C8.1 STOCHASTIC DIFFERENTIAL EQUATIONS

EXERCISE SHEET 2

(1) Let $W = (W_t^1, \dots, W_t^d)_{t>0}$ be a standard BM in \mathbb{R}^d and $F = (F_t^1, \dots, F_t^d)_{t>0}$ an adapted continuous stochastic process such that

$$\int_0^t \left| F_s^i \right|^2 ds < \infty$$

- for $i = 1, \ldots, d$ and $t \ge 0$. Show that
- (a) for any $i, j \leq d \langle B^i, B^j \rangle_t = \delta_{ij} t$ where $\delta_{ij} = 1$ if i = j, otherwise $\delta_{ij} = 0$
- (b) for any $\left\langle \int_0^j F_s^i dW_s^i, \int_0^j F_s^j dW_s^j \right\rangle_t = \delta_{ij} \int_0^t F_s^i F_s^j ds$
- (c) $X_t = (\sum_{i=1}^{d} F_s^i dW_s^i)^2 \sum_{i=1}^{d} \int_0^t |F_s^i|^2 ds$ is a martingale
- (d) for any $\lambda > 0 \mathbb{P}\left(\sup_{0 \le s \le t} \left| \sum_{i=1}^{d} \int_{0}^{s} F_{s}^{i} dW_{s}^{i} \right| \ge \lambda \right) \le \lambda^{-2} \int_{0}^{t} \mathbb{E}\left[\sum_{i=1}^{d} \left| F^{i} \right|^{2} \right] ds$
- (2) Let X be a positive random variable, independent of a standard Brownian motion W on a filtered probability space $(\Omega, \mathscr{G}, (\mathscr{G}_t), \mathbb{P})$. Let $M = W_{tX}$ and assume that the filtration $(\mathscr{F}_t) := (\mathscr{G}_{tX})$ is such that *X* is \mathscr{F}_t -measurable for all $t \ge 0$.
 - (a) Show that *M* is a local martingale wrt to (\mathscr{F}_t) .
 - (b) Show that *M* is a martingale if and only if $\mathbb{E}\left[\sqrt{X}\right] < \infty$.
 - (c) Calculate $\langle M \rangle_t$.
 - (d) Let A be an increasing process, independent of W and $A_0 = 0$. Assuming it is adapted to a filtration $(\mathscr{F}_t^A) := (\mathscr{G}_{A_t})$, show that $(W_{A_t})_{t>0}$ is a local martingale with respect to (\mathscr{F}_t^A) and find conditions which ensure it is a martingale and determine its quadratic variation.
- (3) Let W be a standard Brownian motion. Find the SDEs satisfied by the following processes and determine which are martingales.
 - (a) $X_t = e^{t/2} \cos W_t$
 - (b) $X_t = tW_t$

 - (b) $X_t = t W_t$ (c) $X_t = (W_t + t) \exp\left(-W_t \frac{t}{2}\right)$ (d) $X_t = (W_t^1)^2 + (W_t^2)^2$ where (W^1, W^2) is a two-dimensional Brownian motion
- (4) Let $W = (W_t^1, \dots, W_t^d)_{t \ge 0}$ be a standard Brownian motion in \mathbb{R}^d . Let $X_t = ||W_t|| = \sqrt{(W_t^1)^2 + \dots + (W_t^d)^2}$. (a) Find the SDE for \overline{X} . Show that

$$X_t = X_0 + \int \frac{d-1}{2X_s} ds + B_t$$

where *B* is a Brownian motion in \mathbb{R} .

(b) For $\beta_k(t) = \mathbb{E}[X_t^{2k}]$ and $k \ge 0$ show that

$$\beta_k(t) = k(2(k-1)+d) \int_0^t \beta_{k-1}(s) ds.$$

(c) Calculate $\mathbb{E}\left[||W_t||^4\right] = \mathbb{E}\left[||W_t||^6\right]$.

- (5) Let $W = (W^1, W^2, W^3)$ be a Brownian motion in \mathbb{R}^3 , where W_0 is a random variable in $\mathbb{R}^3 \setminus \{0\}$, independent of $(W_t - W_0)_{t>0}$.
 - (a) Define ||.|| as in question 4, show that $||W||^{-1}$ is a local martingale

- (b) Suppose $W_0 = y$. Let $M_t = ||W_{t+1} y||^{-1}$, for $t \ge 0$. Show by a direct calculation that $\mathbb{E}[M_t^2] = \frac{1}{1+t}$. Deduce that M is bounded in L^2 and uniformly integrable. You may assume that $\mathbb{P}(\forall t > 0, W_{t+1} = y) = 0$.
- (c) Show that M is both a local martingale and a supermartingale.
- (d) Use the martingale convergence theorem to show that M is not a martingale
- (6) Let B be a standard real-valued Brownian motion. Prove that

$$X_t = \int_0^t \operatorname{sgn}\left(B_s - x\right) dB_s$$

is a Brownian motion, where $x \in \mathbb{R}$ and

$$\operatorname{sgn} = \begin{cases} 1 & \text{if } x \ge 0, \\ -1 & \text{if } x < 0. \end{cases}$$

(Hint: use Levy's characterization of Brownian motion).

(7) Let $B = (B_t^1, \dot{B}_t^2)_{t \ge 0}$ be a standard Brownian motion in \mathbb{R}^2 . Prove that the process $X = (X^1, X^2)$ defined as

$$X_{t}^{1} = \int_{0}^{t} \cos(B_{s}^{1}) dB_{s}^{1} - \sin(B_{s}^{1}) dB_{s}^{2}$$
$$X_{t}^{1} = \int_{0}^{t} \sin(B_{s}^{1}) dB_{s}^{1} + \cos(B_{s}^{1}) dB_{s}^{2}$$

is again a standard Brownian motion in \mathbb{R}^2 .

(8) Let X, Y be continuous semimartingales. Define the stochastic exponential

$$\mathscr{E}(X)_t := \exp\left(X_t - \frac{1}{2}\langle X \rangle_t\right)$$

and prove that there exists a unique continuous semimartingale Z such that

$$Z_t = Y_t + \int_0^t Z_s dX_s$$

and that Z is given by

$$Z_{t} = \mathscr{E}(X)_{t} \left(Y_{0} + \int_{0}^{t} \mathscr{E}(X)_{s}^{-1} dY_{s} - \int_{0}^{t} \mathscr{E}(X)_{s}^{-1} d\langle X, Y \rangle_{s} \right).$$