C8.1 STOCHASTIC DIFFERENTIAL EQUATIONS

EXERCISE SHEET 1

- (1) Let $\{W_t : t \ge 0\}$ be a standard Brownian motion in \mathbb{R}^2 , and $D_R = \{z \in \mathbb{R}^2 : |z| < R\}$ be the disk with radius R > 0.
 - (a) Compute $\mathbb{P}(W_t \in D_R)$ where t > 0 and hence show that

(i)
$$\mathbb{P}\left(W_t \notin D_{\sqrt{2\lambda t}}\right) = e^{-\lambda}$$

(ii) Let $|D_R|$ be the Lebesgue measure of the domain D_R . Then

$$\lim_{R \to 0} \frac{\mathbb{P}\left(W_t \in D_R\right)}{|D_R|} = \frac{1}{2\pi t}$$

- (iii) What happens for a Brownian motion in \mathbb{R}^3 started at *x* in (a)(i),(ii) when we replace D_R by $B_R(x)$, the ball of radius *R* centred at *x*?
- (2) Let *W* be a standard Brownian motion on a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.
 - (a) Show that the process B defined by $B_t = tW_{1/t}$ is a Brownian motion (you may assume continuity at 0).
 - (b) Let $T_a = \inf \{t \ge 0 : W_t = a\}$ denote the first hitting time of *a*. Show using the reflection principle or otherwise that

$$\mathbb{P}(T_a < t) = 2\mathbb{P}(W_t > a)$$

and hence the probability density function of T_a is

$$f_{T_a}(t) = \frac{a}{\sqrt{2\pi t^3}} \exp\left(-\frac{a^2}{2t}\right)$$

- (c) Let $S_a = \sup \{t \ge 0 : W_t = at\}$. Is S_a a stopping time? Show that $S_a = \frac{1}{T_a}$ in distribution and hence find $\mathbb{E}S_a$ and $\mathbb{E}W_{S_a}$.
- (3) A real-valued process is centred Gaussian, if its finite-dimensional distributions are normal distributions with mean zero. A centred Gaussian process $X = (X_t)_{t \ge 0}$ is called a fractional Brownian motion (FBM) with Hurst parameter $h \in (0, 1)$ if $\mathbb{P}(X_0 = 0) = 1$ and its covariance function

$$\mathbb{E}[X_t X_s] = \frac{1}{2} \left(t^{2h} + s^{2h} - |t - s|^{2h} \right).$$

- (a) Show that for t > s, $X_t X_s$ has mean zero and variance $|t s|^{2h}$.
- (b) Show that for any t > s and p > 0

$$\mathbb{E}\left[|X_t - X_s|^p\right] = c_p \left|t - s\right|^{hp}$$

for some constant c_p depending only on p.

- (c) Show that the fractional Brownian motion *X* has a continuous modification and determine its Holder exponent. [You may wish to recall Kolmogorov's Continuity Theorem]
- (d) By considering a partition with a mesh size that goes to 0, find the value of p such that the p-variation of X is finite and non-zero. Is the process X a semi-martingale for any h?
- (4) Let *M* be a continuous local martingale with $M_0 = 0$. Show that
 - (a) *M* is *L*²-bounded if $\mathbb{E} \langle M \rangle_{\infty} < \infty$ and in this case $M^2 \langle M \rangle$ is uniformly integrable.
 - (b) *M* converges almost surely as $t \to \infty$ on the set where $\langle M \rangle_{\infty} < \infty$.