continuous u.i. martingale

then

(1) poo exists, E[pe] =1 and dQ := peodP fulfills Q ~ P,
(2) There exists a Q-local martingale Y such that

(X,)rs0 = (Y,+ /0 st<X>s)

120

with probability one.

Proor. By assumption, p is u.i. and therefore po, = E(K @ X), exists, p; = Ep[pe|F;] is positive.
Thus dQ := p.dP defines an equivalent measure. We now apply Theorem the stochastic exponential
fulfills

dp; = prd (K ® X), = p K, dX;

and using the characterization of the stochastic integral, Theorem [2.31]

(p.X) ={(pK)® X, X) = pK(X).

Hence, [ p;'d(p.X), = [ K;d(X),. o
If we specialize to Brownian motion, this transformation gives another Brownian motion with drift.
THEOREM 3.30 (CAMERON-MARTIN). Let B be a P-Brownian motion and K € L? (B). If

p = E(K e B) is a continuous u.i. martingale

then
(1) poo exists, E[pe] =1 and dQ := peodP fulfills Q ~ P,
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(2) There exists a Q-Brownian motion W such that with probability one,
t
(3.7.2) (Bi)rzo = (Wt + / sts)
- 0 t>0

Proor. We apply Theorem

Brownian motion, note that (W) = (B — fo' sts> = (B) since finite variation processes have zero qudratic
variation. Further, W is continuous, hence the result follows by Levy’s characterization, Theorem@ O

RemMARrk 3.31.

(1) We just saw that the question if a stochastic exponential is a martingale (and not just a local
martingale) arises naturally. In general this is a tough question but recall that Proposition
[31_0] guve us sufficient criteria (Novikov and Kazamaki) that cover many examples; see also
Proposition

(2) The Cameron—Martin theorem can be strengthened: not only does Brownian motion transform
to a Brownian motion plus a drift term under an equilavent measure change using the stochastic
exponential, but every equivalent change of measure is of the type (3.7.2)! The Brownian (also
called Wiener) measure can be thought of as the natural Gaussian measure on pathspace and
this property of equivalence under addition is generic for Gaussian measures in finite as well as
infinite dimensions. This phenomenon runs under the name “quasi-invariance”; the measures are
not invariant under addition/translation but “quasi” invariant since null sets do not change and
they remain Gaussian. We refer the motivated reader to the (very challenging, graduate level)
book [Malliavin, 1997] for more details.

(3) Above results give us an elegant way to transform certain semimartingales into local martingales.

and note that (B) =t a.s. To see that W := B —des must be a



CHAPTER 4

Stochastic Differential Equations

We have already seen an examples of an SDEs of the type

and found explicitly a solution X by using Ito’s formula. For example, u(f,x) = 0 and o (¢, x) = x gives
the stochastic exponential &(B). As in the case of ordinary differential equations (o~ = 0) we cannot
hope to find a solution in explicit form for general coefficients u,o-. Instead we now study the general
well-posedness of [@.0.1)), that is excistence and uniqueness. More generally, we treat the multidimensional
case that is we are interested in finding a e-dimensional process X such that

t d t
x;:xg)+/ ui(t,X,)dt+Z/ oij (,X)dB, j=1,....¢
0 el

with B = (B,l, .. .,B;i) 508 d-dimensional Brownian motion, u = (y;) is a vector-valued function, o = (a'i, J-)
is a matrix-valued function. We also write the above in differential notation as

dX; = p (1, Xy)dt + 0 (1, Xy ) dB; .
As a first step we have to make precise what we exactly mean by a solution.

DerINITION 4.1. Let g = () : [0,00) x R¢ — R¢ and o = (07) : [0,00) x R¢ — R®*d be Borel-
measurable functions and (, 7, (%;),P) a filtered probability space. We call a pair of (%;)-adapted
processes (X, B) defined on (Q, 7, (), P) a solution of the stochastic differential equation e(u,o) on
(Q,F,(F7),P) with initial condition Xy if

e Bis a (%;)-standard BM in R?
o foreveryi=1,...,e,

t d t )
4.0.2) X=X+ / ,ui(s,X)ds+Z / oi; (s,X)dB!
0 =iJo

We use the notation e, (¢, o) to impose the constraint Xy = x a.s., x € R,

Intuitively we want that the only “source of randomness” that X reacts to is B, that is X is adapted to
to the subfiltration of (¥;) that is generated by the Brownian motion.

DeriNiTION 4.2. We say that a solution (X, B) defined on a filtered probability space (Q, F, (), P) is
a strong solution on (Q, F,(F;),P) if X is adapted to the completed filtration generated by the Brownian
motion B. If (X, B) is a solution that is not a strong solution then we say that (X, B) is a weak solution.

Strong solvabilty implies weak solvability and looking at (#.0.2), it might be at first sight counterintuitve
that SDEs exist that have a weak solution but no strong solution. A famous example due to Tanaka shows
that this can already happen in rather simple situations.

ExampLE 4.3 (TanakA’s SDE). Set o (x) := sgn(x) and consider a solution (X, B) of eg (0, o).
e There exists a weak solution but not a strong solution

37
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Similarly, the issue of uniqueness is also more subtle than in the deterministic case: do we just take
into account distributional properties of two different solutions or do we care about pathwise behaviour
(same trajectories for a.e. w)?.

DEFINTTION 4.4.
(1) We say that pathwise uniqueness holds for e (u, o), if (X, B) and (X’, B) are two solutions defined
on the same filtered probability space, then Xo = X| a.s. implies that X = X" a.s.
(2) We say that uniqueness in law holds for e (u, o) if (X, B) and (X’, B’) are two solutions, defined
on possibly different filtered probability spaces, thenXo = X/ in distribution implies that X equals
X’ in distribution
ExampLE 4.5. Consider again Tanaka’s SDE e (0,0). If (X, B) is a solution then
X =sgn(X)eB
and therefore Xp = 0, X € M. 1oc 50 by Levy’s characterization X is a Brownian motion. Moreover,
e uniqueness in law holds: by the above X must be a Brownian motion

e pathwise uniqueness does not hold,
¢ By the above there exists a weak solution but no strong solution

We state the following theorem without proof.

THEOREM 4.6 (YAMEDA—WATANABE). If pathwise uniqueness holds for SDE (u, o) then

(1) uniqueness in law holds for SDE (u, o),
(2) every solution to SDE (u, o) is a strong solution.

4.1. Strong solutions

We proceed as in the ODE case: use the integral formulation and show that a Picard iteration is a
contraction. To achieve this we need Lipschitz regularity of the coefficient.

THeOREM 4.7. Assume pu,0 are both Lipschitz continuous and of linear growth in space uniformly
over time, that is there exists a ¢ > 0 such that Vx,y € R¢,Vt > 0

| (8, %) = p (6, y)| + o (1, x) =0 (1, y)| < c|x =y
and
o (2, )| + [ (5, %) < c(1+x]).
Assume there exists a filtered probability space (Q, F, (F;),P) on which a Fo-measurable R€ -valued random

variable ¢ with E [|§|2] < o0 and a d-dimensional Brownian motion are defined. Then the SDE e(u, o) has
strong solution with initial condition X, = & and pathwise unique holds.

Proor. For brevity of notation we give the proof ford = e =1, u =0, £ = x for x € R®; the modifications
for the general are straightforward.

Existence. Take a filtered probability space (Q, F,(F;),P) that carries a Brownian motion B where
(#7) denotes the filtration generated by B (as usual, completed to fufill the usual conditions). Fix 7' > 0 and
note that BT = (B,Ar) € H?. We define the Picard iteration as

t
4.1.1) X (x+/ a(r,xf)dBZ)
0 t20
The sequence (X") given by 1! is well defined: B € H? and if X" € H? then o (r,X") € L? (BT)
since the linear growth implies

) T T
|(0'(t,X,)),20|L2(BT):E[‘/O |U(r,Xr)|2d<BT>r]=E/O lo (r, X,)|* dr sczE/O (1+|Xr"|)2dr}<oo
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Thus X" € H? implies X"*! € H? since stochastic integration preserves H?, Theorem Since
X0 = x € H? we get by induction (X"),,., C H>.

For brevity, set
*

M, = (X"—X"“)
T
Claim I: |M"J|L2 —, 0.

Apply Doob’s inequality, Ito’s isometry and the Lipschitz assumption to get

K 2
4.12) Moz = E| sup / (e r X =0 (X2 s
s€[0,T]1J0
T 2
(Doob) < 4E ( / a(r,Xf)—a(r,X;l-')dB,)
0
r 2
(Ito isometry) < 4]5/ (O-(r’Xn)_O_(r’Xn—l)) dr}
0
T 2
(Lipschitz) < 4¢°E [/ (Xrn_Xrn—l) dr]
0
T
< 4c2E[ / Mi,dt].
0
Iteration yields
T th-1 4]
2 n ’
Muiir|. < (4c2) // / |My |, dry - dty
0o Jo 0
(4’7)" 2
< Ml

2 2 2
Now, X5 [Myr|,» < 4T |M\,7], < o0, hence we must have |M,,r|,, — 0.
Claim 2: There exists a continuous, adapted process X = (X;),o on (©, 7, (7%),P) such that

(X"-X)F —n Oas.
To see this, apply Chebycheff’s inequality and then above estimate to get

E[M2 ]
~(n+1) _LmlT]
P(M"”’T>2 ) S T
(42C2T)n 2
< 4—n! M7,

Summing up shows 3}, -oP (Mn+ LT > 2‘("“)) < co. By Borell-Cantelli it follows that

P (Mn+1,r < 27 Dfor infinitely many n € N) =0.
Hence, there exists a random variable N that is finite a.s., such that for a.e. w
My1(w) < 27D for all n > N (w).
We use this and the triangle inequality, to conclude that for any k > 1,
k * k k-1\* 1 *
(X”* - X")T (W) < (X"+ _ xmHke )T (@) 4+ (X"+ - X")T ()

n+k

< Z 2—1' — 2—(n+l)z2—i —on

i=n+1 i>0
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holds for all n > N (w). Since the right hand side does not dependend on &,
*
sup (X"+k —X") (w)y<2™foralln > N (w).
k>1 T
Therefore, we have shown (X" (w)) is almost surely a Cauchy sequence in (C([0,7],R),]|.|).- By
completeness of (C([0,T],R),|.|,) there exists for a.e. w a X (w) € C([0,T],R) such that
(X" = X)F (w) = 0.

Since the above argument holds for every T > 0, X; is well defined for every ¢ > 0. Moreover, it is adapted
by adaptedness of (X").
Claim 3. (X, B) is a solution of e, (o, u).
We estimate as above
2

T T
(4.1.3) E ‘/ o (r,X")—o (r,X)dB, = E[/ |0'(r,X")—0'(r,X)|2dr]
0 0
< TE| sup |X"-X.|*|.
rel0,T]

It remains to show the convergence as n — co on the right hand side. Therefore use the triangle inequality

to write
5 n—1
Fleo] <3 e
k=m
Let first n — oo, (using Fatou’s lemma) shows \/E [supte[oﬂ |X[" - Xr|2] < 2ksm |Mk+1,T|L2 and using

P 2
l(an)lp2 =V ai < X lanl = |(an)lpwe get \/E [supte[O,T]|Xtm_Xt| ] < \/Zk2m|Mk+],T|L2 and by the

results in (claim 1), the right term converges to 0 as m — co. Thus the L? convergence of (4.1.3) follows.
Since L2-convergence implies a.s. convergence along a subsequence, we have shown the a.s. convergence
of

) n-1
] = Z |Mk+1,T|L2 < 0.

k=m

t
th+1 =x+/ o (s, X!') dBs
0
to
t
X,:x+/ o (s, Xg)dBs.
0

Thus (X, B) is a strong solution.
Pathwise uniqueness: follows from Lemma (4.9) by letting r — oo. O

We first recall Gronwall’s Lemma

LemMA 4.8. Let ¢ : [0,00) — [0, 00) Borel measurable and locally bounded. If there exists a,b € R,
b > 0 such that

t
p(t) < a+b/ p(r)ydrforallt >0
0

then

o(1) < ae”.

If a =0, it follows that ¢ = 0.
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LemMA 4.9. Let p,0 be as above and X and X' be two continuous adapted processes adapted on
(Q,F,(F4),P) and B a Brownian motion. Forr > 0 set 7, :=inf{t > 0: |X;| V|Y;| > r}. If X and Y satisfy

¢ ¢
X; x+/ ,u(t,X,)dr+/ o (r,X,)dB,
0 0

Y;

t t
x+/ ,u(t,Y,)dr+/ o (r,Y,)dB,
0 0
on [0,7,] then X =Y on [0, 7,].

Proor. Again wlog u =0 and let ¢(¢) := \(X - Y);‘Mr |2L2 The same estimates (Doob,Ito isometry,
Lipschitz) as used above give

[ pT,AL
() < C’E / |XS—YS|2ds]
LJo
2 [ 2
= ¢“E / ’Xy/\Tr_YS/\Tr’ dS]
LJo
[ t ) t
< B / |X-Y)% | ds]:cz/ o(r)dr.
LJo 0
Thus by Gronwall’s lemma, ¢ = 0. O

ReMARK 4.10. As in the ODE case:

e Lipschitzness guarentees uniqueness, e.g. u(t, x) = Vx, o (t, x) = 0 has infinitely many solutions,
X, = % (t? +2at + b) for a, b constant.

e Linear growth guarantees global existence, e.g. (¢, x) = x2, o (¢, x) = 0 has as solution X; = -

-t

i
x

and llmH% X, = oo.
e These conditions are sufficient but not necessary.

REMARK 4.11. Sometimes one is only interested in non-global strong solutions, that is process that are
strong solutions only up to a stopping time 7. Note Lemma[4.9]is formulated general enough to also give
pathwise uniqueness in this setting.

THeOREM 4.12. Let p,0 be as in Theorem[d.7 and additionally bounded. Then there exists a jointly

continuous process X = (X7), .0 ccge Such that

t '
thzx+/ u(r,X;‘)dr+/ o (r,X})dB,.
0 0

ProoF. Again wlog u = 0. Fix p > 2, ¢ > 0. Since |a+ b|” <2P~!(|a|P +|b|P) we have
sup [X7-X37 < 27N (jx—ylP
sel0.r]

P

+ sup
s€[0,z]

‘/S (c(r,X})—o(r,X}))dB,
0

Using BDG for the last term gives

p p/2
E| sup
se[0,r]

< ¢E

/S (c(r.X})—0o(r,X;))dB,
0

‘/t (o-(r,Xf)—o-(r,Xry))2dr
0
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Now apply Holder (| fg|1 < |flLq |gl.- with g~' +r~' = 1 applied with r = &, g = 2 and f=1,g =

(c(r.X5)-o(r.X7) )2) and Lipschitzness to further estimate

K 4 _ t
E| sup / (c(rXY)—0o(r,X}))dB, < cptpzzE[/ |o-(r,X;‘)—0'(r,Xry)|pdr]
s€[0,¢] 140 0
B t
< CPIPTZCLL'I,E / |X;C—X,¥|pdr]
0
_ t
< c,,tIZZCLip]E / |(Xx—Xy):|pdr]
0

The boundedness of ¢~ ensures that (X* — X), = fot (o (5, X)) =0 (s, X‘y))2 ds < ct, thus by BDG
B[|oc =% 1] <BJ1oc = 30,172 < co.
Putting everthing together, shows there exists constants cy,c s.t.

p/2
Lp -

t
p(t) < cf |x—ylP +c§/ ordr with ¢(1) := ‘(Xx - X
0

By Gronwall, there exists a co = co(p,t) s.t. @(t) < c(’)7 |x — y|” . Using Kolmogorov’s Theorem, there exists
a modification of X that is continuous in both ¢ and x. O

4.2. Weak solutions

We now are going to see that the assumptions on the coeflicients w,0 can be significantly weakened if
we are only interested in in the well posedness of the SDE e (u, 07) in a weak sense, that is the existence of a
weak solution (X, B) that is unique in law.

4.2.1. Weak solutions by change of measure: modifying drift. The Girsanov theorem gives an
easy way to construct weak solutions: let u,0- be measurable and assume we have found (X, B) on some
filtered probability space on (, F,(F;),P) such that

(421) dXt = ﬂ(t, Xt)dl‘+0'([,X,)dBt.

If 8(M) with M, = fot B(r,X,)dr is a u.i. martingale (and this is in general a strong assumption) then we
can define the equivalent measure
dQ:=8(M),, dP.
Under Q, the process B is a Brownian motion with drift, B =W + fot B(r,X,)dr, hence
dX[ = (IU ([, X;) + ﬁ (t, Xt)) dt+o (t, X[) dW[ .
To sum up,
ex (/’la O—) on (Q’ T’ (7:[)’ P) iS eqUivalent tO ex (/’1 + ﬁ’ O-) (Q’ T, (ﬁ)? Q)

For example, if o (¢, x) = 1 and 8 := —pu this reduces the existence of a weak solution of e, (y, 1) to the
existence of a filtered probability space (Q, 7, (7;), Q) that carries a Brownian motion (which is obviously
true). Unfortunately it relies on the assumption that & (M) is a u.i. martingale and this is too strong for
many applications (e.g. it does not hold if B(#,x) = 1). There are essentially two ways to deal with this:
either work on a finite time interval [0, 7] or alternatively carry out a “localized version of Girsanov” (that

is construct a measure Q7 on every [0,7] and then argue that there exists a Q such that Q|# = Q;). The
latter option involves some technicaliites but we refer the interested reader to xxx.

ProposiTioN 4.13. Fix T > 0 and let p: Ry XR¢ — R€ be bounded and measurable. Then the SDE
ex (i, 1) has a weak solution on [0,T].
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Proor. Wlog e = 1. Take a Brownian motion X on some probability space (Q, 7, (%7),Q). If the
process & (M), M, := fot,u(t, X,)dX!, is a u.i. martingale then we can use Theorem and use above
construction using the change of measure % = 8w (M) on (Q,Tr,(?'z)ze[o,r]>, that is under P, X is a
solution of e(x, 1) on [0,7]. Therefore note that

) T
(M) = </ ,u(t,Xt)dXzT> = / 12 (r, X, ) dr < sup |p (8, )|* T
0 o Jo tx
thus E [exp (% (M )oo)] < oo and by the Novikov condition & (M) is a u.i. martingale. O

4.3. Local time

Given X € S, and ¢ > 0 and a set A € B(R) we wan to measure the time the process has spend on the
interval [0,¢] in A. It is natural to do this with respect to the “inner clock” (X) of X, hence we define the
so-called occupation measure at time ¢ as

vi(A) = /0 14 (X,)d (X),s.

For fixed ¢, v; is a random measure on (R, 8 (R)) and we can ask if it has a density denoted L{* with respect
to Lebesgue measure, that is if

v¢(da) = Lida.
In this case it should hold that

Ve ([a,a+¢€)) _ 1

t
_/ l[a,a+s) (Xs)d<X>s —e—0 Lta
€ € Jo

Provided the above can made rigorous (that is especially the existence of L{") we see that informally the
process L = (Lf) should fulfill

t>0,acR®

t 1 t
L= / Sa (Xs)d (X) = lim - / la,are) (Xs)d (X)), .
0 € €Jo

This explains why we will call L{ the local time of X on the interval [0,¢] in the point a € R. Above is
obviously not rigourous (for example why should a density exist?) but we immediately see heuristcally a
surprising connection with Ito’s formula: if we could apply Ito to the non-smooth(!) function |X; — a| then

t t
4.3.1) | X; —al IXO—a|+/ sgn(Xs—a)ds+/ 0a (Xs)d(X)
0 0

t
| Xo—al +/ sgn(Xg—a)ds+ L]
0

thus the local time appears as the second derivative in above generalized “Ito formula”. We now make all
this rigorous: we first show Ito’s formula generalizes to convex functions, then take use this to define L
via[f.3.T]and study its properties as a stochastic process. Finally we arrive at great generalization of Ito’s
formula, namely the Meyer—Tanaka formula.

We start with a lemma about convex functions: it tells us that convex functions are essentially twice
differentiable if we are willing to think about the second derivative in a distributional sense, that is as a
measure. Moreover, they remain convex under mollficiation.

Lemma 4.14. Let f : R — R be convex, that is for all x,y € R and A € [0,1]

fAx+(1-D)y)<Af(0)+(1-D) f(y).
Then



4.3. LOCAL TIME 44

(1) f has a left derivative f’ and a right derivative f/, that is for all x € R the limits f’(x) and f](x)

w /0 asy /x
M N L) asy N\
y—x

exist in R.

(2) The left derivative x — f’(x) is left continuous and increasing, the right derivative x — f](x) is
right continuous and increasing and for x <y

f)=f ()

fLx) < T

X

< fL(y).

(3) A fundamental theorem of calculus holds: f (b)— f (a) = fab f(x)dx = fab fi(x)dx.

@) u([a,b)):= f/(b)— f’(a) defines a locally finite measure on (R, B(R)). We call u the second
derivative of f in distributional sense.

(5) Let g € CZ (R, R) with ng(r) dr=1and

Fol) o= (f % gn) (x) = /R £ 3)gn () dy

with g, (x) := ng (nx). Then f,, € C* (R,R) and for all compact intervals [a, b],

sup |f(x)-fa(x)] — Oasn— oo
x€la,b]

Proor. Consider x; < x» < x3 and set A := % so that
x2=Ax3+(1=2)x;.
Set yp := Af (x3)+(1 =) f (x1). By convexity y, > f (x2), hence we have
fa)=fa)  fOs)=ys _ fn)=f(x) _ya=flx) | flx)—f(x1)

X3—XxX2 X3 X X3 —X1 X=X X-X

(draw a picture to see the equality in the middle). Therefore x — % decreases as x \ x, thus the
limit exists in RU {oo} at x;. However, it must be finite since by adding a point x¢ above argument applied
to xo < x| < X2 we can repeat the same argument. O

If f is twice differentiable then f”’ (x)dx = u(dx), which justifies why we call u the second derivative
of f in distribution. Moreover, many properties of the second derivative transfer to y, for eample integration
by parts

/g(x)ﬂ(dx)=—/g’(x)f_’(x)dx for g € C¥(R.R).
R R

Lemma 4.15. Let f:R — R be convex and X € S.. Then f(X) € S. and there exists a continuous,
increasing process K' such that

£ = £ (Xo)+ /0 X)X, + K

where f’ denotes the left derivative of f, f-(x) :=limg o M

Proor. Denote the semimartingale decomposition X = M + A, M € M joc, A € BV. By stopping
at 7, :=inf {t : | X;| V|A¢| V (M), > n} and subsequently letting n — co we can assume wlog that | X;| <
n,|A;| <n, (M), <nforallt > 0. Fix g € C°(R,R), /g(x) dx = 1 with support in (—co,0] and define
0

fu@i=Frg) = [ Famngmdr= [ f(x=2) e)dy with g, = ng ).

0
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By definition, f;, is twice differentiable and applying Ito yields

t t 1 t
@32 K= A0+ [ reodns [ e [aodon,.
Set
In
]n

fa(X)eM and I := f/(X)e M,
fi(X)eAand J := f/(X)eA.

Moreover, by Lemma[4.14] and since by assumption X is bounded we have

(e (X) = fX)% — Oas.
By definition of f,, it follows that
Tn() /7 f(x)
We now show that I — I, J" — J uniformly which will imply via that % f S (X)d (M) has to

converge as well. Now M € H? (recall Proposition M € H? iff E[(M)_,] < o) and since X is bounded,
£1(X), f"(X) € L>(M), hence I, 1" € H?. Applying Doob and the Ito-isometry yields

E||(1"-1)%

2] <4E [(Ié’o— m)z] =E[/Ow (fé(Xz)—f'(Xz))de),]-

By dominated convergence the rhs goes to 0 as n — co. Since L’-convergence implies a.s. convergence
along a subsequence we have
(I"-1} — 0as.

along some subequence. Similarly, with J,, := (f;/ (X) — f (X)) ® A we have again by dominated convergence
that

(= 1% < /0 11X = 17 (X)) dAs — 0 as.

To sum up, by switching to subsequence (henceforth again denoted with n) we have shown that the
increasing, adapted, continuous process

1 ! ” _ ! ’ ! ’
3 | A ode =ho-noo- [ raoan- [ oo,

converges uniformly in ¢ as n — co. We denote the limit by K/ and by uniform convergence it is again an
increasing, adapted, continuous process. O

Above Lemma applied to f (x) = |x —a| shows f’(x) =sgn(x) and f” = §, in distributional sense.
Hence we have given meaning to L and @.3.1).

DEFINITION 4.16. Let X € S. and a € R. We call the adapted, increasing process given by Lemma
K7 applied with f (x) = |x —a| the local time of X at a. We also denote it as L%,

Above tells us that .
L = |X,—a|—|X0—a|—/ sgn(Xy)dX;
0
where sgn(x) = 1,50 — lx<o.

ProrosiTioN 4.17. Let X € S, (X), a € R.
(1) IfLemmais applie with f(x)=(x—a)* or f(x)=(x—a) then K/ = %L“.

(2) The local time L? increases only at the time points {t : X; = a}.

'As usual (x— d)+ = —a)lx-g>0,(x—a)” :=—(x-a)lx-a<o0
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Proor. To see the first point, set fi (x) = (x —a)*, fo(x) = (x—a)”. Then |x —a| = fi (x)+ f>(x), hence
Kfi + KP = K+ Also x —a = fi (x) — f>(x), hence by Ito applied to X —a, we have X, = Xo + fot dX;,
thus K/t — K% = K/i=2 = 0. Hence,

1 1
KN = KP = _Kith = 9,
2 2

For the second point, let o-,7 be two stopping times o~ < 7. By Lemma applied to f(x) = (x—a)* we
have

.
1
Xr—a) -(Xg—a)" = / Ix,>adX;s + 3 (LE-L%).

o

If o,7 are such that [0, 7] C {7 : X; < a} then the lhs and the integral equals 0, hence L¢ = L%. Especially
this applies to

1 1
0=inf{t>q:X,§a——} and‘rzinf{t>cr:X,2a——}
m n

for any choice of m,n € N, m > n and ¢ € Q. Taking the countable union over (m,n, g) shows shows that
t+— L7 is constant on {f: X; < a}. The same argument for (x —a)~ shows that t — L is constant on
{t: X; > a}. O

THEOREM 4.18 (MEYER-TANAKA). Let f: R — R be the difference of two convex functions and
X eS8.. Then f(X)e S, and

t , 1
F=ro+ [ roax s [ 1o
where [’ denotes the left derivative of f and u is the second derivative of f in distributional sense.

Proor. Again by stopping we can assume wlog that |X;| < n, (X), < n for t > 0. By linearity, it is
sufficient to prove it for f a convex function. Set

¢ =3 [ lx-alutda)

and note that g is convex with

(4.3.3) g (x)= %'[ sgn(x —a) u(da)

n
and g” (x)dx = u(dx). Hence (f —g)”’ =0 and
f(x)=gx)+ax+b.
for some a, b € R. Again by linearity, it is sufficient to prove the formula separately for g and for x — ax +b.
It is trivially true for the linear function, aX; + b =aXo+b+a fot dX;, so it just remains to show it for g.
By definition of the local time L9,
t
(4.3.4) | X, —a|—|Xo—0| :/ sgn(X; —a)dX, + L.
0
By integrating (4.3.4) against u over the interval [—n,n], we have by (4.3.3)) that

26/(X,)~ 28 (Xo) = / /0 sen (X, — a) dX, p(da) + / L¢ u(da).
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We divide by 2 and apply the Fubini-theorem for semimartingales, see for example [Durrett, 1996, Chapter
2, Theorem 11.6], to interchange the order of integration to get

t 1 n 1 n
/ E/ sgn(XS—a),u(da)dXs+§/ L u(da)
0 -n —n

t 1 n
[ e oaxs [ riuto.

n

g(X;)—g(Xo)

]

ProprosITION 4.19 (OccuPATION FORMULA). Let X € S¢. Then for every bounded, measurable function
g: (R, B([R)) — (R,B(R)) we have for all t > 0

[ewrra= [ X d(x),

Proor. By the monotone class theorem it is enough to show the formula for continuous g. But in the
case of g is continuous, then above follows by comparing the Ito formula with the Meyer—Tanaka formula
applied to the function f given by f” = g. O

We think about the local time L = (L{*), ., ,.p as a stochastic process indexed by time and space. The
propositions below shows that L is a continuous process.

ProposITION 4.20. Let M € M joc and L = (L)
of L such that (t,a) — L{' is continuous.

r>0.acR IS local time. Then there exists a modification
ProoF. As usual, wlog we assume that M; < n and (M) < n. By Proposition[d.17]
1

t
SL = (X=a = (o -a)" = [ 1xoadX,
0

The continuity of the first two terms is clear, so we just have to show that (t,a) — I := /Ot Ix,>qdX; has a
continuous modification. To do so we fix 7 > 0 and apply Kolmogorov’s criterion by regarding a — ¢ as
map from R — C([0,T],R). Therefore let a < b and apply BDG to get
T
[) (le>a_ 1XS>b)d<X>s

* |4
(]
T
'/ la<x, <bd (X)
0

We now use the occupation formula, Proposition f.T9] Cauchy—Schwarz and Fubini

2
E

IA

C4E

.
cuE

T 2 b 2]
E / 1a<XS§bd<X>s = E (/ L%dx)
0 a 1
b
< (b—a)]E/ (L;)de
a
b
- (b—a)/ B (|3 | dx
a
< (b—a)2 sup E[|L§f|2]
x€la,b]

To show that sup,.c(, | E [|L¥|2] < oo, recall that by definition of the local time L

T
Ly = |XT—x|—|X0—x|—/ sgn(Xy) dX;.
0
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By the reverse triangle, || X7 — x| —|Xo — x|| < |Xr — Xo|. Together with (a +b)* < 2 (a® + b*), the above
gives

2
il < 2

T
| X7 — Xo|* + ( / sgn(xg)dxs)
0

Taking expectation, using the Ito-isometry and the boundedness assumption on X and (X) gives

B |||

2

IA

2|E[1Xr - XoI*] +E

T
) / sen(X,)dX,
0

IA

2 ((2n)2+2E [(X)f]) <8 (n2+n) .
]

ExampLE 4.21. Above is not true for all continuous semimartingales, for example X = |B;|; in this

case
L*(B)+ L *(B) ifa>0,
0 else.

L“(X)={

Since L? (B) # 0 for fixed ¢ > 0, the process a — L{ must have a discontinuity at a = 0. However, for
X € S, one can still show that a modification exists such that (t,a) — L{* is continuous in ¢ and cadlag in a
(using a slight variation of above proof).

CoroLLARY 4.22. Let M € Mcjoc and L = (L{'), ., ,ez it local time. Then

1
Ltazll_)n(l)z—f‘/o l(a_57a+e)(MS)d<M>S'

Due the importance of Brownian motion and its appearance as noise in the SDEs we now have closer
look at Brownian local time. First note that for BM and a = 0 above reads

Lt
(4.3.5) L)(B) = lim /0 1|3, |<cds,

thus the Brownian local time is adapted to the filtration generated by |B|. The following observation
becomes very useful

LeEmMA 4.23 (SKOROKHOD’S LEMMA). Let f : [0,00) — R be continuous and f(0) > 0. Then there
exists a unique pair g,a : [0,00) — R such that
I f=g-a
(2) g(x) =0 forall x,
(3) a is non-decreasing, continuous and a(0) = 0. The measure da has its support in {t : g =0},
that is f lg(x)>0da(x) = 0.
Moreover, a is uniquely determined as
a(t) = sup(~f () V0.
s<t
Proor. Existence follows by taking the pair a (f) := sup, ., f (x)” and g := f +a. To see uniqueness let

g,a be another pair and note that the function g — g = a —a is of bounded variation. Using first integration
by parts, and then point [3]and (2) shows

0<(g() -0 =2 /0 (g(5)=F(s)d(als)-a(s)) = 2 /0 ¢(s)da(s)-2 /0 g (s)da(s) < 0.
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CorOLLARY 4.24. Let B be a Brownian motion. The process X; := fot sgn(By)dBg is a Brownian
motion and the filtration generated by X is the same as the filtration generated by |B|. Moreover,

(4.3.6) LtO (B) = —supX; forallt > 0,a.s.

s<t

Proor. By Levy’s characterization X is a Brownian motion, and by Tanaka’s formula | B;| = X, + L? (B).
Hence with f(t) := X, (w), the pair g (1) = |B; (w)], a(t) = LY (B) fulfills f = g —a. But by Lemmal4.23]
a(t) = supy;, (=X; (w) v 0) = —sup, ., X (w).

If we denote by 7, 8 ‘, FX ,?;LO(B) the filtrations generated by | B|,X and L (B) on [0, ], then by Tanaka’s
formula and 718l ¢ 7X. However, by fLO(B) c 78! and therefore also FX ¢ 7,51, m

We can now make Tanaka’s SDE rigorous.

CoRrOLLARY 4.25. Set 0 (x) =sgn(x). The SDE e (0,0°) has
(1) a weak solution but no strong solution,
(2) uniquness in law holds but not pathwise uniqueness

Proor. Exercise sheet. O
CoroLLARY 4.26. Let B be a Brownian motion and S; := sup, ., Bs. The two-dimensional processes
(|B|,L0 (B)) and (S—B,S)
have the same distribution.

Proor. Define B, := —fol sgn(Bs)dBs and S, := supsgﬁs. By above Lemma , L°(B) = S and
using this in Tanaka’s formula gives

|B|=L°(B)-B=S-B.

But by Levy’s characterization B is a Brownian motion, hence (B, S) and (E, E) have the same distribution
and the result follows. O

4.4. One-dimensional SDEs: pathwise uniqueness via local times

We now use local time to revisit the question of uniqueness of solutions. The Yameda—Watanabe
Theorem shows that pathwise uniqueness implies uniqueness in law. We now show that sometimes the
reverse implication holds. We focus on the one-dimensional case which allows to use the local time and
generalize from Lipschitz to Holder regular coefficients. The key result is that by using local time one can
show under certain conditions the inverse of the Yameda—Watanabe theorem, Theorem ??, that is we will
see conditions such that uniqueness in law implies pathwise uniqueness (recall that by Yameda—Watanbe a
solution must be a strong solution if pathwise uniqueness holds).

ProposiTiON 4.27. Assume uniqueness in law holds forey (o, i). If for any two solutions (X L B), (X 2, B)
of ey (o, u) on the same filtered probability space we have

L(x'-x?) =0
then pathwise uniqueness holds for ey (o, p).

Proor. By Lemmal4.28] X' and X' v X? are solutions, thus have the same distribution. Especially
for every ¢, X! > X? a.s. Same argument with X and X' v X2 shows X > X! a.s., thus by continuity of
trajectories X' = X2 a.s. o

Above proposition follows from the key lemma below: the supremum of two ODE solutions is again
an ODE solution but his is not true for SDE solutions. However, local time gives a sufficient and necessary
criteria.
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Lemma 4.28. Let (X', B), (X% B) be two solutions of ex (o, 1) on the same filtered probability space.
Then (X' Vv X2 B) is a solution of ex (o, p) if and only if L° (X> - X') = 0.

Proor. By Tankas formula applied to (X Z_X 1)+ we have
+ t 1
x!vx2=x!+ (X}—X,‘) =/ +/ 1X2>X1d(X2—X]) 5L (XZ—X]) .
0 S S s

Using that dX! = u (1, X!)dt + o (t,X!) dB; fori = 1,2 above becomes

t t
xX'vx? = /,u(t,X,‘)dH/ O'(t,th)dBt
0 0
t t
+/ (,u(t,th)—,u(t,X,l))1X2>X1dt+/ (a(z,xf)—a(t,x,l))1X2>X1dBt
0 S s 0 s s
1
=y (Xl —Xz)
2
t t 1
_ /,u(t,thvth)dtJr/ a(t,X}vXE)dB,+§L?(X1—X2)
0 0
Hence X' v X? is a solution of e (o, p) iff LY (X' - X2) = 0. m|

We now need to find criteria that imply L° (X I-x 2) = 0. A useful Lemma for this is

Lemma 4.29. Let p : (0,00) — (0,00) be Borel measurable and such that

€
1

(4.4.1) / LI

o+ p(a)
foran e >0. If X € S, such that

'

1
442 1 —d(X Ht>0
i | 0cxose a0 <sofora

then L°(X) = 0.
Proor. By the Occupation formula, Proposition .19 above integral equals
€ 1
LY (X)——da.
/0 " pla)

As € goes to 0, a approaches 0 and L converges to L?. But bythis implies that L? (X) = 0, otherwise
(@#.4.2) is co with positive probability. a

Putting all the above together we now have a very general criteria for pathwise uniquness in one
dimension.

THeOREM 4.30 (LE GALL). Let u,0 : R — R be Borel measurable,
(1) u Lipschitz,
(2) there exists a p : (0,00) — (0,00) be Borel measurable, /oi ﬁda = oo Ve > 0 such that,

(4.43) o ()= (I < p(lx=y) Yxy eR.
Then pathwise uniqueness holds for e, (u, o).

Proor. Let (X!, B) and (X2, B) be two solutions. Set ¥ := X' — X2 and use (4.4.3) to estimate

;o = [y o) (o)

< oo

IA
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Hence, Lemmal4.29|implies that L° (X' — X2) = 0 and so by Tanaka’s formula

bt == [ sen(x!-2) (o () —or (32) Dt [ sem 32 =) (i () - (3 .

We can assume wlog that o~ is bounded (by localization) and therefore assume that fot sgn (X! - X2) (o (X}) — o (X?)) dBs
is a continuous martingale. Thus taking expectations and using the Lipschitzness of u gives

E[./o u(x!)-u(x2) ds]
c/OtE“X;—XfH ds.

Using Gronwall’s lemma,E [|X;! - X?|| = 0 and we conlude X, = X? a.s., and by continuity X' = X2
a.s. o

IA

E[|x; - x2|]

IA

There are many other statements of above type with different conditions on the coefficients. We state
the following theorem without proof.
THEOREM 4.31 (NAKAO). Let u,0 : R — R be Borel measurable and assume that
(1) uis bounded,

(2) there exists an increasing, Borel measurable function f : R — R and a € > 0 such that for all
x,yeR

o ()= <1f (@)= F )0 (x)> e
Then pathwise uniqueness holds for SDE e (u, o).
ExampLE 4.32. Consider ey (¢, 07) with p(x) = +/|x| and o (x) = € and fix T > 0. By Proposition
?? it has a weak solution on [0,7], by above Theorem this solution is pathwise unique and by
Yameda—Watanabe, Theorem ?? we conclude that this solution the pathwise unique strong solution. Note

that o (x) > 0 is essential since the ODE dy; = u(y;)dt has infinitely many solutions. This is an example
of the regularising effect of the quadratic variation of Brownian motion.

Using local times, we can compare SDEs driven by the same noise but different drift coefficients.

THEOREM 4.33 (SDE COMPARISON). Let u1, 12,0 : R — R be measurable with

(1) o as in Theorem[#.30)
) w1 (x) = s (x) for all x € R and at least one of uy, up Lipschitz.

If (X', B) is a solution of e, (u,0) and (XZ,B) a solution of e,» (u, o) on the same filtered probabilty
space and x' > x* then
X?> X! forallt >0

holds a.s.
Proor. As in Theorem we use the assumption on o to show L (X Z_Xx 1) = 0. Therefore

+ t
(Xz—xl) / 1X§>X;d(x2—xl)
0 A
t
[t i (32) - () s
0
t
[ (1) 1))
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As in Theorem[4.30} wlog ¢ is bounded (by localization) so taking expectation in above shows
+
o) = B[(x}-x!)]

=8| [ (i (2) - (x2) .

Now if u; is Lipschitz, we estimate
t t
E [/ Iy2sx (#2 (Xf) — M (Xsl))ds] E[/ 2o x (Ml (st) —H (Xsl))ds}
0 0
t
CE[/ \X?—XH Iy2ox1 | ds < co(s)
O s S

and the result follows by Gronwall’s lemma. If y5 is Lipschitz use that (a — b) < |a — ¢| + ¢ — b to estimate

IA

IA

| [t (i (33) s (x2))as| < 2] [t i (33) - (1) s
t
8| [ (in (x!) -1 () ]
' 2 1
< E[[) Ly2ox1 |,u2 (Xs)—,u2 (X‘) ds]

where the last estimate follows since u; > p». The result now follows from the Lipschitzness of u, and
(]

Gronwall’s lemma.



APPENDIX A

Reading list

Below I give some pointers to the literature for topics covered in the course. It should NOT be assumed
that the list below constitutes either necessary or sufficient material for the exam. However, you might find
the references useful for exam preparation and revision of material

Your first reference for background material should be your notes and the lectures notes for B8.1 and
B8.2. If you get one additional book, then either [Revuz and Yor, 1999] or [Karatzas and Shreve, 1991
are both excellent choices and cover all the material of this course and much more in concise way; if you
prefer a somewhat slower pace, [Durrett, 1996] gives great motivation. A classic reference that I highly
recommend is [Rogers and Williams, 2000a}, Rogers and Williams, 2000b]]. Yet another addition to all
the material is the blog by George Lowther https://almostsure.wordpress. com.

(1) Introduction

(a)

(b)
(©)

Motivation and big picture: [Gardiner, 2009,/Gardiner et al., 1985|] applications in natural
sciences; [@ksendal, 2003] applications in finance, signal filtering, PDEs

Recall probability: [Malliavin, 1995| concise and elegant

Recall stochastic processes, filtrations, stopping times: [Karatzas and Shreve, 1991, Sec-
tion 1.1 - 1.2] and [Revuz and Yor, 1999, Section 1.1-1.4]

(2) Martingale theory in continuous time
Main references are the lecture notes for B8.2 [Obloj, 2015] and [Revuz and Yor, 1999].

(a)

(b)
()

Brownian motion & applications: [[Rogers and Williams, 2000al I.1-1.16] short overview
of BM (highly recommended); [Morters and Peres, 2010]] readable and modern account
of BM

Martingale inequalites, regularity, optional stopping: [Revuz and Yor, 1999, Chapter 2]
Stochastic integration: [Durrett, 1996] and [Rogers and Williams, 2000b, Chapter IV,
Section 4] intuitive, step-by-step; [Revuz and Yor, 1999, Chapter 4] and [ Karatzas and Shreve, 1991,
Chapter 3] concise presentation of standard L> martingale theory; [Protter, 2005, Chapter
2] presents alternative approach: semimartingales defined as “good integrators”, forces to
prove the Bichteler—Delacherie—Meyer theorem that shows equivalence with the standard
definition of semimartingales; [McKean, 2005] densely written but highly recommended
as a second reference to any of the above.

(3) Ito’s stochastic calculus and applications

(@)
(b)

(c)

Ito’s formula: any book about stochastic calculus.

Stochastic exponential, Levy’s characterization, and Dambis—Dubins—Schwarz: these were
already treated in [Obloj, 2015]; we follow closely [Revuz and Yor, 1999]. There is much
more to say about the stochastic exponential, for example applications to complex valued
martingales and conformal mappings. Similarly, time changes of can be studied more
generally see [Revuz and Yor, 1999]

Change of measure: for basic measure theory background [Malliavin, 1995, Chapter 6]; the
bloghttps://almostsure.wordpress.com/2010/05/03/girsanov-transformations/
has a very nice presentation which we follow partly; the assumption of &(M) being

u.i. resp. P and Q being equivalent is often too strong and finer estimates are possible see
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[Karatzas and Shreve, 1991, Chapter 3.5]; [Revuz and Yor, 1999] presents a very general
theory of Girsanov transformations. For Gaussian quasi-invariance see [Malliavin, 1997]].
(4) Stochastic differential equations
(a) The standard reference for SDE is [Ikeda and Watanabe, 1989].
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filtration, [3]

Ito’s formula, [21]

Kazamaki condition, [23]

Lévy’s characterization of Brownian motion, @

martingale,[9]

martingale representation, @
martingale, local,[9]

H? space of L2-bounded martingales,

Novikov condition, 23]
quadratic variation process, [T3]

Stochastic exponential, 22]
stopping time, [§]

total variation, [T3]

uniform integrability, [8]
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