C8.1 STOCHASTIC DIFFERENTIAL EQUATIONS

EXERCISE SHEET 3

- (1) Let $M \in \mathcal{M}_{c,loc}$.
 - (a) Show that the intervals of constancy of $t \mapsto M_t$ and $t \mapsto \langle M \rangle_t$ coincide a.s.
 - (b) Show that if

$$\mathbb{E}\left[\exp\left(iu\left(M_t - M_s\right)\right) | \mathcal{F}_s\right] = \exp\left(-\frac{u^2\left(t - s\right)}{2}\right) \text{ for all } s < t$$

then *M* is a Brownian motion.

(2) Show that Novikov's criterion implies the Kazamaki criterion: if $M \in \mathcal{M}_{c,loc}$ and

$$(0.1) \mathbb{E}\left[\exp\frac{1}{2}\left\langle M\right\rangle_{\infty}\right] < \infty$$

then $\exp\left(\frac{1}{2}M\right)$ is a u.i. submartingale. Hint: use BDG to show that M is a u.i. martingale, then argue that this implies that $\exp\left(\frac{1}{2}M\right)$ is a u.i. submartingale

(3) Let $(\Omega, \mathcal{F}, (\mathcal{F}_l), \mathbb{P})$ be a filtered probability space satisfying the usual conditions and $\mathbb{Q} \sim \mathbb{P}$ and equivalent probability measure (\mathbb{P} is absolutely continuous wrt to \mathbb{Q} and \mathbb{Q} is absolutely continuous wrt to \mathbb{P}). Denote the density with

$$\rho_{\infty} := \frac{d\mathbb{Q}}{d\mathbb{P}} \text{ and define } \rho_t := \mathbb{E}_{\mathbb{P}}[\rho_{\infty}|\mathcal{F}_t] \text{ for } t \ge 0.$$

Show that

- Snow that (a) $\mathbb{E}_{\mathbb{Q}}[Z|\mathcal{F}_{t}] = \frac{\mathbb{E}_{\mathbb{P}}[\rho_{\infty}Z|\mathcal{F}_{t}]}{\mathbb{E}_{\mathbb{P}}[\rho_{\infty}|\mathcal{F}_{t}]}$ for any real-valued, bounded random variable Z, (b) $\rho = (\rho_{t})_{t \geq 0}$ is a u.i. $((\mathcal{F}_{t}), \mathbb{P})$ -martingale, (c) $\rho^{-1} = \left(\frac{1}{\rho_{t}}\right)_{t \geq 0}$ is a u.i. $((\mathcal{F}_{t}), \mathbb{Q})$ -martingale and $\frac{1}{\rho_{t}} = \mathbb{E}_{\mathbb{Q}}\left[\frac{1}{\rho_{\infty}}|\mathcal{F}_{t}\right]$. (4) Let $M \in \mathcal{M}_{c,loc}$ with $M_{0} = 0$. Show that
 - - (a) $\mathcal{E}(M) \in \mathcal{M}_{c,loc}$, $\mathcal{E}(M)_t \ge 0$ for all $t \ge 0$,
 - (b) $\mathcal{E}(M)$ is a supermartingale with $\mathbb{E}[\mathcal{E}(M)_t] \le 1$,
 - (c) $\mathcal{E}(M) \in \mathcal{M}_{c}$ iff $\mathbb{E}[\mathcal{E}(M)_{t}] = 1$ for all $t \ge 0$.
- (5) Let B be a standard real-valued Brownian motion. Prove that

$$B_t^4 = 3t^2 + \int_0^t \left(12(t-s)B_s + 4B_s^3 \right) dB_s.$$

(6) Let B be a standard real-valued Brownian motion on $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P}), M$ a continuous $(\sigma(B), \mathbb{P})$ martingale and with $\sup_t |M_t|_{L^2(d\mathbb{P})} < \infty$. Assume there exists a predictable process H such that

$$M_t = M_0 + \int_0^t H_s dB_s$$

Show that such an *H* must be unique.

(7) Prove Kazamaki's condition: if $M \in \mathcal{M}_{c,loc}$ with $M_0 = 0$ and such that

$$\left(\exp\frac{1}{2}M_t\right)_{t\geq 0}$$

- is a u.i. submartingale then $\mathcal{E}(M) \in \mathcal{M}_c$.
- (a) For $\alpha \in (0, 1)$ show that

$$\mathcal{E}(\alpha M)_t = \left(\mathcal{E}(M)_t\right)^{\alpha^2} \left(Z_t^\alpha\right)^{1-\alpha^2}$$

with $Z_t^{\alpha} := \exp\left(\frac{\alpha}{1+\alpha}M_t\right)$. (b) Show that the family of random variables

 $\{\mathcal{E}(\alpha M)_{\tau}: \tau \text{ a stopping time}\}$

is u.i. and that $\mathcal{E}(\alpha M)$ is a u.i. martingale

- (c) Use the existence of M_{∞} and the dominated convergence theorem to show that $\mathcal{E}(M)$ is a martingale.
- (8) Let *B* be a real-valued Brownian motion. Prove that $X = (X_t)_{t \ge 0}$ defined as

$$X_t = \exp\left(\int_0^t \sqrt{s}\sin(B_s) dB_s - \frac{1}{2} \int_0^t s\sin^2(B_s) ds\right)$$

is a continuous martingale.