C8.1 STOCHASTIC DIFFERENTIAL EQUATIONS

EXERCISE SHEET 4

(1) We call a function $F:[0, \infty) \rightarrow \mathbb{R}$ moderately increasing with growth rate k if F is nondecreasing, $F(0)=0$ and

$$
F(2 \lambda) \leq k F(\lambda) .
$$

Show that if X, Y are two nonnegative random variables that fulfill $\forall \delta, \lambda>0$

$$
\mathbb{P}(X>2 \lambda, Y \leq \delta \lambda) \leq \delta^{2} \mathbb{P}(X>\lambda)
$$

then for every moderately increasing function F, there exists a constanct $c=c(k)$ that depends only on the growth rate k of F such that

$$
\mathbb{E}[F(X)] \leq c \mathbb{E}[F(Y)]
$$

(a) $\mathrm{W} \log F$ can be assumed to be bounded,
(b) Show that $\mathbb{E}[F(Z)]=\int_{0}^{\infty} \mathbb{P}(Z>\lambda) d F(\lambda)$ for any nonnegative random variable Z
(c) Conclude by replacing Z with $\frac{X}{2}$ and $\frac{Y}{\delta}$.
(2) Let $\beta>1$. Show that $\forall \delta, \lambda>0$

$$
\begin{aligned}
\mathbb{P}\left(B_{\tau}^{\star}>\beta \lambda, \sqrt{\tau} \leq \delta \lambda\right) & \leq \frac{\delta^{2}}{(\beta-1)^{2}} \mathbb{P}\left(B_{\tau}^{\star}>\lambda\right) \\
\mathbb{P}\left(\sqrt{\tau}>\beta \lambda, B_{\tau}^{\star} \leq \delta \lambda\right) & \leq \frac{\delta^{2}}{\left(\beta^{2}-1\right)} \mathbb{P}(\sqrt{\tau}>\lambda)
\end{aligned}
$$

(a) Relate the stopping times

$$
\sigma_{1}=\inf \left\{t:\left|B_{t \wedge \tau}\right|>\lambda\right\}, \sigma_{2}=\inf \left\{t:\left|B_{t \wedge \tau}\right|>\beta \lambda\right\}, \sigma_{3}=\inf \{t: \sqrt{t \wedge \tau}>\delta \lambda\}
$$

and the events $\left\{\sigma_{1}<\sigma_{2}<\tau\right\}$ and $\left\{\sigma_{3}=\infty\right\}$ to the events $\left\{B_{\tau}^{\star}>\beta \lambda\right\}$ and $\{\sqrt{\tau} \leq \delta \lambda\}$,
(b) Show that $\mathbb{E}\left[\left(B_{\sigma}-B_{\sigma^{\prime}}\right)^{2}\right]=\mathbb{E}\left[\sigma-\sigma^{\prime}\right]$ for all bounded stopping times $\sigma \geq \sigma^{\prime}$,
(c) Use Chebyshev's inequality and (2b), 2a) to derive the first inequality,
(d) For the second inequality interchange the roles of $B_{\tau \wedge t}$ and $(t \wedge \tau)$ and give a similar argument
(3) Consider the $\left.\operatorname{SDE~}_{x}(x \mapsto \mu x, x \mapsto \sigma)\right)$ with $\mu \in \mathbb{R}^{e x e}, \sigma \in \mathbb{R}^{e \times d}$ constant.
(a) Denote with $\exp (M):=\sum_{k \geq 0} \frac{M^{k}}{k!}$ the matrix exponential and use the process $\left(\exp (t \mu) X_{t}\right)_{t \geq 0}$ to derive an explicit solution (X, B).
(b) What is the distribution of X_{t} for $t>0$?
(c) Let $e=d=1$. Show that for any bounded measurable, real-valued function f

$$
\mathbb{E}\left[f\left(X_{t}\right)\right]=\mathbb{E}^{\prime}\left[f\left(e^{t \mu} x+N \sqrt{\frac{\sigma^{2}}{2}\left(e^{2 t \mu}-1\right)}\right)\right]
$$

where the expectation \mathbb{E}^{\prime} is taken over any probability space $\left(\Omega^{\prime}, \mathcal{F}^{\prime}, \mathbb{P}^{\prime}\right)$ that carries a standard Gausian, $N \sim \mathcal{N}(0,1)$.
(d) Find a function $p(t, x, y)$ in explicit form such that $\mathbb{E}\left[f\left(X_{t}\right)\right]=\int_{\mathbb{R}^{e}} f(y) p(t, x, y) d y$.
(4) Consider the $\operatorname{SDE~}_{x}(x \mapsto \mu x, x \mapsto \sigma x)$ with $\mu, \sigma \in \mathbb{R}$.
(a) Find an explicit solution (X, B),
(b) Show that for any bounded measurable, real-valued function f

$$
\mathbb{E}\left[f\left(X_{t}\right)\right]=\mathbb{E}^{\prime}\left[f\left(x e^{\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma \sqrt{t} N}\right)\right]
$$

where the expectation \mathbb{E}^{\prime} is taken over any probability space $\left(\Omega^{\prime}, \mathcal{F}^{\prime}, \mathbb{P}^{\prime}\right)$ that carries a standard Gausian, $N \sim \mathcal{N}(0,1)$.
(5) For $\alpha>0$ define $\sigma_{\alpha}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ as $\sigma_{\alpha}(x)=|x|^{\alpha} \wedge 1$.
(a) Find a trivial solution for $\operatorname{SDE~} \mathrm{e}_{0}\left(0, \sigma_{\alpha}\right)$ for all $\alpha>0$.
(b) Show that if $\alpha \geq 1$ this is a strong solution.
(c) If $\alpha<1$ show that one can find a time change of the Brownian motion to give another solution:
(i) If $\left(\left(X^{i}\right)_{i=1,2}, B\right)$ is such a solution, show that $\left\langle X^{i}\right\rangle$ does not depend on i and conclude that for

$$
\tau_{t}:=\inf \left\{s:\left\langle X^{i}\right\rangle_{s}>t\right\}
$$

we have $\tau_{t}=\int_{0}^{t} \sigma_{\alpha}^{-2}\left(B_{s}\right) d s$
(ii) Compute $\mathbb{E}\left[\tau_{t}\right]$ and conclude that the time change $t \mapsto \tau_{t}$ is finite a.s. Use Dambis-Dubins-Schwarz to construct another solution.
(6) Fix $\lambda, v, \sigma>0$ and let $\mu(x)=\lambda(v-x)$.
(a) Find a an explicit solution (X, B) of $\mathrm{e}_{x}(\mu, x \mapsto \sigma)$ (Hint: use Ito with $\left.(t, x) \mapsto x e^{\lambda t}\right)$.
(b) Calculate mean and variance of X_{t} for $t>0$.
(c) Let $v=0$. Show that there exists a Brownian motion W such that (Y, X) with $Y:=X^{2}$ is a solution of the $\operatorname{SDE} e_{x^{2}}\left(\mu^{\prime}, \sigma^{\prime}\right)$ with $\mu(y)=-2 \lambda y+\sigma^{2}, \sigma(y)=2 \sigma \sqrt{y}$.
(a) Prove Skorokhod's lemma that was stated in the lecture (and lecture notes) and deduce that if B is a Brownian motion, the process $X_{t}:=\int_{0}^{t} \operatorname{sgn}\left(B_{s}\right) d B_{s}$ is a also Brownian motion and the filtration generated by X is the same as the filtration generated by $|B|$. Moreover,

$$
\begin{equation*}
L_{t}^{0}(B)=-\sup _{s \leq t} X_{s} \text { for all } t \geq 0, \text { a.s. } \tag{1.1}
\end{equation*}
$$

(b) Let $S_{t}:=\sup _{s \leq t} B_{s}$. Show that the two-dimensional processes $\left(|B|, L^{0}(B)\right)$ and $(S-B, S)$ have the same distribution.
(c) Show that the $\operatorname{SDE~}_{0}(0, \sigma)$ with $\sigma(x):=\operatorname{sgn}(x):=\left\{\begin{array}{ll}1 & \text { if } x>0, \\ -1 & \text { if } x \leq 0 .\end{array}\right.$ has a weak solution but no strong solution.
(d) Show that for the $\operatorname{SDE~}_{0}(0, \sigma)$ uniqueness in law holds but pathwise uniqueness does not hold.
(8) Let B be a standard Brownian motion. Show that

$$
Z_{t}:=\mathcal{E}(-\alpha B)_{t}
$$

is the solution of an ordinary differential equation with a random vector field. Use this to find a process Y that solves the SDE

$$
d Y_{t}=\lambda d t+\alpha Y_{t} d B_{t} \text { and } X_{0}=x
$$

for fixed $\lambda, \alpha, x \in \mathbb{R}$.

