
C7.5: General Relativity I

PS4 Answers

1. Kepler’s 3rd law

What is the physical meaning of the coordinate time t in the Schwarzschild solution?

The coordinate time t is the proper time of a stationary observer at spatial infinity (r →∞).

Show that the proper time τ of an observer on a circular orbit at radius R and the coordinate

time t are related by (
dt

dτ

)2

=
1

1− 3M/R
.

The observer follows a circular geodesic, so L, E and J are conserved and the geodesic

equations are satisfied with ṙ = r̈ = 0. The geodesic is timelike so L = −1 which gives

−1 = −f ṫ2 + f−1ṙ2 + r2φ̇2, (1)

where f = 1− 2M/r. The r equation of motion is

2f−1r̈ − 4Mr−2f−2ṙ = −2Mr−2ṫ2 − 2Mr−2f−2ṙ2 + 2rφ̇2.

As the orbit is circular, this simplifies to

rφ̇2 = Mr−2ṫ2. (2)

Substituting this into (1) and setting r = R and ṙ = 0 gives

−1 = −f ṫ2 +MR−1ṫ2

= −ṫ2 + 2MR−1ṫ2 +MR−1ṫ2

= −ṫ2 + 3MR−1ṫ2,

and rearranging we have

ṫ2 =

(
dt

dτ

)2

=
1

1− 3M/R
.

Using this result, show that (
dφ

dt

)2

=
M

R3
,
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for a circular orbit at radius R.

Simply rearrange (2) to get

φ̇2

ṫ2
=

(
dφ

dt

)2

=
M

R3
.

2. Stability of circular orbits

Consider a time-like geodesic in the Schwarzschild geometry that is a small perturbation from a

circular orbit at radius R in the equatorial plane θ = π/2

r(τ) = R+ ε(τ).

Show that the perturbation must solve an equation of the form

ε̈+ f(R)ε = 0,

and find the function f(R).

Start from the orbit equation for a timelike geodesic

E2 − 1

2
=

1

2
ṙ2 + V (r),

V (r) = −M
r

+
J2

2r2
− MJ2

r3
.

Using this or the r equation of motion, upon taking an r derivative we have

r̈ = −∂V
∂r

= −M
r2

+
J2

r3
− 3

MJ2

r4
.

Let r = R+ ε and work to order O(ε). We then have

ε̈ = − 1

R2

M

(1 + ε/R)2
+

1

R3

J2

(1 + ε/R)3
− 3

R4

MJ2

(1 + ε/R)4

' −M
R2

(1− 2ε/R) +
J2

R3
(1− 3ε/R)− 3MJ2

R4
(1− 4ε/R).

The terms at zeroth order in ε vanish for a circular orbit (as r̈ = 0 for the unperturbed

solution). The remaining terms give

ε̈ =

(
2M

R3
− 3J2

R4
+

12MJ2

R5

)
ε.
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From the previous question, for a circular orbit we have

ṫ2 = (1− 3M/R)−1,

(
dφ

dt

)2

=
M

R3
,

which together give

φ̇2 =
M

R3
(1− 3M/R)−1,

so that J2 is given by

J2 = R4φ̇2 = MR(1− 3M/R)−1.

Using this in the equation for ε gives

ε̈ = −M
R3

1− 6M/R

1− 3M/R
ε.

Thus the function f(R) is

f(R) =
M

R3

1− 6M/R

1− 3M/R
.

Plot this function, showing clearly its asymptote and intercept. Hence, re-derive the fact

that circular orbits only exist if R > 3M and show that these orbits are stable if R > 6M .

The function f(R) looks like

We just found that

J2 = R4φ̇2 = MR(1− 3M/R)−1,

so J is real and finite only for R > 3M . Circular orbits can exist only for R > 3M . For

these orbits to be stable, small perturbations must remain small for all time. The equation

ε̈ + f(R)ε = 0 has oscillatory (stable) solutions for f(R) > 0 and exponential (unstable)

solutions for f(R) < 0. Thus we see stable solutions exist only for R > 6M .

3. Meaning of E

Consider a stationary observer at radius R in the Schwarzschild geometry and a massive test

particle moving on a time-like geodesic xa(τ) that intersect at some point P . Show that the
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stationary observer measures the energy per-unit-rest mass of the test particle to be√
1− 2M

R
ṫ.

A stationary observer O has 4-velocity ua = (u0, 0, 0, 0) with

gabu
aub = −1 ⇒ u0 = (1− 2M/R)−1/2.

The test particle has 4-velocity ẋa = (ṫ, ṙ, θ̇, φ̇) in this frame. The observer O measures the

energy per unit rest mass of the test particle at P to be

EO = −gabuaẋb|P
= (1− 2M/R)u0ẋ0

= (1− 2M/R)1/2ṫ.

Let the test particle and the stationary observer have relative velocity v at the point P .

Explain why

γ(v) =

√
1− 2M

R
ṫ.

EO is invariant and does not depend on the frame we use. In particular, we can go to a local

inertial frame at P in which the observer O is stationary (u′µ = (1,0)) and the test particle

is moving with velocity v (ẋ′µ = γ(v)(1,v)). In this frame we have

EO = −ηµνu′µẋ′ν |P
= γ(v).

Thus we have

γ(v) =

√
1− 2M

R
ṫ.

Now derive an expression for the conserved quantity E. Expanding this expression for large

distances (R� 2M) and small velocities (v � 1), show that E is approximately the sum of the

rest mass, kinetic energy and potential energy.

The conserved quantity E is

E = (1− 2M/R)ṫ

= (1− 2M/R)1/2γ(v)

= (1− 2M/R)1/2(1− v2)−1/2.
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We then expand for large distance and small velocity to give

E = (1−M/R+ . . .)(1 + 1
2v

2 + . . .)

' 1 + 1
2v

2 − M

R
.

This is a sum of the rest mass, kinetic energy and potential energy of the particle per unit

rest mass.

This is an approximate characterization of the conserved quantity E. To find the precise

meaning, suppose the stationary observer converts the energy measured into a photon and sends

it out to another stationary observer at r →∞. What is the energy of the photon measured by

a stationary observer at infinity?

Consider a second observer at spatial infinity who measures the energy of the photon to be

E∞. This is related to EO by the usual gravitational redshift as

E∞ = EO ×
√

1− 2M

R

=

√
1− 2M

R
ṫ×

√
1− 2M

R

=

(
1− 2M

R

)
ṫ

= E.

So the conserved quantity E is the energy of the test particle as measured by a stationary

observed at spatial infinity.

4. Acceleration

Observers not freely falling experience acceleration forces. This is encoded in the acceleration

4-vector Aa = V b∇bV a, where V a is the 4-velocity. This measures the failure of the corresponding

curve to be a geodesic.

Consider a stationary observer at radius R in the Schwarzschild geometry and show that

their acceleration four-vector is

Aa = (0,m/R2, 0, 0).

You will need to compute the Christoffel symbol Γrtt for the Schwarzschild metric from the r

equation of motion.

A stationary observer has 4-velocity

V a =
(
(1− 2M/r)−1/2, 0, 0, 0

)
.
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The 4-acceleration is

Aa = V b∇bV a

= V t∇tV a

= V t(∂tV
a + ΓattV

t)

= (V t)2Γatt.

Only the a = r component is non-zero and this can be read off from the r equation of

motion as

Γrtt =
M

r2

(
1− 2M

r

)
.

This gives

Ar =
M

r2
,

with zero for the other components.

Now compute the proper acceleration a = (gabA
aAb)1/2. Which of these results is more

physical?

The proper acceleration is

a = (gabA
aAb)1/2

=

(
1− 2M

r

)−1/2 M

r2
.

We can relate this to the acceleration measured by the stationary observer in their own

local inertial frame as follows. In the rest frame of the stationary observer, its 4-acceleration

is given by

A′µ = (0, a′, 0, 0),

where the acceleration measured is in the radial direction. This is what we might think of

as the physical acceleration. Now note that there is an invariant which isolates a′ as

−ηµνA′µA′ν = −gabAaAb

⇓

a′2 =

(
1− 2M

r

)−1 M2

r4

= a2,

so that a = a′. Note also that we must have A′µ = (0, a′, 0, 0) with a positive sign due

to the equivalence principle. A stationary observer at r is in a gravitational field acting

radially inwards, so to remain at a fixed value of r the observer measures that they are

being accelerated radially outwards!

Show that this agrees with the Newtonian expectation for r � 2M and that stationary
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observers can only exist for R > 2M .

For r � 2M , to leading order in 2M/r we have

a =

(
1− 2M

r

)−1/2 M

r2

'
(

1 +
M

r

)
M

r

1

r

=
M

r2
,

which is the usual Newtonian result.

For r → 2M from above, we have a→∞. As the observer approaches the horizon, it

measures an infinite acceleration in its own rest frame. There are no stationary observers

for r ≤ 2M .

5. Capture by a black hole

For geodesics in the Schwarzschild solution

E2 − κ
2

=
1

2
ṙ2 + V (r),

where

V (r) = −κM
r

+
J2

2r2
− MJ2

r3
,

with κ = 0 for null geodesics and κ = 1 for time-like geodesics

In this question we are interested in when incoming geodesics will be captured by a black

hole. For such problems it is convenient to define the impact parameter b by

b :=
J√

E2 − κ
.

a) Massless particle

First consider an incoming null geodesic. Show that a massless particle is captured by the

black hole if the impact parameter b is smaller than a critical value bc. Show that the capture

cross-section σ := πb2c is

σ = 27πM2.

A particle will be captured if it has sufficient energy such that ṙ2 > 0 at the maximum

of the potential. Given that ṙ < 0 for an incoming particle, this means it will pass the

potential barrier and head towards r = 0.

7



The maximum of the potential is at

0 = V ′(r) = −J
2

r3
+ 3

MJ2

r4

⇓
rmax = 3M.

There will be capture if E2/2 > V (rmax). The value of V at the maximum is

V (rmax) =
J2

54M2
.

There will be capture if E2 > J2/27M2. Rewriting this in terms of the impact parameter

b = J/E we have

b2 < b2crit = 27M2.

The capture cross-section is

σ = πb2crit = 27πM2.

b) Non-relativistic massive particle

Now consider an incoming time-like geodesic. We will assume that the massive particle starts at

r =∞ with non-relativistic velocity v � 1 measured by a stationary observer. Explain why

b =
J

v
+O(v),

and draw a diagram explaining the physical significance of the impact parameter in this case.

Recall from question 3 that the conserved quantity E is given by

E ' 1 + 1
2v

2 − M

r
,

for v � 1 and r � 2M , where v is the velocity measured by a stationary observer at radius

r. Consider an incoming particle with velocity v � 1 as measured by a stationary observer

at spatial infinity. We then have

E ' 1 + 1
2v

2 +O(v4)

⇓√
E2 − 1 ' v +O(v3).

The impact parameter is then

b =
J√

E2 − 1

=
J

v
+O(v).
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In the limit v � 1, the proper time of the particle at spatial infinity reduces to the coordinate

time t. Thus J reduces to the usual classical angular momentum per unit rest mass with b

the impact parameter:

J = r⊥v, b = r⊥.

Show that the massive particle will be captured by the black hole if the impact parameter b

is smaller than a critical value bc. Show that the capture cross-section σ := πb2c is approximately

σ = 16πM2/v2.

For capture of a massive particle we want

E2 − 1

2
> V (rmax),

so that there is still some inwards radial velocity at the maximum of the potential. This is

difficult to do in general, so we use the non-relativistic approximation and E2 − 1 ∼ O(v2).

The capture condition is then V (rmax) < 0 to order v. Given the graph of V (r) has a single

maximum at rmax where V (rmax) approaches zero, we can simply require that V (r) has no

real root (and a single real root as V (rmax)→ 0). We have

V (r) = −M
r

+
J2

2r2
− MJ2

r3

=
1

r3

(
−r2M + r

J2

2
−MJ2

)
.

For a single real root, the descriminant of this equation must be zero (“b2 − 4ac = 0”). We

have

0 =
J4

4
− 4(−M)(−MJ2)

=
J4

4
− 4M2J2

⇓
J = 4M.

For V (rmax) < 0 we then have J < 4M . If this holds, the particle will be captured. Using
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this, the critical impact parameter is then

bcrit =
4M

v
.

The particle will be captured if b < bcrit. The capture cross-section is

σ = πb2crit = 16π
M2

v2
.

6. Einstein equations in cosmology

The FRW metric in coordinates (τ, r, θ, φ) is

ds2 = −dτ2 + a(τ)2dΣ2
(3),

dΣ2
(3) =

dr2

1− kr2
+ r2dΩ2

Using this metric, show that the Einstein equations in the presence of a perfect fluid imply(
a′

a

)2

=
8πρ

3
− k

a2
,

a′′

a
= −4π

3
(ρ+ 3P ).

A perfect fluid with 4-velocity ua has stress tensor

Tab = (p+ ρ)uaub + pgab,

where ua = (1, 0, 0, 0) in a comoving coordinate system. Let the FRW metric be

ds2 = −dτ2 + a(τ)2g̃ijdx
idxj .

Here g̃ij is maximally symmetric (and xi are not the usual Cartesian coordinates unless we

have k = 0). Using the geodesic equation, one finds the non-vanishing components of the

Christoffel symbols are

Γijk = Γ̃ijk, Γij0 =
a′

a
δij , Γ0

ij = a′ag̃ij .

The non-zero components of the Riemann tensor are then

Rj0
i
0 = −a

′′

a
δij , Rlj

k
i = R̃lj

k
i + a′2(δkl g̃ij − δkj g̃il),

where the form of R̃ij
k
l is fixed by maximal symmetry to

R̃lj
k
i = k(δkl g̃ij − δkj g̃il).
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The non-zero components of the Ricci tensor are then

R00 = −3
a′′

a
, Rij =

(
a′′

a
+ 2

a′2

a2
+

2k

a2

)
gij ,

and the Ricci scalar is

R =
6

a2
(aa′′ + a′2 + k).

Putting these together, the Einstein tensor has components

G00 = 3

(
a′2

a2
+

k

a2

)
,

Gij = −
(

2a′′

a
+
a′2

a2
+

k

a2

)
gij ,

G0i = 0.

Using these in the Einstein equation Gab = 8πTab then gives

00 : 3

(
a′2

a2
+

k

a2

)
= 8πρ,

ij : −
(

2a′′

a
+
a′2

a2
+

k

a2

)
= 8πp.

The first of these matches the first equation in the question. The second matches the second

equation in the question on eliminating the (a′/a)2 term using the first equation.

Multiply the first equation by a2, differentiate with respect to τ and eliminate a′′ using the

second equation to show that

ρ′ + 3
a′

a
(ρ+ P ) = 0.

Start with

a′2 =
8πρ

3
a2 − k

⇓

2a′a′′ =
8π

3
ρ′a2 + 2

8πρ

3
aa′ − 0

⇓

0 = ρ′ + 3
a′

a
(ρ+ p).

Derive the same equation directly from the local conservation of energy and momentum

∇aTab = 0.
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We start from

∇aTab = 0

= ∇a ((p+ ρ)uaub + pgab)

= ∇a(p+ ρ)uaub + (p+ ρ)∇auaub + (p+ ρ)����ua∇aub︸ ︷︷ ︸
geodesic

+∇apgab + p����∇agab︸ ︷︷ ︸
metric

= ua∇a(p+ ρ)ub + (p+ ρ)∇auaub +∇bp
= ua∂a(p+ ρ)ub + (p+ ρ)(∂au

a + Γaacu
c)ub + ∂bp.

Now set b = 0 and use ua = (1, 0, 0, 0) in a comoving coordinate frame (such as that in

which the metric takes the form ds2 = −dτ2 + . . .)

∇aTa0 = u0∂0(p+ ρ)u0 + (p+ ρ)(∂0u
0 + Γaa0u

0)u0 + ∂0p

= −p′ − ρ′ − (p+ ρ)Γaa0 + p′

= −p′ − ρ′ − (p+ ρ)
a′

a
δii + p′

= −ρ′ − 3(p+ ρ)
a′

a

≡ 0,

which is the same equation.

7. Cosmological constant

A cosmological constant Λ modifies Einstein’s equations as follows

Rab −
1

2
gabR+ Λgab = 8πTab.

Show that the cosmological constant is mathematically equivalent to a perfect fluid with density

ρΛ = Λ/8π and pressure PΛ = −Λ/8π.

We have

Gab + Λgab = 8πTab

⇓

Gab = 8π

(
Tab −

Λ

8π
gab

)
,

so that

TΛ
ab = − Λ

8π
gab.

For a perfect fluid we have

T00 = ρ ≡ − Λ

8π
g00 =

Λ

8π
.
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As TΛ
ab has only a gab term, we must have ρ = −p.

Hence show that for cosmological solutions we have(
a′

a

)2

=
8πρ

3
− k

a2
+

Λ

3
,

a′′

a
= −4π

3
(ρ+ 3P ) +

Λ

3
.

Pressure and density are extensive so add the contribution of a cosmological constant into

the equations for a′ and a′′ derived in the last question to give(
a′

a

)2

=
8πρ

3
+

Λ

3
− k

a2
,

a′′

a
= −4π

3
(ρ+ 3P − 2

Λ

8π
),

which are the sought after equations.

In an expanding universe with contributions from pressureless matter, radiation and a

cosmological constant, which contribution will dominate the energy density at a) early times;

b) late times? Consider a universe with a positive cosmological constant: how does the scalar

factor a(τ) behave at late times? Does this universe have a future horizon?

In an expanding universe where a′ > 0 we saw in the lectures that the density of pressureless

matter, radiation and a cosmological constant go as a−3, a−4 and a0. At early times (where

a is small), the a−4 contribution will dominate – the universe will be radiation dominated.

At late times (where a is large), the constant contribution will dominate – the universe will

be dominated by the cosmological constant.

With k = 0 and a positive cosmological constant, Λ > 0, we have(
a′

a

)2

=
Λ

3

a(τ) ∼ e
√

Λ/3τ .

Define the conformal time as

dη = a−1dτ ∼ e−
√

Λ/3τdτ.

A future horizon exists if η does not continue to +∞ or equivalently if the following integral

converges

η∞ − ητ ′ ∼
∫ ∞
τ ′

e−
√

Λ/3τdτ

∼ − 1√
Λ/3

e−
√

Λ/3τ |∞τ ′

∼ − 1√
Λ/3

(1− e−
√

Λ/3τ ′).
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This does indeed converge to a finite value, so there is a future horizon.

8.* Conformal transformations

A Weyl transformation of a spacetime is one where the metric gab of the original spacetime is

transformed into the metric g̃ab of a new spacetime, such that they are related by

g̃ab = Ω2gab,

where Ω is a function of the spacetime coordinates xa. Compute Γ̃abc and show that Γ̃abc = Γabc

if and only if Ω is constant.

We use g̃ab = Ω−2gab and the formula for the connection coefficients

Γ̃abc = 1
2 g̃
ad(∂bg̃cd + ∂cg̃bd − ∂dg̃bc)

= 1
2Ω−2gad(Ω2∂bgcd + Ω2∂cgbd − Ω2∂dgbc + gcd∂bΩ

2 + gbd∂cΩ
2 − gbc∂dΩ2)

= 1
2g
ad(∂bgcd + ∂cgbd − ∂dgbc) + Ω−1gad(gcd∂bΩ + gbd∂cΩ− gbc∂dΩ)

= Γabc + Ω−1(gadgcd∂bΩ + gadgbd∂cΩ− gadgbc∂dΩ)

= Γabc + Ω−1(δac ∂bΩ + δab ∂cΩ− gbc∂aΩ).

Thus the coefficients agree if and only if Ω is constant.

Suppose in the original spacetime one has a solution to the source-free Maxwell equations

∇aF ab = 0, ∇[aFbc] = 0.

Show that Fab is also a solution to the source-free Maxwell equations in the new spacetime with

metric g̃ab (with a corresponding connection ∇̃a) provided spacetime is four dimensional. You

may wish to use Γaab = (−g)−1/2∂b(−g)1/2 where g = det gab.

Note that Fab is a solution in both spacetimes but the tensor with the indices raised is

different for each – F̃ ab = g̃acg̃bdFbd while F ab = gacgbdFbd. First note that the expression

for the trace of the Christoffel symbol allow us to write

∇aT ab =
1√
−g

∂a(
√
−gT ab),
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where T ab is an arbitrary antisymmetric tensor. The first equation can the be rewritten as

∇̃aF̃ ab =
1√
−g̃

∂a(
√
−g̃F̃ ab)

=
1√
−g̃

∂a(
√
−g̃g̃acg̃bdFcd)

=
1

ΩD
√
−g

∂a(Ω
D√−gΩ−4gacgbdFcd)

=
1

ΩD
√
−g

∂a(Ω
D−4√−gF ab)

= Ω−4 1√
−g

∂a(
√
−gF ab) + F ab

1

ΩD
∂aΩ

D−4,

from which we see Fab solves the Maxwell equations in the new spacetime (given that it

solves it in the old spacetime) provided D = 4.

Let Γ̃abc = Γabc +Aabc, where A is symmetric on the lower indices. The second equation

is

∇̃[aFbc] = ∇[aFbc] −Ad[abF|d|c] −Ad[acFb]d

= ∇[aFbc] +Ad[abFc]d +Ad[abFc]d

= ∇[aFbc] + 2Ad[abFc]d

= ∇[aFbc],

where the final term drops out as A is symmetric on the lower indices.

The metric for a flat FRW spacetime (k = 0) is sometimes written as

ds2 = −dτ2 +

(
τ

τ0

)2/3

(dx2 + dy2 + dz2).

Show that this spacetime is conformal to Minkowski spacetime.

We rewrite the metric as

ds2 =

(
τ

τ0

)2/3
(
−
(
τ

τ0

)−2/3

dτ2 + dx2 + dy2 + dz2

)
.

Defining

a(τ) =

(
τ

τ0

)1/3

, dt = a−1dτ,

we have

ds2 = a(τ)2
(
−dt2 + dx2 + dy2 + dz2

)
.

We see this metric is conformal to Minkowski spacetime with a conformal factor Ω(t)2 = a(τ)2.
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This conformal factor is defined by

dt = a−1dτ =

(
τ

τ0

)−1/3

dτ.

Integrating both sides we have

t = 3
2τ

2/3τ
1/3
0 + c0,

where the constant of integration can be set to zero by shifting the origin of t. We then have

a(τ)2 =

(
τ

τ0

)2/3

= 2
3 tτ
−1
0 = Ω(t)2.

Using this, or otherwise, find a formula for the cosmological red shift of light emitted by a

galaxy at τ = τ1 and measured by an observer at τ = τ2. Assume both the source and observer

are comoving.

Light travels on null geodesics with ds2 = 0. In the conformal coordinates we have

Ω2(−dt2 + dr2) = 0,

where dr2 = dx2 + dy2 + dz2, so that dt = dr for light. In other words

r = t+ const.

Let the light source be at the origin and our observer be at a position r, both at rest

with respect to the comoving frame with time τ . Using the same argument as in the lectures,

one finds that the time interval between two consecutive waves is

dτsource = a(τsource)dt,

dτobser = a(τobser)dt,

so that
λobser

λsource
=

dτsource

dτobser
=
a(τsource)

a(τobser)
=

(
τsource

τobser

)1/3

.

The red shift is then

z =
∆λ

λ
=
λobser − λsource

λsource
=

(
τsource

τobser

)1/3

− 1.

A slicker way to get to this answer is to note that as a Killing vector has a corresponding

conserved quantity on geodesics, a conformal Killing vector corresponds to a conserved

quantity on null geodesics. A conformal Killing vector is one that satisfies

∇(aKb) = f(x)gab,

for some function f(x). For the metric at hand, one can show that K = ∂t = a(τ)∂τ is a
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conformal Killing vector, and so we have a quantity Kaẋ
a that is conserved on null geodesics.

This gives

Kagabẋ
b = −a(τ)ω(τ) = const,

where ω(τ) is the frequency of the photon traveling on the null geodesic.

9.* Energy conditions

The weak energy condition (WEC) requires that any stress-energy tensor must satisfy

Tabt
atb ≥ 0,

for all timelike vectors ta. Show that for a perfect fluid the WEC implies

ρ ≥ 0, ρ+ P ≥ 0.

What type of matter would violate the WEC?

The stress tensor for a perfect fluid is

Tab = (p+ ρ)uaub + pgab.

Consider Tabt
atb for some timelike vector ta. In the local inertial frame comoving with the

fluid (in which ua = (1, 0, 0, 0) and gab = ηab) we pick

ta = γ(v)(1, v, 0, 0).

Expanding out we find

Tabt
atb = (p+ ρ)γ2 − p

= γ2(ρ+ v2p).

This must be greater than or equal to zero for all 0 ≤ v < 1. For v = 0 this implies ρ ≥ 0

and as v → 1 we must have ρ+ p ≥ 0.

The strong energy condition (SEC) requires that any stress-energy tensor must satisfy

Tabt
atb ≥ 1

2T
a
at
btb,

for all timelike vectors ta. Show that for a perfect fluid the SEC implies

ρ+ P ≥ 0, ρ+ 3P ≥ 0.
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In the local inertial frame we have

T aa = (p+ ρ)uaubη
ab + pηabη

ab

= −(p+ ρ) + 4p

= 3p− ρ.

The SEC is then

0 ≤ Tabtatb − 1
2T

a
at
btb

≤ (p+ ρ)γ2 − p− 1
2(3p− ρ)(−1)

≤ (p+ ρ)γ2 + 1
2(p− ρ)

≤ γ2
(
(ρ+ 3p) + v2(ρ− p)

)
.

As this must hold for 0 ≤ v < 1, we get

ρ+ 3p ≥ 0, ρ+ p ≥ 0.

Does the SEC imply the WEC? Is the SEC satisfied for a flat FRW universe with a positive

cosmological constant?

The SEC does not imply the WEC. Small negative ρ with large positive p obey the SEC

but violate the WEC. Conversely, positive ρ with negative p where 3|p| > ρ obey the WEC

but violate the SEC.

A flat FRW universe with a positive cosmological constant Λ has ρΛ = Λ/8π and pressure

pΛ = −Λ/8π. This does not obey the second condition of the SEC.

Starting from the Einstein equations, show that the SEC implies

Rabt
atb ≥ 0,

where Rab is the Ricci tensor.

The Einstein equations are

Rab − 1
2Rgab = 8πTab.

Contracting with gab gives

R− 41
2R = −R = 8πT aa,

allowing us to write

Rab = 8π(Tab − 1
2T

a
agab).

Contracting with an arbitrary timelike vector ta, the right-hand side of this expression is
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greater than or equal to zero due to the SEC. This implies

Rabt
atb ≥ 0.

10.* Cosmic strings

Consider a static, infinitely long, cylindrically symmetric matter distribution of constant radius

that is invariant under Lorentz boosts along the symmetry axis. Using similar arguments that

lead to the Schwarzschild solution, show that the metric outside the matter distribution can be

written as

ds2 = −dt2 + dr2 + (α+ βr)2dφ2 + dz2,

where r is the radial direction, z is the direction along the symmetry axis, and α and β are

constants.

This follows the derivation of the Schwarzschild solution closely. The idea is to start with

an ansatz for the the metric that incorporates rotational symmetry in the φ direction,

translation symmetry in the z direction, and no time dependence so that we have

ds2 = −A(r)dt2 +B(r)dr2 + C(r)dφ2 +D(r)dz2.

Off-diagonal components in dtdr and dzdr can be eliminated by defining the z and t

coordinates. One then follows the Schwarzschild derivation to fix the unknown functions

using symmetry or coordinate freedom.

For the case α = 0, consider the spacelike surfaces defined by t = const.and z = const.

Calculate the circumference of a circle of constant coordinate radius r in such a surface.

For dt = dz = 0 we have

ds2 = dr2 + β2r2dφ2.

A circle of constant radius has dr = 0 so

ds2 = dl2 = β2r2dφ2,

where l is the proper distance of the circle. For constant r we can integrate directly to get

l = 2πβr.

The circumference of the circle is 2πβr, that is the usual 2πr multiplied by β.

Argue that the for β < 1, the geometry on the spacelike surface is that of a two-dimensional

cone embedded in three-dimensional Euclidean space.

For β < 1 there is a deficit angle – we can define φ′ = βφ and let φ′ ∈ (0, 2πβ). If we let

r2 = x2 + y2 this metric describes locally flat Euclidean space with a wedge of angular size

2π(1− β) removed and the edges of the wedge identified. Joining the edges of the wedge
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together, this equivalently describes the geometry of a 2d cone embedded into 3d Euclidean

space.

10.* Totally antisymmetric torsion

Let ∇a be a torsion-free connection and define a new connection ∇̃a such that

∇̃aV b = ∇aV b − 1
2T

b
acV

c,

for any vector field V a, where T bac = −T bca. Let Ωab = −Ωba be a non-degenerate antisymmetric

tensor with inverse Ω̂ac such that

ΩabΩ̂
bc = δca.

Show that there exists a unique choice for T bac such that

∇̃aΩbc = 0.

We begin with noting that the definition of the shifted connection means we have

∇̃aΩbc = ∇aΩbc + 1
2T

d
abΩdc + 1

2T
d
acΩbd. (3)

This can be derived by checking how the shifted connection acts on scalars and one-forms,

then using induction.

We want to isolate a single T abc so that we can solve for it. To do this, we play the same

game we played when solving for the Levi-Civita connection. Let (3) be (a), with (b) and (c)
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the same expressions with (abc)→ (bca) and (abc)→ (cab). Taking (a) + (b)− (c) we find

0 ≡ ∇̃aΩbc + ∇̃bΩca − ∇̃cΩab = ∇aΩbc +∇bΩca −∇cΩab

+ 1
2T

d
abΩdc + 1

2T
d
acΩbd

+ 1
2T

d
bcΩda + 1

2T
d
baΩcd

− 1
2T

d
caΩdb − 1

2T
d
cbΩad

= ∇aΩbc +∇bΩca −∇cΩab

+ 1
2T

d
abΩdc + 1

2T
d
acΩbd

+ 1
2T

d
bcΩda + 1

2T
d
abΩdc

− 1
2T

d
acΩbd − 1

2T
d
bcΩda

= ∇aΩbc +∇bΩca −∇cΩab + T dabΩdc.

Multiplying through by Ω̂ce we get

0 = (∇aΩbc +∇bΩca −∇cΩab)Ω̂
ce + T dabΩdcΩ̂

ce

= (∇aΩbc +∇bΩca −∇cΩab)Ω̂
ce + T eab.

This uniquely fixes T eab in terms of ∇ and Ω. Now one needs to check that this choice sets

∇̃aΩbc = 0 and not just the particular combination that appears above. We have

∇̃aΩbc = ∇aΩbc − 1
2(∇aΩbe +∇bΩea −∇eΩab)Ω̂

edΩdc − 1
2(∇aΩce +∇cΩea −∇eΩac)Ω̂

edΩbd

= ∇aΩbc − 1
2(∇aΩbc +∇bΩca −∇cΩab) + 1

2(∇aΩcb +∇cΩba −∇bΩac)

= ∇aΩbc − 1
2(∇aΩbc +∇bΩca −∇cΩab) + 1

2(−∇aΩbc −∇cΩab +∇bΩca)

= ∇aΩbc −∇aΩbc

= 0,

so it is indeed the unique choice for T eab that sets ∇̃aΩbc = 0.
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